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ABSTRACT
In this paper, a three-dimensional (3D) indoor visible light local-
ization method based on machine learning and deep learning is
presented, which is able to obtain accurate 3D spatial coordinates
of the user, including the location on the plane and the height in a
room. The machine learning approaches adopted for localization
include two typical algorithms, i.e., support vector machine and
random forest. For the deep learning based approach, deep neu-
ral networks composed of full connected layers are employed for
training in different indoor visible light localization scenarios. In
the formulated learning-based visible light localization framework,
the received signal strength of light-emitting diodes are taken as
the input of the learning algorithm, and the measured position
coordinates are inferred as the output. Apart from obtaining the
two-dimensional location on the plane accurately, we also take the
height into account and accurate 3D coordinates with height are
obtained. The experimental results show that centimeter-scale accu-
racy of 3D indoor localization can be achieved using the proposed
learning-based visible light localization method. Moreover, the per-
formance of the visible light localization methods with respect to
the number and the spatial pattern of LEDs, and the number of
neural network layers, are also investigated.
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1 INTRODUCTION
Nowadays, the acquisition of accurate indoor position information
is the foundation of many applications while mature Global Posi-
tioning System (GPS) cannot provide sufficiently accurate indoor
localization due to building obstructs etc. In order to deal with
this dilemma, Ultra-Wide Band (UWB) [15], Wireless Local Area
Networks (WLAN) [16], Bluetooth [6], radio frequency identifica-
tion (RFID) [12] and many other technologies are widely studied
for indoor localization. Visible light communication (VLC) as a
promising wireless communication technology has been exten-
sively researched [13, 20, 22], which has many advantages such as
adjustable lighting, high security, rich spectrum resources, com-
plete infrastructure deployment etc., and can be applied to indoor
localization.

Many traditional radio frequency based positioning schemes
might be applied for indoor visible light localization, including
received signal strength (RSS), time of arrival (TOA), angle of ar-
rival (AOA) etc. The position can be estimated from the RSS of the
photoelectric receiver (PD) following the VLC channel model by
measuring the power of the received signal. The TOA-based method
measures the travel time of the signal from the light-emitting diode
(LED) to the PD, which is a function of the distance as well. The
AOA method measures the angle from which the signal arrives at
the PD and such information can be also exploited in estimating the
location of the PD [1]. An indoor visible light positioning scheme
based on TDOA is proposed in [8], and the location accuracy of the
proposed localization method is less than 1cm which is verified by
simulation. In [18], an indoor visible light positioning scheme based
on AOA is analyzed and the Cramer-Rao bound is derived. The
simulation results show that the estimation error is less than 8 cm
when the SNR is 80dB. In [3], fundamental limitations of RSS-based
range estimation in visible light positioning system are studied.

The learning approach is the science of allowing computers to
operate without being explicitly programmed. In the past decade,
learning based technologies have been applied to self-driving cars,
speech recognition and web search [19, 24]. Learning-based ap-
proaches are so pervasive today that we probably use it dozens
of times a day without knowing it. Many researchers even think
it is the best way to progress towards human-level AI. There are
already many indoor localization schemes whose performance have
been improved by using learning approach. For instance, a smart
wireless indoor localization framework with machine learning (ML)
is proposed in [10] and it outperforms the comparative methods. In
[21], a new indoor localization algorithm based on ML using RSS
measurements is proposed and it can increase the training ability of
localization dramatically. In [7], a visible light localization scheme
based on artificial neural networks is proposed, where the trained
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neural network is applied to the diffuse channel. The results show
that the average positioning error is reduced about 13 times and
the positioning time is reduced about 2 magnitudes compared with
the traditional RSS-based positioning algorithm.

However, the learning-based approaches should be incorporated
into indoor visible light localizationmore properly to achieve higher
accuracy. Moreover, learning-based 3D visible light localization
with both the horizontal and the vertical coordinates remains to
be well investigated. Hence, in this paper we propose a three-
dimensional (3D) visible light indoor localization method that com-
bines the RSS with machine learning and deep learning algorithms
for the training and inference of the 3D spatial coordinates. Since
support vector machine (SVM) can deal with nonlinear problems
effectively and random forest can process high-dimensional data
efficiently, these machine learning based algorithms are adopted in
the proposed visible light localization scheme.

To further improve the localization performance, deep neural
networks (DNNs) composed of fully connected layers (FCs) are
adopted to better integrate local features, and are optimized by
using gradient descent during the training process. In order to com-
pare the localization performance of different configurations of
system parameters, LED numbers, and LED spatial patterns, differ-
ent experiments are conducted accordingly where a corresponding
learning model is trained and applied for the visible light local-
ization in each experimental configuration. The simulation results
have verified the superior performance of the proposed learning-
based method in different configurations and scenarios of indoor
visible light localization.

2 SYSTEM MODEL
2.1 Indoor Localization Model
We depict the 3D indoor visible light localization model in a room
with size 2m×2m×2m as shown in Figure 1, within which a Carte-
sian coordinate system is established. There are sixteen LEDs on
top with fixed coordinates and a mobile user equipped with a PD
with a variant coordinate in the room.

The LEDs are arranged symmetrically with equal intervals on
the ceiling. The illumination radiation regions formed by different
LEDs overlap with each other, so this layout can ensure that the
PD can communicate with all LEDs in the radiation region [11].

In order to be able to evaluate the performance of 3D localization,
the PD can be moving around in a 3D space of 2m×2m×1m, then its
coordinates in this Cartesian coordinate system can be estimated
using various localization methods.

2.2 Visible Light Channel Model
Because the intensity of the direct visible light signal is far greater
than that of the reflected signal, we only consider line-of-sight (LOS)
path [9]. We can get the channel gain H in the LOS environment
represented by,

h =
A(m + 1)
2πd2

cosm (φ) cos(θ ), (1)

where d is the distance between the LED and the PD, and φ and θ
are the angle of irradiance and the angle of incidence relative to
the normal direction, respectively. A is the detector physical area.
The order m can be given as m = −ln2/ln(cosφ1/2), where φ1/2

Figure 1: The visible light indoor localization model.

is defined as the half-power angle of the LED [23]. Therefore, the
received optical signal yr can be given by

yr = xt · h + n, (2)

whereyr and n denote the transmitted optical signal and the channel
noise, respectively. For the sake of simplicity, the power of the
transmitted optical signal is set to 1W and n is assumed to be
additive white Gaussian noise with zero mean and variance of σ 2.

3 LEARNING-BASED 3D INDOOR VISIBLE
LIGHT LOCALIZATION SCHEME

3.1 Machine Learning Based Localization
Scheme with SVM and Random Forest

SVM is a typical classifier which can handle both linear and nonlin-
ear problems. The basic idea of SVM is to find the optimal hyper-
plane of two types of samples in the original space when they are
linearly separable. While in the linearly inseparable case, slack vari-
ables are added for analysis, and the sample of the low-dimensional
input space is imported by using nonlinear mapping to the high-
dimensional attribute space to make it linear. Then the optimal
classification hyperplane is constructed in the attribute space using
the principle of structural risk minimization, so that the classifier
is globally optimal and the expected risk in the entire sample space
also satisfies a certain upper bound with a probability [17].

SVM has good generalization ability, that is, the test error on an
independent test set can be small even if the model is trained in a
small amount of training set. Maximizing the classification inter-
val can also bring the SVM algorithm better robustness. Moreover,
employing appropriate kernel functions can transform nonlinear
problems into linear problems. As the indoor visible light position-
ing problem is a non-linear problem, SVM needs a kernel function
during the learning process [14]. A Gaussian kernel function is
chosen in this paper to train the SVM classifier that can fit the
problem well.

Due to the large amount of data that need to be processed in
the visible light localization scenario and considering that time
complexity and space complexity will increase when processing
large scale data [2], the random forest algorithm is applied in this
paper. Random forest, as its name implies, is to build a forest in a
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random manner containing multiple decision trees, and the corre-
lation between the decision trees needs to be as small as possible.
For a new sample input to a forest, each decision tree in the forest
judges which category the sample belongs to and vote. The cate-
gory with the most votes is the predicted category of this sample
[5]. A large number of theoretical and empirical studies have veri-
fied that random forest has a high prediction accuracy and is not
prone to overfitting. Thus, we use random forest in the visible light
localization problem as a competitive alternative.

In the case of a more complicated localization environment, a
large area, or a more severe channel condition, machine learning
algorithms might be limited. In order to further improve the posi-
tioning performance, deep learning methods with a larger learning
capacity can be an excellent choice, which is described in detail in
the following section.

3.2 Deep Learning Based Localization Scheme
with DNN

The neural network introduced in artificial intelligence is a math-
ematical model simulating the mechanism of the human brain’s
nervous system based on the principle of biological neural net-
works. It is composed of an input layer, a number of hidden layers
and an output layer, and each layer has a number of nodes that
can be connected. Each node contains a specific output function
called activation function. Each connection between two nodes has
a weight that is imposed on the signal passing through the connec-
tion. The input of the neural network propagates forward through
the hidden layers, and the results are obtained at the output layer
[4]. DNN can be regarded as a kind of neural networks with a large
number of hidden layers, so that the network is deep and has a
greater capacity and better learning capability.

As shown in Figure 2, a DNN with nh FC hidden layers is em-
ployed. Each node in an FC hidden layer is connected to all the
nodes in its previous layer, which is utilized to synthesize the fea-
tures extracted from the previous layer. The features are extracted
and combined layer by layer to form high-level features. Gradient
descent is adopted to optimize the DNN model during training,
and the Adam optimizer is adopted, which is a commonly used
optimizer. Gradient can be understood as a vector composed of
partial derivatives of multivariate functions. The function increases
fastest along the gradient direction, and in gradient descent, the
direction opposite to the gradient should be followed. There are
several points that can be tuned when using gradient descent as
follows:

• Step size: the value of the step size depends on the data
sample, so we can take a larger value and run the algorithm
from large to small to observe the iterative effect. If the loss
function is decreasing, the value is valid; otherwise, the step
size should be increased. However, if the step size is too
large, the iteration will be too fast, and even the optimal
solution may be missed. On the other hand, if the step size is
too small, the iteration speed is too slow, and the algorithm
cannot converge for a long time.

• Initial value selection for parameters: different
initial values may result in different minimum values, so
gradient descent only results in local minimum values. Of

course if the loss function is convex then it must be the
optimal solution. Due to the risk of local optimal solution,
the algorithm needs to be run multiple times with different
initial values, to achieve the initial value that minimizes the
loss function.

• Nomalization: due to the different value ranges of the differ-
ent features, the iteration may be slow. In order to improve
the dynamic range of the algorithm with respect to feature
values, the feature data can be normalized. For each fea-
ture, its expectation and standard deviation can be found. In
this way, the new expectation of the feature is zero and the
new variance is one, and the iteration speed can be greatly
accelerated.

Figure 2: The DNN model adopted for visible light localiza-
tion.

4 EXPERIMENTAL RESULTS
The initial parameters are set as follows: the number of LEDs NL =
16, the mode of LEDsM = 1, the number of features in each hidden
layer nf = 256, the number of hidden layers nh = 4, batch size
in training nB = 32, learning rate of the optimiser γ = 10−4. The
relevant descriptions of these parameters are shown in Table 1.

Table 1: Key Parameters Used in Simulation

Parameter Symbol

the number of LEDs NL
the mode of LEDs M

the number of features in each hidden layer nf
the number of hidden layers nh

batch size in training nB
learning rate of the optimiser γ

4.1 Data Set Preparation
Assuming that the PD can move in a 3D space of 2m×2m×1m with
the step size of 10mm, the ground-truth distance and angle between
each LED and the PD can be calculated. Substituting the distance
and angle into equation (1) and (2), the RSS data subject to additive
white Gaussian noise is obtained. Consequently, we obtain a four-
dimensional (4D) tensor with the size of 16×200×200×100. The 4D
tensor, the corresponding LED coordinates and the corresponding
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PD coordinates are then gathered together to formulate the data set.
After the data set is generated, it has to be preprocessed, that is, the
4D tensor in the data set and the corresponding PD coordinates are
reshaped into a 2D array. Then the reshaped data set is divided into
the training set, the validation set and the test set with a proportion
of 16:4:5 for subsequent training, validating and testing procedures.

As the training parameters need to be adjusted continuously,
different parameters can be conveyed in each training. In the train-
ing process, the training should be continued and the number of
iterations should be continuously recorded, until 10 consecutive
times of poor performance occur. Then the trained model with
the best training performance are the final output model, whose
performance indicates the training localization errors.

In addition, in order to process the data conveniently, the data
are normalized before training. Finally, the unit is converted to
centimeter when calculating the errors.

Table 2: Positioning errors with different spatial arrange-
ment modes of the LEDs

M Random Forest DNN
error (2D) error (3D) error (2D) error (3D)

1 1.85cm 2.79cm 1.01cm 2.16cm
2 11.80cm 17.08cm 8.70cm 12.61cm
3 4.15cm 6.33cm 2.77cm 4.533cm
4 4.97cm 8.51cm 3.94cm 7.56cm
5 3.56cm 5.60cm 1.88cm 2.80cm

4.2 Experiments and Results
We perform three kinds of experiments to investigate the perfor-
mance of the learning-based visible light localization methods with
respect to the number of available LEDs, the spatial arrangement
modes of the LEDs, and the hyper-parameter, i.e., the number of
features of each hidden layer, of the DNN. Experiment 1 investi-
gates how much performance improvement can be achieved by
using more received signals from more LEDs as input for the SVM,
random forest and DNN. The experiment starts with a model that
only uses one signal as input. This signal is the received signal with
the highest RSS. Then more received signals from more LEDs are
utilized in turn and the results are shown in Figure 3. The results
show that the positioning errors of the proposed three approaches
all tend to be stable when NL ≥ 4, except for the 3D error of the
SVM method. In general, DNN has the best performance, followed
by the random forest method, while the performance of SVM is
relatively poor. Moreover, it can be found that when the number of
LEDs is greater than 3, both 2D and 3D positioning errors of the ran-
dom forest and DNN methods fluctuate within a small range. The
minimum 2D errors of SVM, random forest and DNN are 11.28cm,
1.81cm and 0.99cm, respectively, and the minimum 3D errors of
SVM, random forest and DNN are 15.62cm, 2.79cm and 2.14cm,
respectively. This implies that when the room size is fixed, the
positioning accuracy will first increase with the number of LEDs
but gradually saturate and no longer improve when the number of
LEDs is sufficiently large.

The second experiment investigates the performance difference
between different spatial arrangement modes of the LEDs. The

spatial pattern of the five modes is shown in Figure 4. Mode 1 turns
on all 16 LEDs as comparison, mode 2 turns on 4 LEDs in the corners,
mode 3 turns on 4 LEDs in the middle, mode 4 turns on 8 LEDs
except the 8 LEDs mentioned in modes 2, 3, and mode 5 is just the
opposite of mode 4. For each of these modes, a model is trained and
the localization performance is evaluated for evaluation. According
to the results of experiment 1, we select random forest and DNN
with better performance to train for these different modes. Table
2 presents the test error of localization accuracy for each model
in different spatial modes of LEDs. The results show that except
for mode 1 with all the 16 LEDs used, mode 5 using only half the
total number of LEDs has the best performance. Specifically, for
mode 5, the 2D errors of random forest and DNN are 3.56cm and
1.88cm, respectively, and the 3D errors of random forest and DNN
are 5.60cm and 2.80cm, respectively. Furthermore, it can be observed
that, when the number of LEDs is the same, the more concentrated
the LEDs are distributed, the smaller the positioning errors are.
We can get such a insightful conclusion that, when the number
of LEDs is not enough in a harsh environment, maybe we can get
compensation of localization accuracy from a better distribution of
the available LEDs.

The purpose of experiment 3 is to find a good model architecture
of the neural networks through hyperparameter search. In Figure
5, the performance of the DNN is evaluated with various number
of hidden layers and different number of features in each hidden
layer, and other system parameters remain invariant to focus on the
main aspect of interest. It can be seen that when nh = 1, 2, 5, the
positioning errors decrease with the increase of nf. When nh = 3, 4,
the positioning errors first decrease and then increase with the
increase of nf. When nf = 32, 64, the positioning errors decrease
with the increase of nh. When nf = 128, the positioning errors first
decrease and then increase with the increase of nh. When nf = 256,
the positioning errors decrease first and then fluctuate with the
increase of nh. In a word, the 2D localization error reaches the best
performance of 0.95cm, when there are 5 hidden layers and 256
feature numbers, while the 3D localization error reaches the best
performance of 2.02cm when there are 3 hidden layers and 128
feature numbers. It indicates that the number of hidden layers and
features needs to be appropriately tuned due to over-fitting and
other related hyper-parameter influences of the DNN.

5 CONCLUSION AND FUTUREWORK
In this letter, we have presented a learning-based 3D indoor visible
light localization scheme in a realistic room environment with mul-
tiple LEDs available for localization, and obtain the RSS data and
other prior information based on the LOS visible light channel. In
order to better exploit the data with the physical prior information
from the analytical model of the visible light channel, we have
applied three learning-based approaches and carry out different
experiments. These experimental results show that the number and
spatial distribution of LEDs, and the number of hidden layers and
features of the neural networks, can all affect the learning-based
localization performance. It is found that under a certain physi-
cal circumstance, the best 2D and 3D positioning errors can reach
0.95cm and 2.02cm, respectively. In future research, we can also
take factors such as NLOS visible light path and the orientation of
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Figure 3: Positioning errors with incremental LEDs.

Figure 4: The spatial arrangement modes of LEDs.

the receiver or the PD into account, and formulate a more general-
ized learning model for visible light localization to achieve further
performance improvement in different scenarios.
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