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ABSTRACT
It is well known that the underwater acoustic channel (UAC) has
the physical characteristic of sparse structure due to the significant
multipath effect. To improve the performance of UAC estimation,
with the physical knowledge on channel sparsity in mind we pro-
pose a novel method called Deep Learning based UAC Estimation
(DL-UACE) in this paper. The DL-UACE method combines the con-
ventional iterative sparse recovery algorithm of approximate mes-
sage passing (AMP) with deep neural network (DNN) to construct
a sparsity-aware DNN for the deep learning of the inherent sparse
structure of the UAC. Furthermore, the denoising convolutional
neural network (DnCNN) is integrated into the sparsity-aware DNN
as a denoiser to mitigate the impact of ubiquitous ambient noise that
obeys Gaussian distribution on UAC estimation. Simulation results
show that the proposed DL-UACE method is superior to the state-
of-the-art methods in terms of estimation accuracy and spectrum
efficiency, especially in severe conditions of low signal-to-noise
ratio (SNR) or insufficient pilots.
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1 INTRODUCTION
Underwater acoustic channel (UAC) estimation, whose goal is to
obtain accurate channel state information (CSI), is still a challeng-
ing problem for underwater acoustic orthogonal frequency division
multiplexing (UA-OFDM) communication systems [18]. Most diffi-
culties arise from the complicated characteristics of the UAC, such
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as time varying, multipath fading, delay spread, and Doppler spread,
etc [20]. Fortunately, in addition to the above characteristics, the
UAC is well known to usually have a sparse structure in the sense
that the channel energy is principally concentrated in only a few
dominant paths, which greatly reduces the number of channel co-
efficients that need to be estimated [2, 20]. Thus, exploiting the
physical knowledge on channel sparsity is the key to improving
the performance of channel estimation [2, 15, 18].

In recent decades, vast UAC estimation methods have been ex-
tensively studied based on various adaptive algorithms, which can
be classified into two categories: the traditional methods and the
compressed sensing (CS) based methods. The traditional methods,
mainly including least square (LS) [19] and minimum mean square
error (MMSE) [26] methods, are generally easy to implement but
cannot effectively exploit the channel sparsity, which results in high
overhead of spectrum resources and limited estimation accuracy
[19, 26]. The CS-based methods mainly include convex optimization
algorithms (e.g., basis pursuit [10] and approximate message pass-
ing (AMP) [8]) and greedy algorithms, the latter of which has been
well investigated in the area of sparse UAC estimation, including
orthogonal matching pursuit (OMP) and many related improved
greedy algorithms [6, 7, 13, 14, 22, 23].

Wan et al . [22] proposed an OMP-based UAC estimation scheme
using equispaced pilots, which achieves a considerable improve-
ment in estimation accuracy compared with the traditional meth-
ods. Chen et al . [6] applied compressive sampling matching pursuit
(CoSaMP) to estimate the coefficients of the UAC with the sparsity
level as a priori knowledge. Different fromCoSaMP, the sparse adap-
tive matching pursuit (SAMP) algorithm proposed in [7], which
has a step size to adjust the sparsity level, can estimate the sparse
UAC coefficients without requiring the sparsity level. Although
the CS-based methods can effectively make up for the deficiencies
of the traditional methods by exploiting the channel sparsity, the
performance may degrade in the case of intensive ambient noise or
insufficient pilots [1, 5].

Recently, advances in deep learning (DL) techniques have facili-
tated the rapid development of many fields, such as sparse recovery
[4, 11, 12, 17] and massive MIMO communications [9, 24], which
also provide a new solution for UAC estimation. Consequently,
utilizing the theory of CS and DL, with the physical knowledge
on channel sparsity in mind we combine AMP with deep neural
network (DNN) to propose a Deep Learning based UAC Estimation
(DL-UACE) method to improve the performance of UAC estima-
tion in this paper. Specifically, we decompose the conventional
iterative sparse recovery algorithm of AMP into several differently
parameterized layers of a sparsity-aware DNN to learn the inher-
ent sparse structure of the UAC and facilitate the UAC estimation.
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Furthermore, considering the ubiquitous ambient noise that obeys
Gaussian distribution during the channel measurements, we inte-
grate the denoising convolutional neural network (DnCNN) [25]
into the sparsity-aware DNN as a denoiser to reduce the estimation
error caused by Gaussian noise and further improve the estimation
accuracy.

The rest of this paper is organized as follows: Section 2 presents
the system model. Section 3 proposes the DL-UACE method for
UAC estimation exploiting the channel sparsity as a physical prior
knowledge. Section 4 reports the simulation results. Finally, Section
5 concludes this paper.

2 SYSTEM MODEL
In typical UA-OFDM communication systems, the channel impulse
response (CIR) of the time-varying UAC with P paths based on the
ray theory can be expressed as [2, 20, 27]

h(t ;τ ) =
P∑
i=1

Ai (t)δ (τ − τi (t)) , (1)

whereAi (t) and τi (t) denote the time varying amplitude and delay
of the i-th path, respectively. Within the duration of each OFDM
block, the following commonly recognized assumption on the UAC
is adopted [2, 5, 18]: the channel coefficients are treated as approx-
imately constant and the channel is approximately considered as
time-invariant, since the coherence time of the channel is usually
much longer than the symbol period of the system. Therefore, the
CIR of the UAC with L taps in the discrete time domain can be
represented as [2, 23]

h = [h1,h2, . . . ,hL]T . (2)

It is notable that due to the inherent sparse structure of the
UAC, the amplitude of the dominant K paths is non-zero, and the
amplitude of other paths is either zero or relatively quite small
[2, 18, 20]. Thus, the CIR of the UAC is assumed to be K-sparse
(K ≪ L).

The block transmission scheme of cyclic prefixOFDM (CP-OFDM)
is considered in this paper to relieve multipath fading and inter-
symbol interference (ISI) [1, 5]. Assume that there are Nc subcar-
riers in an OFDM block, among which Np (Np < Nc) subcarriers
are employed to carry pilot symbols for channel estimation. Then
according to the pilot assisted channel estimation method, the UAC
estimation problem can be formulated in the frequency domain as
[2, 23]

y = X h̃ + n
= XFp h + n
= Ah + n ,

(3)

where y =
[
y1,y2, . . . ,yNp

]T
is the received pilots regarded as the

measurement vector in the CS framework.X = diag
(
x1,x2, . . . ,xNp

)
is a diagonal matrix that takes the transmitted pilots as diagonal
elements. h̃ = Fp h is the channel frequency response. Fp denotes
the normalized partial discrete Fourier transform (DFT) matrix with
size Np×L, which is composed of the Np rows corresponding to the
pilot position and the first L columns of the original Nc × Nc DFT
matrix. The matrix A = XFp with size Np × L is referred to as the

measurement matrix in the CS framework. n =
[
n1,n2, . . . ,nNp

]T
is the additive white Gaussian noise (AWGN) [1].

In the CS framework, utilizing the measurement matrix A and
the measurement vector y, the UAC estimation problem can be for-
mulated as a sparse recovery problem given by (3) and the unknown
CIR h of the UAC can be reconstructed using classical sparse recov-
ery methods, including iterative sparse recovery algorithms and
CS-based greedy algorithms, etc. In order to further improve the
performance of UAC estimation against severe underwater channel
environments, a sparsity-aware DNN based method of UAC esti-
mation is proposed with a denoising CNN to mitigate the impact
of the intensive ambient noise, which is described in detail in the
next section.

3 SPARSITY-AWARE DEEP LEARNINGWITH
DENOISING FOR UAC ESTIMATION

In the proposed Deep Learning based UAC Estimation (DL-UACE)
method, first we decompose the conventional iterative sparse re-
covery algorithm of AMP into several differently parameterized
layers of a sparsity-aware DNN to learn the inherent sparse struc-
ture of the UAC and facilitate the UAC estimation [4]. Furthermore,
considering the ubiquitous ambient noise that follows a Gaussian
distribution additive on the channel measurements, we integrate
a denoising CNN (DnCNN) [25] into the devised sparsity-aware
DNN as a denoiser to mitigate the impact of Gaussian noise on UAC
estimation [16, 17]. The architecture of the devised sparsity-aware
DNN with DnCNN is shown in Figure 1.
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Figure 1: The sparsity-aware DNN consists ofT cascaded lay-
ers with identical structure, in which each layer contains
two identical denoisers, i.e. DnCNNs, with the sameweights.

The implementation of the DL-UACE method in estimating the
CIR of the UAC includes two stages: the training stage and the
estimation stage, both of which are summarized in Algorithm 1 and
Algorithm 2, respectively.

In Algorithm 1, vt denotes the residual measurement error of
the t-th layer. ĥt denotes the estimation result of the t-th layer. zt
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Algorithm 1: DL-UACE − Training stage.

Input: training dataset
{
(yd ,hd )

}D
d=1

with size D, which is
composed of the measurement vector y and the
corresponding ground-truth CIR h; measurement matrix A.
Initialization:M = Np, N = L, v0 = 0, ĥ0 = 0.
/* Training the DNN layer-wise. */
for t = 1, 2, 3, . . . do

1: Initialize the learnable parameter wt of the denoiser
with a standard normal random vector,
wt ∼ N

(
0, IND

)
.

2: Compute the estimated standard deviation of the
effective noise via σt ← 1√

M
∥vt−1∥2.

3: Compute the input of the denoiser via
rt ← ĥt−1 + AHvt−1.

4: Update the estimation result of the UAC via
ĥt ← Dt

wt (σt )

(
ĥt−1 + AHvt−1

)
.

5: Compute the scalar bt via Monte-Carlo
approximation, bt ← 1

M divDt
wt (σt )

(
ĥt−1 + AHvt−1

)
.

6: Update the residual measurement error via
vt ← y − Aĥt + btvt−1.

7: Use back propagation and stochastic gradient descent
to update and optimize the learnable parameter wt to
minimize the loss Lt (Θ) in (5).
8: If Lt (Θ) ⩾ Lt−1(Θ), then the number of layers is
finalized as T ← t − 1 and break.

end
Output: learned parameters Θ =

{
{wt }

T
t=1

}
.

denotes the effective noise of the t-th layer, which is the difference
between the input ĥt−1 + AHvt−1 of the denoiser and the ground-
truth CIR h provided by the training data sample, i.e., zt = ĥt−1 +
AHvt−1 − h, where AH denotes the conjugate transpose of the
measurementmatrixA.σt denotes the estimated standard deviation
of the effective noise zt , which depends on vt−1. btvt−1 is the
Onsager correction term [3], which forces the effective noise in each
layer to be distributed very close to Gaussian noise and accelerates
the convergence of the estimation result [4, 16, 17]. Hence, the
effective noise zt = σtϵ ∼ N

(
0,σ 2

t IN
)
, where ϵ ∼ N (0, IN ) [16].

As far as the DnCNN is concerned, Dt
wt (σt )

denotes the denoiser
incorporated in the t-th layer, whose learnable weightwt is related
to σt . Note that in each layer of the DNN, the input of the denoiser
can be regarded as the ground-truth CIR plus the effective noise,
i.e., ĥt−1 +AHvt−1 = h+ zt = h+σtϵ . Thus, the denoiser Dt

wt (σt )

is fed by ĥt−1 + AHvt−1 as the input, and yields the estimation
result ĥt as the output to implement the denoising of the effective
noise zt [16], as depicted in step 4 of Algorithm 1. divDt

wt (σt )
is

the divergence of the denoiser Dt
wt (σt )

, which is estimated by the
following Monte-Carlo approximation [21],

divDt
wt (σt )

(·) ≈
uT

c

(
Dt
wt (σt )

( · + cu) − Dt
wt (σt )

(·)

)
, (4)

where u ∼ N(0, IN ) is a standard normal random vector and c > 0
is a small positive number.

As for the training process and dataset,
{
(yd ,hd )

}D
d=1

denotes

the training dataset with size D, where yd and hd are the measure-
ment vector and the corresponding ground-truth CIR of the d-th
training data sample, respectively. The training dataset is composed
of (f eature, label) pairs, using which the learnable parameters Θ
of the DNN is trained via minimizing the mean square error (MSE)
loss function as

Lt (Θ) =
1
D

D∑
d=1

hd − ĥt (yd ,Θ)2
2
. (5)

The main setps of the training stage of the DL-UACE method
are summarized in Algorithm 1. In the training stage, the learnable
parameters Θ of the DNN are the weights w1,w2, . . . ,wT of the
denoisers, i.e., Θ =

{
{wt }

T
t=1

}
. We train the DNN layer-wise to

obtain the optimal learnable parameters: first we train a DNN with
only one layer to minimize L1(Θ), and then the second layer is
added and the resulting two-layer DNN is trained to minimize
L2(Θ). Repeat the similar process until the T -layer DNN has been
trained to minimize Lt (Θ). Note that when we train a certain t-
th layer, t = 1, 2, . . . ,T , all the parameters of the previous t − 1
layers are kept fixed. During this process, the learnable parameters
Θ can be updated and optimized by using back propagation and
stochastic gradient descent tominimize the loss of (5).When the loss
stops decreasing with the number of layers, i.e., Lt (Θ) ⩾ Lt−1(Θ),
overfitting may have occurred at this moment, and thus the optimal
number of layers can be finalized to T ← t − 1 and the learned
parameters Θ have been obtained, which ends the training stage.

Algorithm 2: DL-UACE − Estimation stage.
Input: measurement vector y; measurement matrix A;
number of layers T ; network parameters Θ learned in the
training stage.
Initialization:M = Np, N = L, v0 = 0, ĥ0 = 0, ĥ = 0.
1: Input y and A to the well-trained T -layer DNN with
learned parameters Θ to estimate the coarse CIR
ĥT = DT

wT (σT )

(
ĥT−1 + AHvT−1

)
through a one-way

feed-forward propagation.
2: Select the indices of the K largest entries in ĥT to
estimate the dominant sparse support Ω = S

(
ĥT ,K

)
.

3: Use the LS method to compute the amplitude of the
non-zero entries corresponding to the sparse support Ω, so
as to obtain the accurate CIR, i.e.,
ĥ = A†Ω y =

(
AH
ΩAΩ

)−1
AH
Ω y.

Output: UAC estimation result ĥ.

As summarized in Algorithm 2, in the estimation stage, the well-
trained DNN is employed to estimate the sparse support of the CIR
through a one-way feed-forward propagation. The indices of the K
largest entries in the estimated coarse CIR ĥT , which is the output of
the well-trained DNN, are selected to estimate the dominant sparse
support Ω. The support Ω is a set that contains the indices of the
K largest entries in ĥT . S

{
ĥT ,K

}
denotes the operator that selects

the indices of theK largest entries in the sparse vector of ĥT . Finally,
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the accurate amplitude of the non-zero entries corresponding to
the sparse support Ω is computed by using the simple LS method,
so as to obtain the accurate UAC estimation result ĥ. AΩ denotes a
M × N matrix generated by the measurement matrix A with the
columns indexed by the set Ω remained and other columns set to
all zeros. (·)† and (·)H denote the Moore-Penrose pseudoinverse
and conjugate transpose, respectively.

Since the sparsity-aware DNN in the DL-UACE method can
by best effort utilize a large amount of training data to learn the
sparse structure of the UAC through deep learning, and exploit the
denoiser to reduce the estimation error caused by Gaussian noise,
the accuracy of UAC estimation can be significantly improved,
especially in harsh conditions of low signal-to-noise ratio (SNR)
or insufficient pilots. The simulation results in the next section
have verified the superior performance of the proposed DL-UACE
method over conventional ones.

4 SIMULATION RESULTS
In this section, we evaluate the performance of the proposed DL-
UACEmethod through numerical simulations. The main simulation
parameters of the UA-OFDM system are listed in Table 1.

Table 1: Simulation Parameters

Parameter Value

Carrier Frequency 12kHz
Bandwidth 8kHz
Number of Subcarriers 1024
CP Length 256
Number of Pilots 64
Channel Length 256
Number of Channel Paths 8
Ambient Noise AWGN

The training dataset
{
(yd ,hd )

}D
d=1

with size D = 2000 is ran-
domly generated according to the underwater acoustic statistical
channel distribution described in [27], and the test dataset is gener-
ated in a similar way. In the training stage, we train the sparsity-
aware DNN layer-wise with a learning rate γ = 0.001 and utilize
the Adam optimizer to optimize the learnable parameters Θ. After
several training epochs, the optimal number of layers is converged
to T , and the learned parameters Θ =

{
{wt }

T
t=1

}
are obtained.

We compare the proposed DL-UACE method with the state-of-
the-art UAC estimation methods, including the classical LS [19]
method, the iterative sparse recovery algorithm of AMP [8], and the
CS-based greedy algorithms of OMP [22], SAMP [7], and CoSaMP
[6]. For the LS, OMP and CoSaMP methods, the default parameters
are configured; For the AMP method, in order to ensure the conver-
gence of the estimation result, the maximum number of iterations
is set to 30; For the SAMP method, the step size parameter is set to
1. The normalized MSE (NMSE) is used as a performance metric,
which is defined as ∥h− ĥ∥22/∥h∥

2
2, where ĥ denotes the estimation

result and ∥·∥2 denotes the l2 norm.
Figure 2 compares the NMSE performance of different UAC

estimation methods versus different SNR values using 64 pilots
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Figure 2: Comparison of NMSE performance of different
UAC estimation methods with respect to different SNR val-
ues.
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Figure 3: Comparison of NMSE performance of different
UAC estimation methods with respect to the number of
available pilots.

for channel estimation. It can be observed that, the proposed DL-
UACE method significantly outperforms the benchmark methods
in estimation accuracy, especially in the low SNR region. At the
target NMSE level of 10-2, the proposed DL-UACE method has a
SNR gain of 3dB, 4dB and 6dB over the OMP, CoSaMP, and AMP
methods, respectively, which indicates the superior performance
of the sparsity-aware DNN with denoising. The simulation results
have verified that the sparsity-aware DNN in the DL-UACE method
can effectively exploit the physical prior knowledge on the channel
sparsity, i.e., learn the sparse structure of the UAC, and utilize the
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denoiser to reduce the estimation error caused by Gaussian noise.
Besides, the simulation results have also revealed the superiority of
DL techniques and data-driven approaches over conventional ones.

The NMSE performance comparison of different UAC estimation
methods with respect to the number of available pilots at the SNR of
15dB is reported in Figure 3. It can be observed from the simulation
results that, compared with the existing methods of LS, OMP, AMP,
SAMP and CoSaMP, the proposed DL-UACE method can achieve
a higher accuracy of UAC estimation with much less overhead of
pilots, thus significantly improving the spectrum efficiency.

5 CONCLUSION
In this paper, we propose a DL-UACE method that combines the
physical knowledge on channel sparsity with the data-driven ap-
proach to improve the performance of UAC estimation. Particularly,
we use the UAC dataset to train a sparsity-aware DNN with Gauss-
ian denoising to learn the inherent sparse structure of the UAC,
aiming to improve the estimation accuracy and spectral efficiency.
Simulation results demonstrate that the proposed DL-UACEmethod
significantly outperforms the state-of-the-art methods in terms of
estimation accuracy and spectrum efficiency of UAC estimation,
especially in harsh circumstances of low SNR or insufficient pi-
lots. The proposed DL-UACE method is promising to be applied in
underwater acoustic communication systems where accurate and
efficient channel estimation is prioritized.
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