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Abstract—Channel estimation for multi-user multiple input
multiple output (MIMO) systems has been recognized as a key
issue in next generation wireless communication. The wireless
channel is approximately sparse due to the transmission noise
effect, which limits the performance of the existing sparse channel
estimation method. To address this problem, the denoising deep
learning based channel estimation method for MU-MIMO system
is proposed in this paper. Utilizing the denoising algorithm to
remove noise perturbations in channel estimation, the proposed
method can obtain the accurate sparse feature of wireless chan-
nels in MU-MIMO system. Moreover, the estimation accuracy
and spectrum efficiency can be further improved by fully utilizing
the spatial correlation among the massive MIMO channel.
Simulation results demonstrated that, the proposed method can
improve the channel estimation accuracy and robustness of
massive MIMO channel compared with the existing benchmarks.

Index Terms—massive MIMO, channel estimation, sparse re-
covery, denoising deep network

I. INTRODUCTION

Massive multiple input multiple output has attracted much
attention due to its advantage of meeting the demand of
higher spectral efficiency and data rate in the 5G wireless
communications [1] [2]. However, it is difficult to estimate the
channel of massive MIMO systems accurately and efficiently
with the dramatic increase of the scale of antenna [3] [4].
The channel estimation method with the reliable estimation
performance for massive MIMO system has gradually become
a research hotspot in recent years.

The conventional channel estimation methods can be sum-
marized into the two types [5]: the time domain based
method and the frequency domain based method. However,
the overhead of time and frequency resources will dramati-
cally increases when the scale of the antenna array becomes
large, which significantly deteriorates the spectral efficiency of
massive MIMO system [4]. To tackle this issue, with the help
of the compressed sensing (CS) theory, the CS based channel
estimation method is proposed to estimate the massive MIMO
channel from a few received measurement data, which reduces
the overhead and thus improves the spectral efficiency [6]–[8].
However, the accuracy of the existing CS based channel esti-
mation methods is limited at the situation where the wireless
channel is approximately sparse due to the transmission noise
effect, i.e. the channel impulse response is a approximately
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sparse vector with several dominant taps and many smaller
non-zero elements close to zero [9].

Recently, the deep learning (DL) has been adopted to
deal with the classical problems in wireless communication
due to its excellent performance in extracting the potential
features of large amounts of data. Several deep leaning based
methods are proposed to conduct the massive MIMO channel
estimation [10]–[14]. By unrolling the repeated iterations of
approximate message passing (AMP) algorithm into the multi-
layer neural networks, the learned AMP (LAMP) network
based channel estimation method [15] is proposed to estimate
the sparse channel vector in an end-to-end manner, which im-
proves the channel estimation accuracy based on the capability
of obtaining the optimal sparse feature of the LAMP network.
However, the wireless channel is approximately sparse in the
case of high noise intensity, the LAMP network based channel
estimation method can not accurately learn the sparse feature,
which results in low accuracy in channel estimation. Therefore,
it is necessary to research an efficient method with higher
accuracy to estimate the approximate sparse channel.

In this paper, the denoising deep sparse learning based chan-
nel estimation method (D-DSLCE) for MU-MIMO system is
proposed to improve the estimation accuracy of approximate
sparse channel. Utilizing the denoising algorithm to remove
the noise perturbations, the proposed D-DSLCE method can
efficiently and accurately obtain the sparse feature of mas-
sive MIMO channel, i.e. the dominant taps of the channel
CIRs of MU-MIMO system. Moreover, the spatial correlation
among a large number of antennas is also fully exploited
to improve the estimation accuracy and spectrum efficiency.
Simulation results demonstrate that the proposed D-DSLCE
method achieves higher accuracy of MIMO channel estimation
compared with the existing benchmark methods including the
conventional least squares (LS) method, the CS-based method
and the deep learning based method at the situation with high
noise intensity.

II. SYSTEM MODEL

As illustrated in Figure 1, we consider a massive MIMO sys-
tem where the base station (BS) is equipped with Nt transmit
antennas and serves multiple users with single-antenna. During
a certain OFDM symbol in transmission, the L length-CIR



between the t-th transmit antenna of the BS and a certain user
can be modeled as
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Due to the limited scattering points around the base station,
the majority of the energy of the channel CIR is concentrated
on a few dominant taps [16] [17]. Therefore, the CIR vector of
wireless channel is approximately sparse vector with several
dominant taps and many smaller non-zero elements close to
zero in the delay domain. The time-frequency training OFDM
signal structure of the t-th transmit antenna is composed of
an M -length cyclic prefix (CP) c = [c1, c2, ..., cM ]

T and an
N -length OFDM symbol xi given by
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where F is the N × N discrete Fourier transform (DFT)
matrix and N is the number of OFDM sub-carriers. x̃(t)

denotes the OFDM symbol in frequency domain, and Np pilots
are randomly distributed over the OFDM sub-carriers. The
locations of the pilots are denoted by a set given by

D(t) = {d(t)
n }

Np
n=1 (3)

where d(t)
n is an index integer from 0 to N − 1 denoting a

pilot location. The pilots of different transmit antennas are
distributed in the sub-carriers in an orthogonal pattern as
illustrated in Figure 1.

At a certain user, the received frequency-domain OFDM
symbol ỹ ∈ CN can be represented as

ỹ =

Nt∑
t=1

diag(x̃(t))FLh(t) + w̃ (4)

where diag(x̃(t)) is the diagonal matrix with the diagonal given
by the vector x̃(t), and FL is the N × L partial DFT matrix
composed of the first L columns of the N×N DFT matrix F.
w̃ denotes the frequency-domain additive white Gaussian noise
vector. Due to the pilots patterns of different transmit antennas
are orthogonal to each other, the received pilots located at
D(t) from the t-th transmit antenna can be extracted in the
frequency domain, and represented as

u(t) = Ah(t) + w(t), 1 ≤ t ≤ Nt (5)

where u(t) = [ỹd1/x̃
(t)
d1
, ỹd2/x̃

(t)
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/x̃
(t)
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]T ∈ CNp

denotes the receive pilot signals normalized by the transmitted
original pilot power to represent channel measurements at the
receiver, and the measurement matrix A is the Np ×L partial
DFT matrix with its entry in row-n and column-k being exp
(−j2πd(t)

n (k − 1)/N)/
√
N .

Since the physical distance between different antennas in
the base station is far less than the actual communication
distance between the base station and the certain user in the
long-distance communication, the CIR vectors of different
transmit-receive antenna pairs have similar propagation path
and characteristics [18] [19]. Therefore, the channel matrix of

massive MIMO system can be regarded as a set of independent
sub-channel vectors, which is given by

H =
[
h(1),h(2), ...,h(Nt)

]
(6)

Moreover, the CIR vectors of different transmit-receive anten-
na pairs have the identical dominant taps, which is called as
the spatial correlation of the MIMO channels [20]. Utilizing
this property, the channel estimation accuracy can be further
improved.

III. PROPOSED DENOISING DEEP SPARSE LEARNING
BASED CHANNEL ESTIMATION METHOD

In this section, we explore the sparse characteristics of
channel, i.e. the channel CIR vector has a few dominant
taps in delay domain, and propose a denoising deep sparse
learning based channel estimation method. Specifically, the
massive MIMO channel estimation problem is formulated as
a sparse signal recovery problem according to the Section 2,
which can be solved by the iterative sparse recovery algorithm.
Due to the transmission noise effect, the wireless channel is
approximately sparse, which limits the accuracy of the existing
sparse channel estimation method. Using the denoising algo-
rithm to remove noise perturbations in channel estimation [21],
the proposed D-DSLCE method utilizes the denoising deep
network to learn the sparse feature of the massive MIMO
channel and obtain the precise positions of the dominant taps,
which improves the channel recovery performance of massive
MIMO system compared with the existing benchmarks.

As illustrated in Figure 2, the denoising deep network
consists of NL deep neural layers connected by cascade way,
and each layer is used to mimic an iteration of the iterative
sparse recovery algorithm. Since the denoising algorithm in
the deep network needs to be easy to propagate the gra-
dient, DnCNN [22] with sufficiently good denoising perfor-
mance is selected as the denoising algorithm in the denoising
deep network. Given the received normalized pilot signals
U =

[
u(1),u(2), ...,u(Nt)

]
and the measurement matrix A, the

channel estimation process for the l layer of the denoising
deep network can be represented as

Ĥl+1=Dσl

(
Ĥl+AT zl

)
(7)

zl+1 = U− AĤl+1 +
1

Np
zldivDσl

(
Ĥl + AT zl

)
(8)

where Ĥl and Ĥl+1 are the MIMO CIR at the input and output
of the l-th layer of the denoising deep network, respectively.
zl and zl+1 denote the iterative residual at the input and output
of the l-th layer of the denoising deep network, respectively.
The σl represents the standard deviation of iteration residuals.
Dσl

() denotes the denoising algorithm of DnCNN, whose
input rl = Ĥl+AT zl can be approximated as rl = H+ n̂l, the
equivalent noise n̂l = Ĥl−H+AT zl ∼ N

(
0, σl

2I
)
. Different

layers of the denoising deep network adopt the identical
DnCNN structure, which is used to estimate the channel CIR
Ĥl with the input of the intermediate quantities rl and the
learnable parameters Θl = {wk,bk}lk=0. The equivalent noise
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Fig. 1. The signal model of the MU-MIMO system and denoising deep sparse learning based channel estimation.

variance σl2 is related to the iteration residuals zl, and will
gradually decrease to a finite value with the increase of the
number of layers in the denoising deep network. Besides, the
Onsager correction term 1

Np
zldivDσl

(
Ĥl + AT zl

)
in Equa-

tion (8) involves the divergence calculation of the denoising
deep network. With the help of an independent and identically
distributed random vector b ∼ N (0, I), Monte-Carlo method
is used to compute the divergence
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Fig. 2. The architecture of the layer-l of the denoising deep network
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In order to optimize the depth of layers and learnable
parameters of the denoising deep network, the loss function is
determined as the normalized mean square error (NMSE) of
the channel estimation, which is given by
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∥∥2

2

(10)

where fl(Ud,Θl) denotes the channel CIR Ĥl estimated by
the denoising deep network composed of l layers with input
Ud and the learnable parameters Θl. The parameters Θl are
learnt by minimizing the loss function over the training data
set {Ud}Dd=1 in the training process.

With the trained denoising deep network, the MIMO chan-
nel can be estimated accurately in the subsequent prediction
process. First, the received normalized pilot signals U =[
u(1),u(2), ...,u(Nt)

]
are input into the trained denoising deep

network to estimate the channel CIR for each antenna re-
spectively. Then, based on the sparse characteristic of massive
MIMO channel, the dominant taps set Π

(t)
S of each antenna

can be formulated by selecting the corresponding subscript
positions of the elements with the S largest amplitude value. S
is the the upper bound of the channel CIR corresponding to the
sub-channel in massive MIMO system [23]. Using the spatial
correlation of the massive MIMO channel, the dominant taps
set of each antenna can be further optimized by taking the
intersection of the corresponding dominant taps set of each
sub-channel. Therefore, the dominant taps set Π̄S of massive
MIMO channel can be obtained by

Π̄S=
Nt∩
t=1

Π
(t)
S (11)

Finally, the MIMO channel matrix can be estimated by solving
the LS problem in Equation (5):(
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IV. SIMULATION RESULTS

In this section, we present the massive MIMO channel
estimation performance of the proposed D-DSLCE method. As
a comparison, the conventional LS based channel estimation
method [4], the CS based algorithm of simultaneous orthogo-
nal matching pursuit (SOMP) [24] and the state-of-the-art deep
learning based method (LAMP) [15] are evaluated. Simulation
parameters are summarized as follows. The antenna scale of
the MIMO system is Nt = Nr = 32. The bandwidth is 8
MHz located at the central frequency of 780 MHz. The length
of the OFDM data block is N= 4096, with the length of CP
being M= 256. The maximum channel length is L= 256. The
maximum sparsity level of the CIR is conservatively assumed
to be S= 9, which is a conservative value to cover based on



the statistical distribution of the sparse channel. The number
of pilots adopted for channel measurements at each transmit
antenna is set as NP= 25.

The training set
{
Ud∈Np×Nt ,Hd

0∈L×Nt
}D
d=1

, with D =
2000, is generated based on the parametric sparse channel
model [25]. Each training sample in the training set containing
a measurement U containing all the antennas and the corre-
sponding ground-truth MIMO channel CIR vector H0. The
dominant taps of the MIMO channel is randomly distributed
in all the delay length and the amplitude follows a Rayleigh
fading distribution. The test data set and the validation data set
used to evaluate performance are generated in the same way as
the training data set, and are independent from the training data
set. The depth of network layers of D-DSLCE is determined
according to the evaluation performance of the validation set.
Each layer of the denoising deep network contains the DnCNN
with 8 layers. The stochastic gradient descent method and
Adam optimizer were used to train the network, and the
learning rate was set at 0.001. The learning rate was set at
0.0001 to continue the training process when the loss error of
validation set stopped declining.

Figure 3 presents the NMSE performance comparison of
different methods under the multipath fading channel in 32×32
MIMO systems. It can be shown that, the performance of
the proposed D-DSLCE method is obviously better than that
of the LS based method. This is because the available pilot
number of LS method is far less than the channel length, thus
it can not solve the underdetermined problem in Equation (5)
well. Besides, the proposed D-DSLCE method can effectively
learn the channel sparse structure and accurately estimate the
channel CIR vector under the same pilot number. At the level
of NMSE=10−2, the proposed D-DSLCE method has a SNR
gain of about 3.5 dB and 1.5 dB compared with the SOMP
based method and the LAMP based method respectively,
which verifies the high accuracy of the proposed method.

Figure 4 shows the channel estimation performance of
different methods with respect to the number of available pilots
adopted for channel measurements when the SNR is 15dB.
It can be shown that, the proposed D-DSLCE method has
better estimation accuracy compared with the SOMP based
method and the LAMP based method. Therefore, the proposed
D-DSLCE method can use fewer pilots to achieve the same
estimation accuracy as the benchmark methods, which reduces
the overhead of pilot and improves the spectrum efficiency of
massive MIMO system.

V. CONCLUSION

In this paper, a novel denoising deep sparse learning based
channel estimation method for massive MIMO system is
proposed by exploiting the denoising deep network to estimate
the sophisticated multipath fading MIMO channel with much
higher accuracy. Simulation results have verified that, the
proposed D-DSLCE method can significantly improve the
estimation accuracy and spectrum efficiency of MIMO channel
compared with the state-of-the-art benchmark schemes in
realistic multi-users communications scenarios.
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