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ABSTRACT
Due to the limitation of energy supply and the requirements of
high reliability in the mission-critical Internet of Medical Things
(IoMT), the efficient and reliable transmission of the sensing siganl
of implantable medical devices (IMDs) is still a challenge. In order to
improve the spectrum efficiency and transmission reliability, in this
paper, a Generative Adversarial Network-enabled Sparse Compres-
sion and Recovery (GAN-SCR) scheme is proposed by exploiting
the physical knowledge of sparsity, which compressively measures
the sparse IMD sensing signal in the transmitter, and recovers the
sensing signal in the receiver. In the stage of sparse measurement
in the proposed GAN-SCR scheme, a pre-trained measurement dis-
criminative network (MDN) is used to conduct signal compression
at the transmitter, which enhances the restricted isometry property
via learning. In the stage of sparse recovery, exploiting the temporal
correlation and inherent sparsity of physiological signals, a pre-
trained representation generative network (RGN) is used to map
the sensing signal to a low-dimensional latent vector for sparse rep-
resentation learning. Subsequently, the projection from the latent
vector onto the measurement vector is structured by jointly train-
ing an RGN and an MDN, by which accurate signal recovery can
be implemented via online optimization. Simulation results verify
that the proposed GAN-SCR scheme outperforms other state-of-art
sparse reconstruction algorithms in the accuracy of sensing signal
recovery.
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1 INTRODUCTION
In recent years, owing to the extension of human life expectancy and
the acceleration of workforce aging, the risk of non-communicable
diseases, such as heart disease, stroke and cancer, is continuously
rising [14]. With the development of the Internet of Medical Things
(IoMT), personalized and interconnected devices are commonly
used in the area of healthcare [11]. Recently, the implantable medi-
cal device (IMD) has demonstrated its advantages in health monitor-
ing and remote treatment with portability, proactivity, immediacy.
An IMD is a medical device that works in/on the body, which can
record and track the vital physiological data of the user and make
it accessible to doctors, caregivers and relatives [18]. Timely and
comprehensive treatment is enabled without the need for the disap-
pointing long-term hospital staying, which is beneficial to patients.
In order to enable doctors to remotely access medical data, wire-
less communication is used for the transmission of sensing signals.
However, the IMD device is usually powered by a battery, and it is
expected to work in the body for a long time because it is surgically
inserted into the patient’s body. Therefore, for such an energy-
limited and long-term-intended device, it is necessary to adopt an
efficient transmission system to improve the spectral efficiency and
reduce the energy consumption.

Therefore, the flexible and efficient compressed sensing (CS)
[5] technique can be considered, which can perform compression
and sensing simultaneously by exploiting the sparse character-
istics of the medical sensing signal. Utilizing the CS technology,
high-dimensional sparse sensing signals can be measured and com-
pressed into a vector with a much lower dimension in the IMD.
Then, the original sensing signal can be approximately recovered at
the receiver using sparse reconstruction algorithms. In the frame-
work of CS, the spectrum efficiency can be improved and the energy
consumption can be reduced [4, 7, 10], which is helpful to prolong
the life of IMDs.

In the traditional CS framework, the measurement operation is
generally implemented using a random matrix, such as Gaussian
measurement matrix, and the reconstruction is usually performed
by iterative sparse reconstruction algorithms, such as Orthogo-
nal Matching Pursuit (OMP) [16], Subspace Pursuit (SP) [15] and
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Approximate Message Passing (AMP) [1], etc. In order to further im-
prove the reconstruction performance, many learning-based sparse
recovery methods have been proposed [3, 8, 9], such as the genera-
tive model based methods [2], to learn about the inherent sparse
features of the signals. Recently, the emerging Generative Adver-
sarial Network (GAN) [6] is introduced into the framework of CS,
which uses pre-trained generative and discriminative neural net-
works for the purpose of measurement and sparse representation,
respectively [17]. The GAN-based framework can improve the re-
covery accuracy and accelerate the inference process compared
with traditional iterative algorithms [12].

Therefore, an efficient and reliable sensing signal transmission
scheme for IoMT is proposed in this paper, which uses the GAN-
enabled CS architecture for measurement and representation learn-
ing of the IMD sensing signal to improve the spectral efficiency
and transmission reliability. Specifically, a GAN enabled Sparse
Compression and Reconstruction (GAN-SCR) scheme is proposed,
in which a pre-trained neural network is used for compressive mea-
surement to improve the spectrum efficiency and reduce the energy
consumption. A representation generative network (RGN) and a
measurement discriminative network (MDN) are jointly trained
in the architecture of GAN, in which the RGN-based representa-
tion learning of the latent vector can further improve the recovery
accuracy and transmission reliability.

The remainder of this paper is structured as follows. First, the
system model of the IMD sensing signal transmission is presented
in Section 2. Next, the proposed GAN-SCR scheme is proposed
in Section 3. Then, we demonstrate the system performance with
simulation results in Section 4, followed by the conclusion in Section
5.

2 SYSTEM MODEL
As illustrated in Figure 1, in this paper, an IMD sensing signal
transmission system in a typical IoMT scenario is considered, in
which the medical sensing signal is transmitted between the IMD
and the programmer utilizing a sparse compression and recov-
ery framework. During a typical sensing interval of the IMD, the
physiological data of the patient is collected by the sensor and
an N -length sensing signal is generated, which can be modeled
as s = [s1, s2, · · · , sN ]T . Due to the temporal correlation between
many physiological signals, a non-sparse sensing signal s can usu-
ally be represented as a sparse vector x in a certain sparse basis,
which can be expressed as

s = Ψx, (1)

where Ψ denotes the N × N sparse basis matrix, which can be, for
example, a discrete cosine transform (DCT) matrix, since it is a
suitable basis for electrocardiogram (ECG) signals. Fully exploiting
the sparsity of physiological signals, it can be compressed in the
IMD and recovered in the programmer. Then, Using a certain mea-
surement matrix Φ, the original sensing signal s is compressively
measured in the IMD, whereΦ can be a randomly generated matrix,
e.g., a Gaussian random matrix. The measurement matrix Φ maps
the original sensing signal s to the length-M measurement vector

yt = Φs, (2)
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Figure 1: IMD sensing signal transmission system with a
sparse compression and recovery framework.

where M ≪ N . In this way, a compression from N -length to M-
length is realized, where the signal compression ratio (CR) is defined
as γ = (1 −M/N ) × 100%.

Subsequently, the measurement vector yt is transmitted to the
receiver equipped with a programmer through the wireless com-
munication channel. After passing through the wireless channel
with background noise, the received signal can be expressed as

y = yt + n, (3)

where n denotes the additive white Gaussian noise (AWGN). Then,
the estimated representation vector x̂ of the original sensing signals
in (1) can be calculated by solving the linear inverse problem given
by

y = ΦΨ︸︷︷︸
A

x + n, (4)

where A denotes anM × N under-determined observation matrix.
In order to solve the under-determined linear inverse problem in
(4), it is necessary to adopt sparse recovery algorithms, such as
CS-based algorithms of OMP [16] and SP [15], and sparse approxi-
mation algorithms like AMP [1]. Recently, generative model based
methods [2] have also been applied in sparse recovery, utilizing a
trained neural network generator to provide a latent representation
of the sparse representation vector x, and then an optimization
process is performed to solve the problem. After obtaining the esti-
mated representation vector x̂, the recovered sensing signal ŝ can
be derived from x̂ using (1).

To further improve the recovery accuracy and the efficiency of
signal compression, in this paper, two GAN enabled networks are
utilized, including a generative network to implement compressive
measurement, and a discriminative network to map the original
sensing signal s to a latent low-dimensional representation vec-
tor. The proposed GAN enabled sparse compression and recovery
scheme is introduced in detail in the following section.
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Figure 2: The block diagram of the proposed GAN-SCR
scheme.

3 PROPOSED GAN ENABLED SPARSE
COMPRESSION AND RECOVERY SCHEME

In this section, the proposed GAN-CSR scheme will be introduced
in detail, starting from showing the structure and purpose of the
networks of RGN and MDN, and then describing the compression
measurement and sparse reconstruction procedure including both
training and inference stages. The block diagram of the proposed
GAN-SCR scheme is illustrated in Figure 2.

First, exploiting the sparsity of physiological signals, we use a
generative network called RGN to build a mapping relation between
an L-length latent representation vector z and the original IMD
sensing signal s, which can be expressed as

s = Rθ (z), (5)

where θ is the weight parameter of the RGN. It is worth noting
that, compared with the traditional sparse representation based
on a sparse basis or a linear dictionary, the latent representation
implemented by the RGN introduces a nonlinear activation func-
tion instead of just a linear mapping, which enhances the learning
ability of the neural network. Leveraging this superiority of the
neural network, we can reduce the number of neurons while guar-
anteeing the sufficient representation ability of the RGN, to reduce
the computational complexity and deal with the fact that IMD is
lack of computational resources.

However, it has been found that only using the latent mapping
relationship established by a generative network to minimize the
measurement error for sparse recovery might get a trivial solution
that contains no useful information [17]. Therefore, in the proposed
GAN-SCR scheme, another network, i.e., the MDN, is introduced
to replace the measurement matrix Φ in (2) to achieve sparse mea-
surement and compress the original IMD sensing signal s into a
measurement vector y, which can be expressed as

y = Mϕ (s), (6)

where ϕ represents the weight parameter of the MDN. Different
from the random measurement used for sparse compression in
the traditional CS framework, the MDN is trained in advance to

Algorithm 1 The proposed GAN Enabled Sparse Compression and
Recovery (GAN-SCR) Scheme: Training Stage
Input:

1) Minibatches of training data {sd }Dd=1 of size-D
2) Learning rate α for training
3) Maximum number of iteration steps I and stepsize t of latent
optimization

1: Initialize the RGN and MDN parameters θ and ϕ
2: repeat
3: for d = 1 to D do
4: Measure the original sensing signal yd = Mϕ (sd )
5: Generate the latent representation ẑd0 ∼ pz(z)
6: for i = 0 to I − 1 do
7: Calculate the reconstruction error E(yd , ẑdi ) with (7)

and optimize the latent representation in a gradient
manner ẑdi+1 = ẑdi − t ∂

∂ẑdi
E(yd , ẑdi )

8: end for
9: end for
10: Evaluate the loss LR and LM of the RGN and MDN given

by (8) and (9)
11: Update the parameters of the both networks

θ = θ − α ∂
∂θ LR ϕ = ϕ − α ∂

∂ϕ LM
12: until reaching the maximum training steps
Output:

Trained parameters θ and ϕ

enhance the restricted isometry property (RIP). RIP represents the
similarity of the measurement vector y corresponding to different
sensing signals s, which is an important property to guarantee the
feasibility of sparse reconstruction. Similar to the discriminative
network in the original GAN network [6], the MDN is also used
to discriminate the "realness" of the signal generated by the RGN,
where the measurement error between the output ŷ of the MDN
and the real measurement vector y can be used as the matrix of the
generated ŝ. Then, the RGN tries to generate a sensing signal ŝ that
is close to the real sparse feature and reduce the measurement error.
In contrast, the MDN attempts to improve its ability to distinguish
between different sensing signals that are fed to it.

The RGN and MDN above are applied to the proposed GAN-SCR
scheme to implement sparse compression and recovery, which can
improve the compression rate and the accuracy of sparse recovery.
The proposed GAN-SCR scheme is composed of two stages, i.e.,
the training stage and the inference (recovery) stage, as described
in Algorithm 1 and Algorithm 2, respectively, with the detailed
procedures introduced as follows.

In the training stage, firstly, a second order optimization is im-
plicitly performed in each iteration steps, where the latent vector
optimization steps are implemented through back propagation. Us-
ing the projection from zd onto yd established by RGN and MDN,
we can obtain the estimated measurement vector ŷd = Mϕ (Rθ (ẑd ))
and use gradient descent with only a few steps to optimize the
latent vector ẑd via minimizing the l2-norm measurement error
E(yd , ẑd ) which can be calculated by

E(y, ẑ) = ∥y − ŷ∥22 =
y −Mϕ (Rθ (ẑ))

2
2 , (7)
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Algorithm 2 The proposed GAN Enabled Sparse Compression and
Recovery (GAN-SCR) Scheme: Inference (Recovery) Stage
Input:

1) Sparse measurement vector y
2) Maximum iteration number I for latent optimization
3) Trained parameters of θ and ϕ for RGN and MDN

1: Initialize the latent representation ẑ0 ∼ pz(z)
2: for i = 0 to I − 1 do
3: Perform a single-trip feedforward operation of RGN and

MDN in turn to generate ŷi = Mϕ (Rθ (ẑi ))
4: Calculate the reconstruction error E(y, ẑi ) with (7), and opti-

mize the latent representation ẑi+1 = ẑi − ∂
∂ẑi

E(y, ẑi )
5: end for
6: Perform a single-trip feedforward operation using RGN and

obtain the final recovered sensing signal ŝ = Rθ (ẑI )
Output:

Recovered original sensing signal ŝ

where yd and ŷd are the output of the MGN when the input is the
original sensing signal sd in the size-D training dataset {sd }Dd=1 and
the sparse sensing signal ŝd generated by RGN, respectively. Sub-
sequently, the two networks of RGN and MDN are jointly trained
in the architecture of GAN. The loss function of RGN is an aver-
age reconstruction error calculated by the estimated measurement
vector ŷd generated by the MDN network, which is given by

LR = Eẑd∼pz(z)
yd −Mϕ (Rθ (ẑ

d ))
2
2, (8)

where Ez∼pz(z)[f (z)] represents the expectation of f (z) on the cur-
rent distribution pz(z) of the latent vector z. The loss function of
MGN is a counterpart of the RIP which is given by

LM =
1
D

D∑
d=1
Esd1,sd2

[ (
∥Mϕ (s

d1 − sd2 )∥2 − ∥sd1 − sd2 ∥2
)2]
,

with sd1 , sd2 ∈
{
sd ,Rθ (ẑ

d
0 ),Rθ (ẑ

d
I )
}
,d = 1, 2, ...D,

(9)

where ẑd0 and ẑdI are the latent vector before and after the I -step
latent vector optimization, respectively. It is worth noting that,
in order to simultaneously enhance the RIP of the MDN on the
training signals and the estimated sensing signals generated by
the RGN, LM is expressed as the average of three pairs of losses
between an original sensing signal sd and two estimated sensing
signals Rθ (ẑd0 ) and Rθ (ẑ

d
I ) generated by latent vectors before and

after optimization. The parameters of both the RGN and MDN are
updated by using the Adam optimizer and back propagation to
minimize the loss LR and LM , respectively. Note that after the
training stage, the parameters of the MDN in the programmer are
pre-shared with the MDN in the IMD.

In the inference stage, the well-trained networks of RGN and
MDN are used to recover the original IMD sensing signal ŝ. First, a
latent representation vector ẑ0 is generated by a certain distribution
ẑ0 ∼ pz(z), e.g., Gaussian distribution. Next, using the mapping
relationship ẑ → ŝ → ŷ established by RGN and MDN, the error
E(y, ẑ) of the estimated measurement vector can be obtained via
(7). Then, online optimization for ẑ is implemented using gradient
descent to minimize the measurement error E(y, ẑ). Finally, the

optimal latent vector ẑI is substituted into the RGN network to
derive the original sensing signal ŝ.

4 SIMULATION RESULTS AND DISCUSSION
In this section, to validate the performance of the proposed GAN-
SCR scheme, ECG record data with a sampling rate of 360 Hz in
the MIT-BIH Arrhythmia Database [13] is used to implement the
simulation. Specifically, we assume that the length of the medi-
cal sensing signal s generated in each sensing interval of IMD is
N = 500. Therefore, the ECG experimental records are divided
into several length-500 signals, which are prepared to generate the
training and test datasets for simulation, with sizes of 1000 and
200, respectively. Some system parameters are set as follows. The
compression rate is set to γ = 50, and thus the length of the mea-
surement vector y isM = 250. We use a latent representation vector
z of length 200, and use 3-step gradient descent with a stepsize of
t = 0.01 for latent optimization. The Adam optimizer are used for
the training of the neural networks with the learning rate α = 10−4.

In order to evaluate the reconstruction error of the proposed
GAN-SCR scheme quantitatively, we use percentage root-mean
square difference (PRD) as an evaluation metric, which is widely
used to describe the recovery quality of ECG signals. For the orig-
inal sensing signal s and the recovered sensing signal ŝ, the PRD
represented by λ is defined as

λ =
∥ŝ − s∥2
∥s∥2

× 100%. (10)

In addition, in order to objectively show the signal reconstruction
quality, a PRD-based signal quality classification metric proposed
by Zigel et al [19] is adopted, where λ < 2, 2 < λ < 9 and λ > 9
are classified into “Very good”, “Good” and “Bad” quality groups,
respectively.

Firstly, a fragment of the IMD sensing signal s is shown in figure
3, which corresponds to the recovered sensing signal ŝ using the
proposed GAN-SCR scheme for compressive measurement, wireless
transmission and sparse recovery. The result in Figure 3 indicates
that the IMD sensing signal is recovered with high accuracy. And
from the numerical result point of view, The reconstruction error
is λ = 1.4011, which is in the category of "Very Good" level. In
order to verify the sparsity of the sensing signal and evaluate its
corresponding reconstruction quality in the transform domain, the
sparse representation of the above-mentioned sensing signal and
the recovered signal in the DCT domain are shown in Figure 4. We
can see that, as a typical physiological electrical signal, the ECG
signal has significant sparsity in the DCT domain, and almost all of
the sparse locations are included in the recovered sensing signal.

Subsequently, a comparative experiment is conducted for the
GAN-SCR scheme and other benchmark schemes, including CS-
based greedy algorithms of OMP [16] and SP [15] and the sparse
approximation algorithm AMP [1] in a typical IoMT transmission
system, to validate the effectiveness of the proposed GAN-SCR
scheme. In addition, the influence of the background noise inten-
sity on the accuracy of signal recovery is also considered. As il-
lustrated in Figure 4, the results highlight that compared to the
benchmark sparse reconstruction algorithms, the proposed GAN-
SCR can achieve more accurate recovery results in the same channel
conditions and with the same compression ratio. Moreover, with
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the increase of the noise intensity, although the reconstruction
error of each scheme is continuously increasing, the accuracy of
the GAN-SCR scheme is much higher than other methods, which
can still reach the "Good" level even at SNR = 5dB. This shows
that, exploiting the anti-noise capability of the proposed scheme,
excellent reconstruction accuracy and high transmission reliability
can be achieved to meet the requirements of critical missions in the
IoMT scenarios.
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Figure 5: Reconstruction accuracy using the proposed GAN-
SCR and other benchmark schemes for the IMD sensing sig-
nal recovery in IoMT transmission.

5 CONCLUSION
In this paper, a sparse compression and recovery scheme called
GAN-SCR is proposed for efficient IoMT sensing and transmission,
which significantly improves the spectral efficiency and transmis-
sion reliability by exploiting the inherent sparsity of the sensing
signals. Two deep neural networks of RGN andMDN are used in the
GAN-SCR scheme for representation learning and sparse measure-
ment, which are jointly trained via a GAN-enabled framework to
improve the sparse representation ability of the RGN and strengthen
the RIP of the MDN. The simulation results show that the proposed
GAN-SCR scheme has prominent performance in recovery reli-
ability compared to the existing CS-based sparse reconstruction
schemes, especially under the harsh condition of intensive back-
ground noise. Moreover, the proposed GAN-SCR scheme is also
promising in other IoT sensing and transmission scenarios with
stringent requirements of data reliability and transmission resource
efficiency.
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