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Abstract—Unmanned aerial vehicle (UAV) networks are vul-
nerable to jamming attacks because of the high mobility, limited
battery and scarce spectrum resources of UAVs. In this paper, we
propose a reinforcement learning based UAV relay scheme to im-
prove the anti-jamming capability and save energy consumption
of the UAV network. Based on the real-time channel conditions
and the historical relay experiences, the proposed scheme enables
UAVs to improve the policy of relay power and strategies without
knowing the UAV network and channel model. Simulation results
show that the proposed UAV relay scheme reduces the bit error
rate of the messages and reduces the energy consumption of the
UAV network compared with the state-of-the-art benchmark.

Index Terms—Jamming, unmanned aerial vehicles, relay, re-
inforcement learning.

I. INTRODUCTION

Unlike mobile ad hoc networks and vehicular ad hoc net-
works (VANETs), unmanned aerial vehicle (UAV) networks
are more vulnerable to jamming attacks due to the strict power
constraints, the time-varying link quality, higher mobility and
dynamic topology with two or three spatial degrees of freedom
[1]. In particular, jamming attacks in UAV networks result
in the transmission outage and severe system performance
degradation [2]. For example, a UAV can be controlled by
an attacker with jamming and spoofing signals to land in
unintended area after its connection to the operator is blocked
and replaced by the attacker [3]. Some UAVs deployed as
swarms can be employed as mobile relays to address jamming,
and fully exploit the line-of-sight links among the UAVs [4].

Frequency hopping as a traditional anti-jamming communi-
cation technique has severe performance degradation in UAV
networks due to the difficulty distributing and managing the
hopping pattern, the limited battery capacity and spectrum
resources of the UAV relay against jamming [5]. Power control
is critical for UAVs to address jamming attacks. For instance,
the UAV power control scheme as proposed in [6] formulates
a Bayesian Stackelberg game to maximize the utility in terms
of the throughput against jamming attacks. The joint power
control and user scheduling scheme as proposed in [7] uses
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dynamic programming to improve the anti-jamming perfor-
mance, including the signal-to-interference-plus-noise ratio
and the data rate.

Furthermore, the rapidly time-varying channel conditions
and the UAV network model bring great challenges to channel
modeling, making it difficult for the conventional power con-
trol methods to be applied. Fortunately, reinforcement learning
(RL)-based anti-jamming methods do not require to be aware
of the network and channel model, and thus have been applied
in UAV-aided VANETs [8]. However, this scheme cannot be
directly applied in a more dynamic UAV relay network since
the anti-jamming performance cannot be guaranteed.

To solve the problems of the state-of-the-art methods, a
Reinforcement-learning-based Energy-efficient Anti-jamming
Relay (REAR) scheme is proposed in this paper, to im-
prove the energy efficiency and communication reliability for
the UAV relay networks. Specifically, the proposed scheme
enables each UAV relay to determine its transmit power
cooperatively and dynamically based on its state consisting
of the received signal strength indicator (RSSI) and the BER
of the received message, the channel conditions, the battery
level and the past experience of the interactions with the
jammer, without being aware of the UAV network model
and channel model. A hotbooting method [9] is applied to
accelerate the learning process by exploiting anti-jamming
experiences from similar UAV relay networks. Simulation
results show that the REAR scheme can reduce the energy
consumption and improve the reliability compared with the
benchmark method [7]. The main contributions of this work
are twofold as follows:

1) An energy efficient UAV relay scheme against jamming
attacks is devised, which enables intelligent adjustment
of the UAV relay power in a dynamically varying
environment in the presence of a random jammer.

2) An RL-based power control algorithm is proposed to
improve the performance of the multi-UAV relay com-
munication system, without being aware of the network
model and channel model, which is further acceler-
ated by applying a transfer learning-based hotbooting
method.

The rest of this paper is organized as follows. The related
works are reviewed in Section II, and the system model is
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presented in Section III. The RL-based anti-jamming scheme
for UAV relay networks is presented in detail in Section IV.
Simulation results are reported in Section V, followed by the
conclusion drawn in Section VI.

II. RELATED WORKS

Jamming attacks and the countermeasures in UAV networks
have drawn plenty of research attention. For example, a
cooperative anti-jamming scheme proposed in [10] optimizes
the channel utilization subject to jamming by regulating the
channel access probability of different users. A joint power
allocation and scheduling method proposes a dynamic pro-
gramming algorithm to achieve optimal power control and
scheduling in a jammed wireless network [7]. An anti-jamming
adaptive beamforming technique applies linear constrained
optimization to help with the UAV navigation against jamming
with minimum computation complexity [11]. A cooperative
anti-jamming relay selection method employs the spatial di-
versity of the relays to reduce the outage probability by
accumulating all the signals from different relays [12].

Without the stringent requirement of being aware of the
network and channel model, RL-based methods have been
widely applied in anti-jamming. An RL-based power control
scheme is proposed for massive multiple-input multiple-output
(MIMO) systems to combat against smart jamming [13]. An
anti-jamming power control method in [2] uses Q-learning to
improve the transmission quality of the UAV network. An
RL-based UAV relay scheme against jamming is proposed
for VANETs, which determines the relay strategy according
to the radio transmission condition [8]. Reinforcement sparse
learning based methods as proposed in [14] and [15] can
make use of the sparse measurements to mitigate the NB-
IoT jamming and impulsive jamming. A deep RL-based power
control method is proposed for MIMO wireless optical com-
munications in the presence of wiretapping attacks [16].

III. SYSTEM MODEL

We consider a multi-relay enabled network that consists of
N UAVs as relay nodes between the source UAV and the des-
tination UAV. The source broadcasts messages intermittently
to the intended destination, whose direct link is impacted by
jamming. The N relay UAVs can help forward the messages
to the destination.

At time slot k, the source broadcasts a message using power
p(k). For simplicity, we assume that, the source only broadcasts
one message in each time slot. Both the relay UAVs and the
destination may receive the message. Both the system model
and the proposed strategy for each UAV relay are identical,
so the subscript i for relay indexing is omitted for simplicity
without loss of generality, except explicitly stated otherwise.
Upon receiving the message from the source, a UAV relay
decodes the message, measures the RSSI r(k) of the message
and estimates the BER �(k). The jamming power received by
the relay j

(k)
U and the channel gain of the relay-destination

link, h(k), also need to be estimated for the policy decision.
Since the energy of the UAVs is limited and crucial, the UAV

relay has to observe its current battery level b(k) to determine
whether there is sufficient energy left to relay the message. The
UAV relay may choose to relay the message from the source
to the destination using the power of x(k) ranging from zero
to the maximum power Pmax, which is quantized into M +1
discrete levels, i.e., x(k) ∈ A = {mPmax/M}0≤m≤M , with A
being the action set. Each relay chooses its own relay power
independently to improve the system performance.

Due to the broadcast nature of the messages, the destination
can receive multiple copies of the message at time slot k,
which may be directly sent from the source or relayed by
some relay UAVs. Every message received is decoded upon
reception and the BER ρ(k) is estimated and recorded. At last,
the destination assembles the source address (the address of the
source or the relay, from which the message comes directly)
and the corresponding BER during this time slot together into
one feedback frame and broadcasts it as a feedback.

A flag denoted by c(k) is used to record and evaluate the
message delivery state, i.e., whether the message from the
source has been successfully delivered to the destination. Only
if the destination successfully receives and decodes at least one
message can the corresponding BER be found in the feedback,
and in this condition the flag c(k) will be set to 0, indicating a
successful message delivery. Otherwise, if both the relays and
the source have failed in delivering the message, the flag will
be set as c(k) = 1 as a punishment in the utility for learning
and decision.

Once the feedback of the current message is received, the
maximum BER ρ

(k)
max and the minimum BER ρ

(k)
min in the

feedback information frame will be extracted. The BER of
the message ρ(k) sent from the very UAV relay itself is also
picked out. If the BER of the message sent by the relay is not
found in the feedback, ρ(k)max is adopted instead to serve as a
conservative estimate in the learning process, i.e., ρ(k) = ρ

(k)
max.

As far as the jamming model is concerned, a random
jammer sending jamming signals in the same frequency as
that of the UAVs is considered. The jamming power j(k) is
in the range of [0, jmax]. Different from a static jammer that
makes the jamming power fixed, a random jammer is smarter
and more detrimental. Besides, sending jamming signals using
random power for a random period may reduce the energy
consumption of the jammer, making the attacks last longer.

IV. RL-BASED ENERGY EFFICIENT UAV RELAY SCHEME
AGAINST JAMMING

In this section, we present an RL-based energy efficient
UAV relay scheme to combat against random jamming attacks.
In the framework of RL, the proposed scheme is able to
optimize the relay policy for better energy efficiency and
reliability of the UAV relay system. We also apply a transfer
learning technique, i.e., hotbooting, to further accelerate the
learning process.

The pseudocode of the proposed scheme is presented in
Algorithm 1. At time slot k, the source broadcasts a message.
Upon receiving the message, the UAV relay determines a
proper power to forward the message to the destination.
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Algorithm 1: RL-based energy efficient anti-jamming
scheme for UAV relay

1 Initialize parameters: A, ρ(0), ρ(0)min and c(0)

2 Obtain Q̃ from similar scenarios based on transfer
learning

3 Initialize Q-function as Q=Q̃
4 for k = 1, 2, · · · do
5 UAV relay receives a message from the source
6 Measure and observe �(k), r(k), j(k)U , b(k) and h(k)

7 Formulate s(k) via (1)
8 Select x(k) ∈ A by ε-greedy method
9 Estimate b̃(k) based on x(k) and b(k)

10 if b̃(k) <= ϑ then
11 x(k) = 0 (insufficient power, mute relaying)
12 else
13 Relay the message with power x(k)

14 end
15 if Receive the feedback for message then
16 c(k) = 0 (transmission successful)
17 if ρ(k) is contained in the feedback then
18 Extract the minimum BER
19 in the feedback ρ

(k)
min

20 else
21 Extract the maximum and minimum
22 BER ρ

(k)
max and ρ

(k)
min

23 ρ(k) = ρ
(k)
max

24 end
25 else
26 c(k) = 1 (transmission failed)
27 end
28 Calculate u(k) via (2)

29 Update Q
(
s(k), x(k)

)
via the Bellman iterative

equation
30 end

The destination broadcasts a feedback frame containing the
information of the source address and the corresponding BER
after decoding the message. Each UAV relay determines its
relay power independently based on Algorithm 1, so any of
the relay UAVs can be investigated to show our proposed
method, without loss of generality. Thus, the UAV relay index
i is omitted for simplicity in Algorithm 1.

Specifically, the metrics reflecting the transmission quality
of the UAV network, including the BER of the message �(k)

and the RSSI of the message r(k), is observed before relaying.
The current received jamming power j(k)U and the battery level
of the UAV relay b(k) are also observed. The channel gain h(k)

from the UAV relay to the destination is estimated based on
the preambles of the messages [17]. The parameters of the
previous time slot including the BER of the relay message
ρ(k−1) and the transmission state flag c(k−1) can also be
obtained, from the feedback.

Thus, the state s(k) for the UAV relay can be formulated as
given by

s(k) =
[
�(k), r(k), ρ

(k−1)
min , ρ(k−1), c(k−1),

h(k), b(k), j
(k)
U

]
, (1)

which contains the BER �(k) and the RSSI r(k) of the message
received by the UAV relay, the estimated channel gain h(k),
the battery level b(k), the jamming power imposed on the UAV
relay j

(k)
U , together with the parameters from the feedback

of the destination at the previous time slot k − 1 including
the minimum BER ρ

(k−1)
min , the BER of the relayed message

ρ(k−1), and the flag c(k−1).
Based on the state s(k), the UAV relay chooses its transmit

power x(k) ∈ A according to the Q-function table. Specifically,
if the UAV chooses to help relay the message, then x(k) > 0,
otherwise x(k) = 0 if relay is denied. During the learning
process, the ε-greedy method is used to balance exploration
and exploitation and prevent stopping at a local minima, where
ε denotes the probability of exploration. After the relay power
x(k) is chosen, the feasibility of the action has to be evaluated
before relaying. The remaining battery level b̃(k) = b(k)−x(k)

should be calculated after consuming the relay power of x(k).
If the remaining battery level can not support the UAV to keep
working normally, i.e., b̃(k) < ϑ, where ϑ is the minimum
battery threshold, then x(k) will be reset to 0 to prevent the
relay. Only if the remaining battery level is sufficient will the
UAV finally forward the message to the destination.

If the feedback of the current message is received, the flag
is set as c(k) = 0 to indicate a successful relay. In this case,
the BER ρ(k) of the message sent by the UAV as well as
the minimum BER ρ

(k)
min in the feedback will be recorded.

On the other hand, if the corresponding BER is not contained
in the feedback, e.g., when the UAV has denied to relay the
message or the message it relays fails to reach the destination
due to jamming, the minimum BER ρ

(k)
min and the maximum

BER ρ
(k)
max will be recorded, and the maximum BER ρ

(k)
max

will be regarded as the actual BER for that message as a
conservative estimate. If no feedback is received, the flag will
be set to c(k) = 1 as a punishment to the utility to reflect a
transmission outage. Besides, the UAV relay has to measure
its energy consumption E(k) by observing the battery level
b(k+1) at the end of the current time slot to evaluate the energy
efficiency.

Let ωb denote the weight of the BER on the utility function
for the learning process, and ωc can be set to an empirically
large number as a punishment of transmission outage. The
utility u(k) is evaluated upon receiving the feedback from the
destination as given by:

u(k) = −E(k) − ωbρ
(k) − ωcc

(k). (2)

As shown in Algorithm 1, the Q-function is exploited and
updated via the Bellman iterative equation with the learning
rate α and the discount factor γ to maximize the long-term
utility. A transfer learning-based hotbooting method is applied
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to accelerate the learning process, which is implemented by
initializing the Q-values with the randomly selected anti-
jamming UAV relay experiences Q̃ from a number of similar
UAV relay scenarios.

V. SIMULATION RESULTS

Simulations are conducted in the scenario including one
source UAV, one destination UAV, three relay UAVs, and
one moving jammer. The transmission power of the source
is set as 0.1 W. The relay UAVs can choose their relay
power in the range of [0, 0.1] W which is quantized into 11
discrete levels. Since the air-to-air channel in the system model
evaluated in this work is dominated by free-space propagation
and less multi-path fading is present compared to the air-to-
ground channel [18], we can calculate the path loss using the
channel model presented in [19]. There is a jammer moving
stochastically near the destination. The jamming power can be
changed randomly. Specifically, the jamming power imposed
on the destination can be randomly changing among 2 dBm,
6 dBm and 7 dBm. Relays are subject to the jamming power
stochastically changing among -7 dBm, -5 dBm and -3 dBm.
The system performance can be evaluated by the utility of
the network, which is calculated by the minimum BER of
the messages received by the destination and the total energy
consumption of the UAV network. The learning rate is set as
α = 0.5 and the discount factor is set as γ = 0.7. The method
of optimal power control against jamming (OPAJ) using fixed
optimal relay power [7] is evaluated as a benchmark.

The performance of the RL-based energy efficient UAV
relay scheme against jamming is reported in Fig. 1. It is
shown that with the proposed REAR scheme, the relay UAVs
can successfully learn to improve the energy efficiency of
the network. Specifically, the relay UAVs in bad channel
conditions select a lower relay power or keep silent to save
energy, while other UAVs in better channel conditions choose
to relay with higher power. Thus the total energy consumption
of the UAV network decreases over time and converges to
6×10−4 J after 4300 time slots, which saves about 25% energy
compared with the start of the learning process. It can also
be noted that the communication reliability is significantly
improved as the BER decreases to less than 1% of the start
of the learning process after 4300 time slots. Moreover, the
utility of the UAV relay network is improved by 3 times after
4300 time slots.

Furthermore, it is also shown by Fig. 1 that, the proposed
RL-based energy efficient UAV relay scheme significantly
outperforms the benchmark OPAJ [7]. For instance, the energy
consumption is about 26% lower than that of the benchmark,
as shown in Fig. 1(a). The BER of the RL-based scheme is
about two orders of magnitude lower than the benchmark, as
shown in Fig. 1(b). The energy consumption of the bench-
mark remains invariant due to using fixed relay power, while
the proposed method will significantly decrease the energy
consumption with the process of learning. Finally, the utility
of the UAV relay network using the proposed scheme is about
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Fig. 1. Performance of the RL-based energy efficient UAV
relay scheme averaged over 50 episodes for the UAV network
with 3 relays in the presence of a random jammer. The
jamming power imposed on the destination changes among
2dBm, 6dBm and 7dBm each time slot.
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2 times higher than that of the benchmark, as shown in Fig.
1(c).

VI. CONCLUSION

In this paper, we have presented an RL-based energy
efficient relay scheme for UAV networks in the presence of
jamming. This proposed scheme uses a hotbooting method to
accelerate the UAV relay learning process. Simulation results
for the network that consists of 5 UAVs against a random
jammer show that our proposed scheme can improve the
utility of the UAV relay network, such as increasing the
communication reliability, i.e., decreasing the BER by two
orders of magnitude, and reducing the energy consumption by
26% compared with the benchmark OPAJ.
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