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Abstract—As one of the indoor communication technologies,
visible light communication (VLC) has drawn great attention
for its advantages such as ultra-wide unlicensed spectrum,
power saving and low complexity. The nature of the visible
light propagation is an open channel, which is vulnerable to
wiretapping. This paper investigates a secure VLC mechanism
enabled by multiple light fixtures acting as friendly jammers.
The goal of the friendly jammers is to diminish the capability
of the eavesdropper to infer the undisclosed information, on the
premise of causing minimal impact on the legitimate receiver.
For this reason, an algorithm based on reinforcement learning
is proposed to dynamically optimize the friendly jamming policy
in realistic nonstationary environments. In order to resolve the
difficult problem of the dimensional curse and to effectively
represent the continuous state and action spaces, an algorithm
based on deep reinforcement learning is devised, which utilizes
deep convolutional neural networks to accelerate the convergence
rate of the learning process. A differentiable neural dictionary
is introduced to make full use of the experiences in similar
anti-eavesdropping scenarios to improve the learning capability.
Simulation results demonstrate that, the proposed schemes can
achieve a higher secrecy rate and a lower bit error rate than
some state-of-the-art schemes.

Index Terms—Visible light communication, anti-
eavesdropping, friendly jamming, deep reinforcement learning,
multiple-input multiple-output.

I. INTRODUCTION

Among the various technologies for indoor broadband com-
munications, visible light communication (VLC) is one of
the key technologies that have drawn great attention from
both academia and industry [1]. VLC is operated in the
ultra-wide unlicensed visible light spectrum, which naturally
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integrates information transfer with existing illumination in-
frastructure. Energy efficient and cost-effective light-emitting
diodes (LEDs) that are widely applied for illumination are
commonly adopted as a good choice of light signal source.
Compared with traditional radio-frequency (RF) technologies
[2], VLC enjoys many advantages such as license-free, high
transmission rate, cost-effective implementation, and low en-
ergy consumption [3]–[5]. This makes VLC very suitable to
be applied in various indoor and outdoor scenarios, such as
high-capacity hotspots, ultra-dense networks, and high-rate
underwater communications [6]–[8].

Due to the broadcast, unstable and open characteristics of
visible light channels, the secrecy of the transmission between
the transmitter and the legitimate user within the range of light
exposure is threatened by eavesdropping, which is particu-
larly prevalent in indoor scenarios such as offices, libraries,
museums, and hotels [9]. It is also possible for the secrecy
information to be wiretapped from outside the room through
large windows [10]. Therefore, it is crucial to investigate
effective anti-eavesdropping technologies while maintaining
satisfactory transmission performance of the legitimate users.

With the ever enhancement of the deciphering ability of
the eavesdroppers, the traditional secrecy protection scheme is
more difficult to meet the security requirements, which is still
a vital issue restricting the development of VLC techniques
[11]–[14]. Recently, the technique of friendly jamming has
attracted increasing attention as one of the physical layer
security methods for secrecy protection [15]–[17]. A friendly
jamming based cooperative communication scheme as pro-
posed in [9] can degrade the signal quality received by an
eavesdropper over the visible light wiretap channel, which is
further extended to the multiple-input single-output (MISO)
visible light channel in [18]. An artificial noise injection based
technique can improve the secrecy performance of the free-
space optical communication system [16]. An optical interfer-
ence assisted secrecy enhancement method is introduced for
a generalized space shift keying modulated VLC transmission
over a Gaussian wiretap channel [17]. An efficient iterative al-
gorithm based on transmit beamforming and friendly jamming
techniques developed in [19] enhances the communication
secrecy of MISO VLC systems with multiple eavesdroppers. A
MISO VLC beamforming scheme was proposed in [20], which
tried to find a strategy to reduce the receiving power of the
eavesdropper through iterative learning process. However, the
receiving power of the eavesdropper and the receiving power
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of the legitimate user are positively correlated since the signal
is generated by the same transmitter, and thus the receiving
power of legitimate users is constrained by eavesdroppers and
the performance of the legitimate user is limited. This results
in an inevitable tradeoff between the reception performance
of the legitimate user and the secrecy protection ability of the
system.

It is worth noting that, for common VLC systems, due
to the non-symmetrical physical property of the visible light
based downlink channel and the radio frequency or infrared
based wireless uplink channel, and considering the incoherent
nature of the IM/DD-based VLC transmission, many existing
security mechanisms for classical wireless communications are
not directly applicable to VLC systems [18]. Besides, realistic
complex wiretapping environments tend to be temporally
and spatially nonstationary due to dynamic changes, such as
the blockage by clutters, human activities, and the mobility
of the eavesdropper, making the wiretapping channel time-
variant and complicated. Thus, it is very difficult to design
a closed-form and continuously optimal policy of friendly
jamming under the condition of realistic time-varying channels
and complex dynamic environments. This makes it necessary
to conceive an approach more adaptive to spatiotemporally
nonstationary environments to improve the traditional friendly
jamming schemes. Moreover, apart from deteriorating the abil-
ity of the wiretapper, some metrics concerning the legitimate
user, such as the bit error rate (BER) that reflects the receive
quality, can also be taken into consideration in the approach
of friendly jamming, which might further improve the overall
secrecy performance of the system.

To this end, we devise a smart friendly jamming approach
in this paper inspired by the recently emerging technique of
reinforcement learning (RL), which obtains optimal strategies
by dynamically interacting with the environment modeled as a
Markov decision process (MDP) [21]. As a subfield of artificial
intelligence, the RL technology has been investigated in some
telecommunication applications, including power control, anti-
jamming, and relay selection [22]–[25], etc. By incorporat-
ing deep neural networks with RL, the deep reinforcement
learning (DRL) technique is employed to find better strategies
from more complex environments and accelerate the learning
process [26]–[31]. Hence, in order to deal with the great
challenge of secrecy protection in realistic spatiotemporally
nonstationary environments, an RL-based friendly jamming
(i.e., RL-FJ) scheme is proposed in this paper.

Specifically, multiple light fixtures acting as intelligent
friendly jammers are controlled by the RL-FJ scheme to trans-
mit friendly jamming signals to prevent the potential eaves-
dropper from inferring the private information, and meanwhile
maintaining the quality of reception for legitimate users.
Different from the scheme in [20], more degrees of freedom
have been introduced by friendly jamming to search for the
optimal anti-eavesdropping strategy in the solution space.
The legitimate reception performance can be improved by
increasing the receiving power of the legitimate user, which is
not constrained by the eavesdropper. The proposed RL-based
scheme searches for the best jamming policy that maximizes
the jamming power on the eavesdropper, thereby improving

the secrecy rate of the system. During the communication
process, the proposed intelligent friendly jammers determine
the friendly jamming policy, via Q-learning according to the
state information such as the BER, secrecy rate and energy
consumption. To determine the jamming policy is to determine
the jamming beamformers for the multiple LED light fixtures,
i.e., the friendly jammers. Thus, a multiple-input single-output
(MISO) channel is formed between the multiple jammers and
the legitimate user or eavesdropper.

Furthermore, it should be noted that Q-learning algorithms
have only asymptotical optimality guarantee [32], i.e. converge
to an optimal solution as the number of data samples tends
to infinity, which might limit the learning performance. More
importantly, in realistic complex VLC environments, the dif-
ficulty of effective representation of the continuous state and
action spaces and the problem of dimensional curse, that is, the
difficulties encountered by algorithms in model training due
to the high dimensionality of data, still remain to be resolved.
Meanwhile, the convergence rate of the learning process
should be further accelerated in this complicated circumstance
to ensure satisfactory quality-of-service. To this end, we pro-
pose a DRL-based friendly jamming (DRL-FJ) scheme that
employs deep convolutional neural networks (CNNs) to extract
the complex environmental features and effectively represent
the continuous state and action spaces. Accompanied with
the DRL-FJ scheme, a memory module called differentiable
neural dictionary (DND) [33] is utilized to make full use
of the experiences in similar anti-eavesdropping scenarios to
further accelerate the learning process. To summarize, our
contributions are listed as below.

• An RL-based scheme, i.e., RL-FJ, is proposed, which dy-
namically determines the optimal friendly jamming poli-
cy via Q-learning, to adaptively improve the performance
of secure VLC transmission in realistic spatiotemporally
nonstationary environments 1.

• A DRL-based scheme, i.e., DRL-FJ, is proposed, which
utilizes deep CNNs to effectively represent the complex
and continuous state and action spaces, and resolve the
problem of the dimensional curse.

• A DND is introduced to make full use of the previous
similar anti-eavesdropping experiences, which further ac-
celerates the learning process.

• The performance of the proposed schemes are theoret-
ically analyzed in terms of the receive quality of the
legitimate user and the overall system utility, and the
computational complexity of the proposed algorithms are
derived.

The remainder of this paper is organized as follows. The

1Part of this work, i.e., part of the first contribution on Q-learning
based algorithm, has been presented in IEEE International Conference on
Communications (IEEE ICC) 2022 [34]. Compared with the conference
version, this article has extensively extended the technical content, theoretical
analysis and experimental results. A DRL-FJ algorithm is proposed to deal
with the problem of high-dimensional curse and quantization error. A DND
is introduced to further improve the learning performance and efficiency.
Theoretical analysis of the performance of the proposed schemes as well
as, the computational complexity are derived. More extensive and thorough
simulations have been conducted and reported, and more benchmark schemes
are compared.
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visible light channel model and the VLC wiretapping model
are described in Section II. In Section III and Section IV,
the proposed RL-FJ and DRL-FJ schemes are introduced,
respectively. The theoretical performance of the proposed
algorithms are evaluated in Section V. In Section VI, the
simulation results are reported with discussions, followed by
the conclusions in Section VII.

II. SYSTEM MODEL

A. Visible Light Channel Model

In this paper, a VLC system using pulse amplitude modu-
lation (PAM) with a direct current (DC) bias is considered,
where the transmitter is composed of multiple LED light
fixtures driven by a fixed bias ID and the receiver at the user
terminal is equipped with a single photodiode (PD). The total
electric current Ie driving the LED is the superposition of the
DC bias ID and the signal component x conveying the informa-
tion to send. To avoid severe clipping distortion and maintain
satisfactory linearity in optical conversion, and meanwhile to
satisfy the illumination requirements, it is required that the
total electric current Ie should not exceed a specific range
[35]. This imposes a specific constraint on the amplitude of
the information signal x, i.e., |x| ≤ αID, where α ∈ [0, 1] can
be regarded as the modulation index. The electric current Ie is
then converted to the instantaneous transmit optical power PT
in the LED to radiate light via an electro-optical converter, i.e.,
PT = ηIe, where η is the electro-optical conversion efficiency.

At the legitimate receiver of the user terminal, a PD receives
the incident optical power represented by PR = GPT with G
denoting the path gain of the channel, and converts the optical
power to the received electrical signal y via optic-electrical
conversion with the PD responsivity of R and after the DC
bias removal.

The LEDs are commonly assumed to have a Lambertian
radiation pattern [36], [37], where the path gain of the visible
light channel G is given by

G =

 n2
0AP(log cosφ1/2−log 2)

2πd2 sin2(ϕF) log cosφ1/2
cos

− log 2
log cosφ1/2 (φ) cos(ϕ), |ϕ| ≤ ϕF,

0, |ϕ| > ϕF,

(1)
where the parameters are defined as follows: n0 is the optical
concentrator refractive index; AP is the PD detector area; φ
is the angle of irradiance relative to the LED optical axis;
φ1/2 is the LED half irradiation intensity semi-angle; ϕ is the
angle of incidence relative to the PD optical axis; ϕF is the
PD field-of-view (FoV); d is the distance from the LED to the
PD.

B. VLC Wiretapping Model

A typical indoor VLC framework against eavesdropping
assisted by friendly jamming is shown in Fig. 1. An LED light
fixture acting as the transmitter (Alice) is sending private in-
formation to the receiver of the legitimate user (Bob) equipped
with a PD via the VLC link. An eavesdropper (Eve) in this
environment is attempting to wiretap the private information
from the VLC signal that reaches the PD of its receiver. The
friendly jammers are composed of NJ LED light fixtures that

Friendly jammerFriendly jammer

Alice

Legitimate receiver Bob Eavesdropper Eve

Private VLC signal

Friendly jamming

Friendly jammer
Friendly jammer

JBh JEh
AEhABh

Fig. 1. A typical indoor VLC framework against eavesdropping, including
an LED light fixture acting as the transmitter (Alice), the legitimate receiver
(Bob), an eavesdropper (Eve), and the friendly jammers composed of several
LED light fixtures.

are transmitting jamming signals with a specifically designed
beamforming pattern in order to prevent Eve from effective
wiretapping.

Based on the visible light channel model, the received
electrical signals of Bob and Eve are respectively given by

yB = hABx+ hT
JBj+ nB, (2a)

yE = hAEx+ hT
JEj+ nE, (2b)

where hAB and hAE represent the channel gains from Alice
to Bob and Eve, respectively, with hAB = RηGAB and
hAE = RηGAE, where GAB and GAE represent the path
gain from Alice to Bob and Eve respectively; x ∈ R
represents the transmit information signal with zero mean;
The vectors hJB, hJE ∈ RNJ denote the channel gain
vectors from the NJ friendly jammers to Bob and Eve,
respectively, where hJB = Rη[G1B, G2B, · · · , GNJB]T and
hJE = Rη[G1E, G2E, · · · , GNJE]T, with GiB and GiE, i =
1, 2, · · · , NJ, denoting the gains of the propagation links
from the i-th friendly jammer to the legitimate user and the
wiretapper, respectively; The vector j ∈ RNJ represents the
jamming signal transmitted by the NJ friendly jammers; The
background noise at Bob and Eve is represented by nB and nE,
which can be modelled by zero-mean additive white Gaussian
noise (AWGN) with the variance of σ2

B and σ2
E, respectively.

As previously mentioned, subject to the constraint of the
dynamic range of the LED driving current due to nonlinearity
distortion and the requirements of illumination purpose, the
amplitude of both the information signal and the jamming
signals should satisfy a certain constraint. Specifically, it is
satisfied that |x| ≤ αID and |j| � 1αID, where 1 is an all-
one vector, and the operator � denotes elementwise inequality
between two vectors, i.e., the absolute value of each element
in the jamming signal j is no greater than αID.

The jamming signal j can be equivalently rewritten in
a format of MIMO beamforming for the purpose of sim-
plifying the representation of the jamming strategy to be
determined by the proposed learning scheme. Specifically, a
jamming beamforming vector, i.e., the jamming beamformer
w = [w1, w2, · · · , wNJ ]

T subject to |w| � 1, can be allocated
to the NJ friendly jammers to determine the jamming signals
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Fig. 2. Proposed RL-based friendly jamming beamforming scheme.

to transmit. Then, the jamming signals can be rewritten as
j = wj, where the amplitude variable j is zero-mean and
subject to |j| ≤ αID. Thus, the received electrical signals in
equation (2) is simplified as

yB = hABx+ hT
JBwj + nB, (3a)

yE = hAEx+ hT
JEwj + nE. (3b)

III. RL-BASED FRIENDLY JAMMING BEAMFORMING
SCHEME AGAINST EAVESDROPPING

Assuming that the amplitude of the transmit and received
information signals, i.e., x and j, is uniformly distributed
within [−αID, αID], the achievable secrecy rate cs of the VLC
system in the wiretap channel [9] is given by

cs =
1

2
log

1 +
2h2

ABα
2I2D

πe
(
σ2

B + 2 |hT
JBw|2 α2I2D

)


−min

(
log

hAE

|hT
JEw|

+

∣∣hT
JEw
∣∣

hAE
log
√
e,

hAE

|hT
JEw|

log
√
e

)
.

(4)

The objective of the VLC system should be to maximize
the secrecy rate cs as given in (4), i.e., arg max

w
cs. This

is, however, an intractable problem that is difficult to find a
closed-form solution [9]. As a tractable alternative solution,
a suboptimal jamming beamformer w0 that tries to maximize
the secrecy rate in (4) based on zero-forcing can be obtained
by

w0 = arg max
w

cs,

s.t. hT
JBw = 0, |w| � 1. (5)

The solution to the above problem is to force the jamming
power applied by the friendly jammer on Bob to be zero, i.e.
hT

JBw = 0. It should be noted that this zero-forcing solution
can be suboptimal. It is intuitively understandable that the
jamming beamformer w is confined in the null-space of hT

JB in
the zero-forcing solution, so all possible solutions of w can not
be traversed. Thus, only a local optima within the zero-forcing
subspace can be found, while the globally optimal solution of
the jamming beamformer policy that maximizes cs cannot be
achieved. For example, it is possible that in a certain case the
jamming power on Bob is a small value but not strictly zero,
but the jamming power on Eve might be larger than the case
where Bob receives zero jamming, which results in a higher
secrecy rate than the zero-forcing case.

Besides, the optimization problem in (5) only considers
the ability to degrade the wiretapping performance of the
eavesdropper, but the receive quality of the legitimate user,

which is reflected by some metrics such as the BER, is not
guaranteed, which might have a severe impact on the quality-
of-service of Bob and limit the overall system utility. Hence,
it is necessary to design an efficient scheme to tackle this
problem.

In order to take both the secrecy rate and the receive quality
of the legitimate user into account in realistic spatiotemporally
nonstationary environments, an RL-based friendly jamming
(RL-FJ) beamforming method is devised, which aims to im-
prove the overall system utility through an online iterative
learning process, and fully explore the solution space of the
problem in (4) to dynamically update the optimal policy of
friendly jamming. The system utility adopted in the learning
process can be carefully devised to thoroughly consider the
secrecy rate performance, the receive quality of the legitimate
user, and in addition, the energy consumption, which will be
described later this section.

Specifically, during the VLC transmission process com-
posed of a series of time slots indexed by k, the intelligent
friendly jammers dynamically determine the optimal jamming
beamformer by interacting with the spatiotemporally nonsta-
tionary environment. Consequently, an MDP is formulated to
select the optimal policy, in which the state, action, and reward
are elaborated as follows.

State: As depicted in Fig. 2, the friendly jammers receive
the feedback information from the communication environ-
ment, including the legitimate channel gain h

(k)
AB and the

previous BER p̂
(k−1)
e . The achievable rate ĉ(k−1)s at previous

time slot is calculated according to (4), in which the channel
state information (CSI) of hAB and hJB can be obtained from
the feedback information from Bob, while the CSI of hJE and
hAE can be estimated by roughly predicting Eve’s possible
location with the aid of some prior information, such as the
geometric information of the indoor environment, the furniture
layout, the obstruction, etc. The energy consumption E(k−1)

of the transmitter and the friendly jammers at the previous slot
is also obtained. Thus, the current state s(k) of the system can
be expressed as

s(k) =
[
p̂(k−1)e , ĉ(k−1)s , h

(k)
AB , E

(k−1)
]
∈ Λ, (6)

where Λ denotes the state space consisting of all the possible
states.

Action: The jamming beamformer w is selected as the
action, which determines the jamming power transmitted by
the NJ intelligent friendly jammers as in (3). The jamming
beamformer w(k) of time slot k is selected from the action
space W, i.e. w(k) = [w

(k)
1 , . . . , w

(k)
NJ

]T ∈W with |w(k)| � 1.
Reward: The reward to be optimized in the MDP is

regarded as the utility function of the system. In order to ensure
the receive quality of the legitimate user, the BER of Bob
should be taken into consideration in the design of the utility
function. After obtaining the feedback information from the
environment, the BER of Bob p̂(k)e and energy cost E(k) are
obtained, and secrecy rate ĉ(k)s is estimated. Thus, the utility
function u(k) is defined as

u(k) = ĉ(k)s − δ1p̂(k)e − δ2E(k), (7)
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where the coefficients of δ1 and δ2 play the role of balancing
the contribution of the BER, energy consumption and secrecy
rate to the overall utility, which can provide an appropriate
tradeoff among them. The second penalty term in the utility
function is introduced to evaluate the energy consumed by the
friendly jammers and the transmitter, which drives the agent
to search for an optimal solution that considers both benefits
and costs. In the dynamic interaction with the time-varying
channel, maximizing the utility given in (7) is regarded as an
optimization objective by the RL-FJ scheme, i.e. finding an
optimal jamming strategy that maximizes u(k), so not only
the secrecy rate but also the receive quality of Bob and the
energy consumption are considered thoroughly in the scheme,
which leads to a better overall system performance.

To deal with the dynamic MDP in the complex environment,
RL-based algorithms such as Q-learning can be adopted thanks
to the capability of learning sophisticated strategy out of
dynamic environments. In this regard, the friendly jammers act
as the smart RL agent that determines the optimal jamming
beamformer according to the current state and Q-function to
maximize the utility function. The Q-function therein denot-
ed by Q(s,w) represents the expectation of the cumulative
discount reward of the friendly jammers performing action
w in the current state s. The actions taken by the friendly
jammers will have an impact on the next state, thus further
influencing the future actions and rewards. To facilitate the
online iterative Q-learning processing, each element of the
jamming beamformer is quantized to 2Lx + 1 equally spaced
discrete values, i.e., w(k)

i ∈ { l
Lx
|l = −Lx, · · · , Lx, l ∈ N},

where Lx can be chosen to realize a proper tradeoff between
learning accuracy and computational complexity. To avoid
being stuck in local optima and achieve a compromise between
exploitation and exploration for the RL scheme, the jamming
beamformer w(k) is selected based on the ε-greedy method as
given by

Pr
(

w(k) = w̃
)

=

1− ε, w̃ = arg max
w′∈W

Q
(
s(k),w′

)
ε

|W|−1 , o.w.
(8)

where w̃ is the jamming beamformer that the friendly jammers
tend to choose in state s(k) with a large probability 1 − ε,
and ε is a very small value representing the low probability
of new exploration in the action space. In this way, the
friendly jammers would most likely exploit the Q-function
to determine the action, while also possibly explore another
random jamming beamformer with a small probability to
effectively prevent falling into a local optimum.

The pseudo-code of the proposed RL-FJ scheme is sum-
marized in Algorithm 1. Specifically, the friendly jammers
observe the current state s(k) and employ the optimal jam-
ming beamformer w(k) selected based on the ε-greedy policy
defined in (8). Then the reward u(k) determined by (7) is
obtained, and the environment turns to the next state s(k+1).
The Q-function is updated based on the iterative Bellman

Algorithm 1 RL-based friendly jamming (RL-FJ) algorithm
1: Initialize: λ, β, Q = 0 and V = 0
2: for k = 1, 2, ... do
3: Obtain previous BER of Bob p̂(k−1)e via feedback
4: Estimate the secrecy rate at (k− 1)-th time slot ĉ(k−1)s

5: Obtain the channel gain of legitimate user at k-th time
slot h(k)AB

6: Measure the energy consumption at (k−1)-th time slot
E(k−1)

7: Formulate the system state
s(k) =

[
p̂
(k−1)
e , ĉ

(k−1)
s , h

(k)
AB , E

(k−1)
]

8: Select the jamming beamformer w(k) based on ε-greedy
given in (8)

9: Transmit friendly jamming signals using the selected
action, i.e., the jamming beamformer, w(k)

10: Obtain the BER at k-th time slot p̂(k)e

11: Calculate the secrecy rate at k-th time slot ĉ(k)s

12: Measure the energy consumption at k-th time slot E(k)

13: Determine the utility u(k) via (7)
14: Update the Q-function via (9)
15: end for

equation as given by

Q
(

s(k),w(k)
)
← (1− λ)Q

(
s(k),w(k)

)
+ λ

(
u(k) + β max

w′∈W
Q
(

s(k+1),w′
))

,
(9)

where λ ∈ [0, 1] is the learning rate indicating the extent to
which the new information overrides the previous information,
and the discount factor β valued between zero and one reflects
the contribution by the long-term rewards. To be more specific,
the core idea of the Q-learning algorithm is an iterative update
of the weighted average of the previous information and
the new information of the reward: Q(s(k),w(k)) represents
the previous Q-values; u(k) represents the immediate reward
obtained in the transition from the current state to the next
state; A value function V

(
s(k+1)

)
= max

w′∈W
Q
(
s(k+1),w′

)
is

defined to represent the maximum future reward that can be
obtained based on all feasible actions in state s(k+1); Thus,
the new information is a weighted average of the immediate
reward and the discounted estimated long-term reward.

IV. DRL-BASED FRIENDLY JAMMING BEAMFORMING
SCHEME AGAINST EAVESDROPPING

In this section, a DRL-FJ beamforming scheme is further
proposed, which employs deep CNNs to extract the complex
environmental features and effectively represent the contin-
uous state and action spaces, and resolve the problem of
the dimensional curse therein. Accompanied with the DRL-
FJ scheme, a memory module called differentiable neural
dictionary (DND) is utilized to store the previous similar anti-
eavesdropping experiences to be used in the future learning
process, which further accelerates the convergence in non-
stationary environments. Specifically, the friendly jammers
select the jamming beamformer w ∈ W according to the
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Algorithm 2 DRL-based friendly jamming (DRL-FJ) algorith-
m

1: Initialize: λ, β, θ, T , and M
2: for k = 1, 2, ... do
3: Obtain previous BER of Bob p̂(k−1)e via feedback
4: Estimate the secrecy rate at (k− 1)-th time slot ĉ(k−1)s

5: Obtain the channel gain of legitimate user at k-th time
slot h(k)AB

6: Measure the energy consumption at (k−1)-th time slot
E(k−1)

7: Formulate the system state
s(k) = [p̂

(k−1)
e , ĉ

(k−1)
s , h

(k)
AB , E

(k−1)]
8: if k ≤M then
9: Select a jamming beamformer w(k) randomly

10: else
11: Assemble state-action sequence

ϕ(k) =
{

s(k−M),w(k−M), · · · ,w(k−1), s(k)
}

12: Feed ϕ(k) into the CNN as input
13: Obtain CNN output and use it as look-up key ĥ in

the DND Dw for each action w ∈W
14: Generate weight ωj via (10)
15: Estimate the corresponding Q-function Q(s(k),w) for

each action w via (12)
16: Collect all estimated Q-values Q(s(k),w), w ∈W to

update the overall Q-function
17: Select jamming beamformer w(k) via (8)
18: Append a new entry (ĥ, Q(s(k),w(k))) to the DND

memory Dw(k) for selected action w(k)

19: end if
20: Perform friendly jamming using the selected action

w(k)

21: Obtain the BER at k-th time slot p̂(k)e

22: Calculate the secrecy rate at k-th time slot ĉ(k)s

23: Measure the energy consumption at k-th time slot E(k)

24: Determine the system utility u(k) via (7)
25: Append jamming experience

{
ϕ(k),w(k), u(k),ϕ(k+1)

}
to B

26: for t = 1, 2, ..., T do
27: Choose an experience e(t) ∈ B randomly
28: end for
29: Set up an experience mini-batch T =

{
e(t)
}
1≤t≤T

30: Update the weights θ(k) of the CNN via (13)
31: end for

Q-function determined by the mapping entries stored in a
DND memory corresponding to the action w, which is denoted
as Dw = (Kw,Vw). Each mapping entry in the DND Dw
contains a look-up key array Kw and a Q-value array Vw,
in which the look-up keys ĥ ∈ R|W| for query and the
corresponding estimated Q-values are stored, respectively. The
look-up key ĥ used to query the estimated Q-value is obtained
from the output of the preceding CNN, which can be regarded
as extracted high-level features corresponding to current state
s(k).

The framework of the proposed DRL-FJ beamforming
scheme is illustrated in Fig. 3, whose pseudo-code is sum-

marized in Algorithm 2. Specifically, the friendly jammers
observe the current VLC system state s(k) as given in (6).
A series of previous states and actions, along with the cur-
rent state, are stacked to formulate a state-action sequence
ϕ(k) =

{
s(k−M),w(k−M), s(k−M−1),

w(k−M−1), · · · ,w(k−1), s(k)
}

, including the state-action pairs
of the previous M time slots and the current VLC system state
s(k). Using the state-action sequence, the temporal correlation
between different system states can be strengthened and ex-
ploited over the learning process. The state-action sequence
ϕ(k) is reshaped into an m0 ×m0 matrix as the input to the
CNN with two convolutional (Conv) layers followed by two
fully connected (FC) layers. The l-th Conv layer has fl filters
of size ml×ml and stride of sl, followed by a rectified linear
unit (ReLU) with fl feature maps as the output for l = 1, 2.
The feature maps in the second Conv layer are fed into the
first FC layer with n1 neurons. The second FC layer outputs
a length-n2 vector ĥ, which is used as the look-up key in
the subsequent DNDs. For the convenience of notations, the
parameters of the CNNs are assembled as a hyper-parameter
vector F = [f1, f2,m1,m2, s1, s2, n1, n2].

For each feasible action in the action space w ∈ W, a
corresponding DND memory Dw = (Kw,Vw) is maintained
for query purpose. Specifically, the friendly jammers use the
look-up key ĥ, which is the output of the preceding CNN
module, to query the corresponding estimated Q-values stored
in the DND Dw for each action w. During the query in the
DND Dw, a weight ωj for the j-th entry of the Q-value array
Vw is generated as given by

ωj =
Ker(ĥ,hj)
ζ∑
p=1

Ker(ĥ,hp)

, (10)

where 1 ≤ j ≤ ζ, ζ ≤ k means that the total number
of mapping entries accumulated in the previous k time slots
does not exceed k; hj is the j-th entry stored in the look-up
key array Kw, and Ker(ĥ,hj) represents a Gaussian kernel
function between the look-up keys of ĥ and hj , which returns
the vector distance between the two keys as given by

Ker(ĥ,hj) = exp

(
−1

2

∥∥∥ĥ− hj∥∥∥2
2

)
. (11)

After performing the look-up operation on the DND Dw
for a specific action w, an estimate of the corresponding Q-
function Q(s(k),w) for the given action w at the current state
s(k) is returned, which is given by

Q(s(k),w) =

ζ∑
j=1

ωjvj , (12)

where vj is the estimated Q-value stored in the j-th entry of
the Q-value array Vw. It is noted that the Q-function obtained
in (12) is a weighted sum of the Q-values stored in the array
Vw of the DND Dw, whose weights are determined by the
normalization kernel between the look-up key ĥ to be queried
and each look-up key hj in the array Kw.

This estimation process is repeated for each action w ∈W,
and in this way, the estimated Q-values for all the actions are
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Fig. 3. DRL-based friendly jamming beamforming scheme for the friendly jammers to dynamically and rapidly determine the optimal jamming beamformer
adaptively in spatiotemporally nonstationary complex environments.

collected to update the overall Q-function, i.e., Q(s(k),w),w ∈
W. Using the updated Q-function, the friendly jammers can
determine the jamming beamformer w(k) for the current time
slot based on the ε-greedy method, and then the selected
friendly jamming beamforming action is performed.

Afterwards, a new mapping entry (ĥ, Q(s(k),w(k))) is
recorded and appended to the end of the DND memory Dw(k)

for the selected action w(k), where Q(s(k),w(k)) is the updated
Q-value for w(k) in the updated Q-function. In the case where
the look-up key ĥ already exists in the memory Dw(k) , its
corresponding Q-value is updated to Q(s(k),w(k)).

After performing the friendly jamming action, the friendly
jammers obtain the feedback information from the environ-
ment. The BER p̂

(k)
e is obtained, the energy consumption E(k)

is measured, and the secrecy rate ĉ(k)s is estimated. Then the
current utility u(k) is obtained, and the system turns to the
next s(k+1).

To memorize the jamming experiences for exploitation, the
friendly jammers formulate the current jamming experience
e(k) =

{
ϕ(k),w(k), u(k),ϕ(k+1)

}
, and save it in the expe-

rience pool B =
{

e(k)
}

. A jamming experience consists of
the current state-action sequence ϕ(k), the next state-action
sequence ϕ(k+1), the jamming beamformer w(k), and the
utility u(k). Then, a technology named experience relay can be
performed, in which a proportion of the experiences denoted as
T are randomly selected from the experience pool B, to update
the weights θ(k) of the CNN via stochastic gradient descent
(SGD) [38]. Note that it is necessary to disrupt the order of
the sampling sequence over time to improve the generalization
of the model. Thus, the friendly jammers randomly select T
jamming experiences from B to formulate an experience mini-
batch sequence T =

{
e(t)
}
1≤t≤T , where e(t) represents the t-

th selected jamming experience. Then, using the SGD method,

the weights θ(k) of the CNN are updated by minimizing the
loss function over T , i.e., the squared error between the output
of the network and the target Q-value, as given by

θ(k) = arg min
θ

ET

[(
u−Q

(
ϕ,w;θ(k)

)
+

βmax
w′

Q
(
ϕ′,w′;θ(k−1)

))2
]
,

(13)

where E is the expectation operator; the experience
(ϕ,w, u,ϕ′) ∈ T ; β is the discount factor defined in (9);
w′ is the next jamming beamformer selected by the friendly
jammers; ϕ′ is the next state-action sequence in the jamming
experience from T .

V. PERFORMANCE EVALUATIONS

The performance of the proposed friendly jamming beam-
forming scheme for secure VLC is theoretically analyzed in
terms of the overall VLC system utility and the receive quality
of the legitimate user. The receive quality is evaluated via
Bob’s BER. The theoretically optimal overall utility, which is
concerned with secrecy rate, energy consumption, and BER,
is derived. Apart from that, the computational complexity of
the proposed RL-FJ and DRL-FJ schemes are evaluated.

For simplicity, it is assumed that 4PAM is used as the
modulation scheme, while the proposed approach works for
other higher-order modulation schemes. Thus, the BER of the
legitimate user is given by

pe =
3

4
erfc

√2PT (wThJB + hAB)
(
hAB + hT

JBw
)

5σB
2

 , (14)
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where erfc(x) represents the complementary error function as
shown below

erfc(x) =
2√
π

∫ ∞
x

e−z
2

dz. (15)

According to the literature [39], the energy consumption E is
given by

E = %s

NJ∑
i=1

wi, (16)

where %s denotes the unit jamming cost and wi, 1 ≤ i ≤ NJ is
the friendly jamming beamformer for the NJ friendly jammers.

For a given current state and friendly jamming policy,
the future state observed by the friendly jammers, which is
composed of BER, secrecy rate, channel gain and energy
consumption, is independent of the previous states. Thus,
the decision process of the friendly jamming policy in the
replicated interactions between the friendly jammers and the
spatiotemporally nonstationary environment can be regarded
as an MDP. The theoretical performance of the proposed
friendly jamming beamforming algorithms is derived as given
by the following corollary.

Corollary 1. The proposed RL-FJ scheme as in Algorithm 1
and DRL-FJ scheme as in Algorithm 2 will reach the optimal
friendly jamming beamformer w∗ as given by

w∗ = arg max
w

u, (17)

where the optimal utility u∗ of the VLC system is achieved,
which is given by

u∗ =
1

2
log

(
1 +

2h2ABα
2I2D

πeσ2
B

)
−min

(
log

hAE∣∣hT
JEw

∗
∣∣ +

∣∣hT
JEw

∗
∣∣

hAE
log
√
e,

hAE∣∣hT
JEw

∗
∣∣ log

√
e

)

− 3

4
δ1 erfc

(√
2ηIeh2AB

5σ2
B

)
− δ2%s

NJ∑
i=1

wi,

(18)

if the channel state information (CSI) of the legitimate user is
known at the friendly jammers, and

hT
JBw = 0, |w| � 1; (19)

In particular, if ∣∣hT
JEw

∣∣
hAE

≤ 1, (20)

holds, the closed-form expression of the achievable secrecy
rate cs and the optimal utility u∗ can be further derived as

cs =
1

2
log

(
1 +

2h2ABα
2I2D

πeσ2
B

)
− (log(log

√
e) + 1), (21)

and

u∗ =
1

2
log

(
1 +

2h2ABα
2I2D

πeσ2
B

)
− (log(log

√
e) + 1)

− 3

4
δ1 erfc

(√
2ηIeh2AB

5σ2
B

)
− δ2%s

NJ∑
i=1

wi.

(22)

Proof: See Appendix A.

Remark I: If the channel state information of the legitimate
user is known at the friendly jammers, the optimal jamming
beamformer as given by w∗ = arg max

w
u that maximizes the

system utility is selected, which takes the energy consumption
of the transmitter and the friendly jammers, the system secrecy
rate, and the receive quality of Bob into account and the best
tradeoff between these factors is achieved. The constraint in
(20) means that the jamming power imposed on the eavesdrop-
per is no greater than the channel gain from the transmitter to
the eavesdropper. In this case, according to (35) in the proof
in Appendix A, the friendly jammers will keep optimizing
the jamming power imposed on the eavesdropper and after
sufficient interactions with the environment, it will converge
to

hT
JEw∗ =

hAE

log
√
e
. (23)

Next, consider the computational complexity of the pro-
posed scheme. Let O (Γ1) and O (Γ2) denote the computation-
al complexity of Algorithm 1 and Algorithm 2, respectively.
The total number of steps to finally reach the optimal jamming
beamformer largely determinesO (Γ1) [40]. For simplicity, the
number of steps to reach the optimal jamming beamformer
in an interaction between the friendly jammers and the spa-
tiotemporally nonstationary environment is denoted as K, and
the number of interactions is denoted as ZF. The complexity
of the CNN module is the main source of O (Γ2). Let f0
represent the number of input channels of the CNN, and let
cl represent the spatial size of the output feature maps of the
l-th Conv layer. The size of the feature maps that are output
from the two convolutional layers is c1 = (m0 −m1)/s1 + 1
and c2 = (m0 −m1)/(s1s2)− (m2 − 1)/s2 + 1 [41], respec-
tively. Then, the computational complexity of the proposed
algorithms is derived in the following corollary.

Corollary 2. The computational complexity of the proposed
RL-FJ algorithm is given by

O (Γ1) = O(KZF), (24)

if

KZF ≥ poly{[|Λ|, |W|,K]}, (25)

where poly{v} function can find the characteristic polynomial
of equations or square matrices with the vector v as the
solution; The computational complexity of the proposed DRL-
FJ algorithm is given by

O (Γ2) = O

(
f1m

2
2f2

(
m0 −m1

s1s2
− m2 − 1

s2
+ 1

)2
)
,

(26)

if

f0 = 1. (27)

Proof: See Appendix B.
Remark II: The computational complexity of the proposed

RL-FJ algorithm increases with totally number of steps to
finally reach the optimal jamming beamformer. In order to
reduce the computational complexity, transfer learning tech-
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Fig. 4. Experimental simulation scenario setup for evaluating the secure VLC
system against eavesdropping, including four down-facing LED light fixtures
deployed on the top acting as the friendly jammers, an LED light fixture as
the transmitter (Alice), a legitimate user (Bob) and a wiretapper (Eve) both
equipped with VLC receivers located in random positions.

niques such as hot-booting can be utilized to obtain the initial
Q-table for the RL-based algorithm, so that the overhead of
initial random exploration can be greatly reduced. The size
of the CNN input, along with the number, size, and stride of
the filters in each Conv layer, determine the computational
complexity of the proposed DRL-FJ algorithm. With the
increase of the number of filters and the size of the CNN input,
the learning capacity of the CNN module might improve, but
a higher computational complexity is introduced. Thus, it is
necessary to properly configure the CNN parameters to make
a good tradeoff between the anti-eavesdropping capability and
the computational complexity. In realistic applications, for
user terminals with limited computing resource, the RL-FJ
algorithm with lower computational complexity can be chosen
to achieve moderate system performance; On the other hand,
the DRL-FJ algorithm is a better choice for user terminals
equipped with sufficient computational resource if the task
requires high-quality secrecy communication in complex and
nonstationary environments.

VI. SIMULATION RESULTS AND DISCUSSIONS

Extensive simulation experiments are carried out to evaluate
the performance and validate the effectiveness of the proposed
RL-FJ and DRL-FJ beamforming schemes for secure indoor
VLC. A diagram of the experimental simulation environment
setup for the secure VLC system is illustrated in Fig. 4, and
the main transmission parameters set according to [18] are
listed in Table I. The size of the room is 5 × 5 × 3 m3 with
five downward LED light fixtures on the ceiling, each quipped
with four LEDs. The transmitter (Alice) sending private VLC
signals is a light fixture located in the center of the ceiling,
while the other four light fixtures deployed around act as the
intelligent friendly jammers. The specific locations of them in
the indoor three-dimensional coordinate system are marked in
Fig. 4.

Some parameters related to the learning schemes are set as
follows: The coefficients δ1 and δ2 in the utility function in (7)
are set as 3.5 and 0.4, respectively; The learning rate λ and the
discount factor β in the Q-function update in (9) are both set
as 0.5; the size of the sliding window M for the state-action

TABLE I
PARAMETER CONFIGURATION FOR VLC TRANSMISSION

Parameters Value
LED average power 1 W
Modulation index α 10%

Half irradiation intensity semi-angle φ1/2 60◦

FoV ϕF of the receiver PD 60◦

Optical concentrator refractive index n0 1.5

Background noise power σ2
B of Bob −98.79 dBm

PD detector area AP 1 cm2

PD responsivity R 0.54 A/W
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(a) Secrecy rate distribution with respect to the location of the
eavesdropper Eve, while the location of the legitimate user Bob
is fixed at (1.8, 1.6, 0.85) m.
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(b) Secrecy rate distribution with respect to the location of the
legitimate user Bob, while the wiretapper is located in (3.2, 3.4,
0.85) m.

Fig. 5. Spatial distribution of secrecy rate with respect to locations of the
legitimate user and wiretapper.

sequence ϕ(k) is set to 11; The size of the experience mini-
batch T is set as 4; We determine the hyper-parameter vector
of the CNN using random search, which involves randomly
sampling combinations of hyper-parameters to find the opti-
mal hyper-parameter that strike a good balance between the
secrecy performance and the computational complexity. Thus,
the hyper-parameter vector of the CNN parameters is set as
F = [20, 40, 3, 2, 1, 1, 180, 180]. As a benchmark, the state-
of-the-art robust beamforming scheme [42] and simultaneous
beamforming and jamming for VLC (SBJ-VLC) scheme [43]
are evaluated in the same simulation setup for comparison.
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We first investigate the spatial distribution of the achievable
secrecy rate by changing the geometric locations of Bob or
Eve. As shown in Fig. 5(a) where Bob’s location is fixed,
as Eve moves closer towards Bob, the secrecy rate decreases
rapidly and finally reaches the global minimum at the location
of Bob, i.e., (1.8, 1.6, 0.85) m. In Fig. 5(b) where Eve’s
location is fixed, it is observed that the secrecy rate reaches
the minimum value when Bob arrives at the location of Eve.
The reason therein is that, when Eve and Bob are getting
closer, it is difficult for the friendly jammers to find a jamming
beamformer to separately impose different levels of jamming
power on Eve and Bob. In fact, if the receive quality of Bob
should be guaranteed, the jamming power imposed on the
location of Bob (note that it is located close to Eve) should be
sufficiently small, which makes it also easy for Eve to wiretap
the private signal, thus resulting in significant degradation in
secrecy rate. On the other hand, when the distance between
Bob and Eve reaches a certain level, it is much likely that the
intelligent friendly jammers can gradually learn and converge
to the optimal jamming beamformer that greatly diminishes
the capability of Eve to infer the private information, so the
secrecy rate can be maintained at a satisfactory level in a
substantial portion of the room using the proposed scheme.

The performance of secrecy rate, BER, and system utility
of the proposed intelligent friendly jamming beamforming
schemes over a series of time slots in the interactive learning
process is shown in Fig. 6, and the benchmark schemes
of robust beamforming [42] and SBJ-VLC [43] are also
reported for comparison. The results demonstrate that, the
proposed intelligent friendly jamming beamforming schemes
can achieve a higher secrecy rate, higher utility and a lower
BER over the interaction with the environment after a certain
time slots. Specifically, as reported in Fig. 6(a), the proposed
RL-FJ beamforming scheme improves the secrecy rate from
3.64 to 5.14 with an increase of 41.2%, while the DRL-FJ
beamforming scheme can further improve it to 5.68 at the
1400-th time slot with an increase of 56.1%. As reported in
Fig. 6(b), the RL-FJ beamforming scheme reduces the BER
from 2.2 × 10−2 to 3.2 × 10−3 with a decrease of 85.5%,
while the DRL-FJ beamforming scheme can reduce the BER to
2.0×10−4 at the 1200-th time slot with a decreased of 99.1%.
Meanwhile, as reported in Fig. 6(c), the RL-FJ beamforming
scheme improves the utility from 2.68 to 4.48 with an increase
of 67.2%, while the DRL-FJ beamforming scheme converges
faster and improves the utility to 5.24 with an increase of
95.5% in the middle of the process.

We also note that the proposed intelligent friendly jamming
beamforming schemes outperform the robust beamforming and
the SBJ-VLC schemes in Fig. 6. Specifically, in Fig. 6(a), close
to the end of the process, the RL-FJ beamforming scheme is
45.4% and 10.9% higher than the robust beamforming and
SBJ-VLC schemes in terms of secrecy rate, respectively. In
addition, it is worth noting that the DRL-FJ beamforming
scheme is approaching the theoretical bound of the secrecy
rate, which is further improved by 9.8% compared with the
RL-FJ beamforming scheme. This verifies that the deep CNN
module conceived in the DRL-FJ beamforming scheme can
effectively represent the high-dimensional continuous state and
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Fig. 6. Performance of proposed intelligent friendly jamming beamforming
schemes for secure VLC system against eavesdropping over a series of time
slots in the interactive learning process.

action spaces, and the introduction of the DND memory can
make full use of the experiences in previous similar anti-
eavesdropping scenarios.

As for the receive quality of Bob, as shown in Fig. 6(b),
the proposed RL-FJ beamforming scheme at the 1400-th time
slot is reduced by 84.1% and 58.9% compared with the
robust beamforming and SBJ-VLC schemes in terms of BER,
respectively. The BER of the proposed DRL-FJ beamforming
scheme is further reduced by 93.2% compared to the proposed
RL-FJ beamforming scheme, which is approaching the theo-
retical bound after 1800 time slots. Considering the overall
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Fig. 7. Performance of proposed intelligent friendly jamming beamforming
schemes with respect to SNR.

performance reflected by system utility, as shown in Fig. 6(c),
the utility of the RL-FJ beamforming scheme at the 1700-
th slot is improved by 64.9% and 1.2% compared with the
robust beamforming and SBJ-VLC schemes, respectively. The
DRL-FJ beamforming scheme further improves the utility by
16.7% over RL-FJ beamforming, and gradually approaches
the theoretical bound. The simulation results verifies that the
proposed intelligent friendly jamming beamforming schemes,
especially the DRL-FJ beamforming scheme, can approach the
optimal solution through rapid interactive learning.

It can also be seen from Fig. 6 that at 1800-th time slot,

the secrecy rate and the system utility of the DRL-FJ scheme
are higher by 7.0% and 17.1% respectively than that of the
DRL-based MISO VLC beamforming (DRL-VB) scheme in
[20]. Moreover, the BER of the DRL-FJ scheme is lower by
96.3% compared to the DRL-VB scheme. This verifies that the
introduction of intelligent friendly jammers brings additional
degrees of freedom in the strategy of the RL algorithm, which
can find an optimal solution that maximizes the transmitting
power of Alice to Bob and meanwhile minimizes the signal-to-
noise ratio (SNR) of the eavesdropper Eve, leading to a better
performance of the receive quality of the legitimate user Bob,
and higher secrecy rate of the VLC system in the presence of
Eve, and further improves the performance of the system.

Furthermore, the proposed method is evaluated in different
values of SNR, which is reported in Fig. 7. According to
the visible light channel propagation characteristics [7], the
SNR level varies significantly with the spatial location. A
typical SNR range is between 4 dB and 20 dB, which is
considered in the simulations. The performance shown in Fig.
7 is calculated from the average of the first 2000 time slots. It
is demonstrated from Fig. 7(a) and Fig. 7(c) that, the secrecy
rate and system utility of the RL-FJ and DRL-FJ beamforming
schemes increase with the SNR. As the SNR increases from
4 dB to 20 dB, the secrecy rate and the system utility of
the DRL-FJ beamforming scheme are increased by 151% and
213%, respectively. It can also be concluded from Fig. 7(b)
that the BER decreases with the SNR. It is observed that at the
target BER of 1.0× 10−3, the DRL-FJ beamforming scheme
can achieve an SNR gain of approximately 6 dB over the
RL-FJ beamforming scheme, and enjoys an even larger SNR
gain over the robust beamforming scheme and the SBJ-VLC
scheme.

Moreover, it can be concluded from Fig. 7 that, at the
SNR of 12 dB, the RL-FJ beamforming scheme improves the
secrecy rate by 20.0% and 4.6%, and improves the system
utility by 62.1% and 7.8%, compared with the robust beam-
forming and SBJ-VLC schemes, respectively. This validates
the anti-eavesdropping capability of the proposed RL-based
framework of friendly jamming for secure VLC. Besides, the
utility and secrecy rate of the DRL-FJ beamforming scheme
are 24.7% and 10.0% higher than the RL-FJ beamforming
scheme, respectively, which verifies the effectiveness of the
conceived DRL-based architecture.

VII. CONCLUSION

With the emergence and rapid adoption of VLC technology,
the problem of secure privacy-preserving yet highly energy-
efficient and high-rate transmission in complex and open vis-
ible light channels remains to be resolved in a more effective
approach. In light of this great challenge, an RL-based intel-
ligent anti-eavesdropping framework has been formulated in
this paper, which dynamically optimize the friendly jamming
policy to achieve the optimal system utility in realistic spa-
tiotemporally nonstationary environments. Meanwhile, a DRL-
FJ beamforming scheme is devised to resolve the difficult
problem of the dimensional curse and effectively represent the
continuous state and action spaces. A DND memory module
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is introduced to store the previous experiences in similar
anti-eavesdropping scenarios to accelerate the convergence of
learning. The simulation results have verified the superiority
of the conceived method in secrecy rate, bit error rate, and
system utility compared with some of the existing benchmark
schemes. It is promising for the proposed scheme to be applied
in various indoor scenarios where an intelligent and adaptive
solution of secure, efficient, and high-rate transmission link
should be established.

APPENDIX A
PROOF OF COROLLARY 1

According to equations (4), (7), (14) and (16), if (19) holds,
the system utility can be rewritten as

u =
1

2
log

(
1 +

2h2ABα
2I2D

πeσ2
B

)
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(28)

Without loss of generality, the jamming power hT
JEw im-

posed on the eavesdropper is assumed to be non-negative. In
fact, if hT

JEw < 0, one can replace w with −w without chang-
ing the system secrecy rate result or violating the amplitude
constraints. For simplicity of notations, let H denote hT

JEw.
Then, we have

∂u

∂H
=
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1
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log
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H
hAE
≤ 1,
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H2
H
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> 1.

(29)

Since H ≥ 0, thus ∂u/∂H ≥ 0, which suggests that the sys-
tem utility increases monotonically with H . Hence, the optimal
system utility can be achieved when the maximum jamming
power is applied to Eve, and thus the optimal jamming
beamformer is derived by w∗ = arg max

w
u = arg max

w
hT

JEw,
which leads to the optimal system utility as given by (18).

Moreover, if (20) holds, we have
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1
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− log
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, (32)

and
∂2u

∂H2
= − 1

H2
< 0. (33)

From (32), we have

∂u

∂H

∣∣∣∣
H=H∗

= 0, (34)

where

H∗ =
hAE

log
√
e
. (35)

Since |w| � 1, H will not be infinite. Let Pmax represent
the maximum value of H , i.e., 0 ≤ H ≤ Pmax. Then, if (33)
holds, we have

u(H∗) ≥ u(H). (36)

According to the literature [21] and [44], the RL-based
algorithms on episodic MDP can converge to the strategy
H∗ after a sufficiently long time. Thus, Algorithm 1 and
Algorithm 2 can achieve H∗ in (35). By integrating (35) into
(30) and (31), we have (21) and (22).

APPENDIX B
PROOF OF COROLLARY 2

It takes KZF operations to finally reach the optimal jam-
ming beamformer as stated in Algorithm 1. Let |Λ| rep-
resent the size of the state space, and |W| represent the
size of the action space. If KZF ≥ poly{[|Λ|, |W|,K]},
where poly{[|Λ|, |W|,K]} function can find the characteristic
polynomial of equations or square matrices with the vector
[|Λ|, |W|,K] as the solution, then the computational complex-
ity of the RL-FJ algorithm is given by O (Γ1) = O(KZF)
[40]. That is, if (25) holds, we have (24).

The computational complexity O (Γ2) of the DRL-FJ
scheme in Algorithm 2 is mainly contributed by the two Conv
layers of the CNN, because the computational complexity of
the quadratic operation in the two Conv layers is much larger
than that of the linear operation in the two FC layers. Then,
if (27) holds and according to [45], we have
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(37)

According to the CNN architecture in [38], we have

m2
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(38)
Thus, from (37) and (38), we have (26).
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