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Abstract— The dense deployment of small cells in 5G cellular
networks raises the issue of controlling downlink inter-cell
interference under time-varying channel states. In this paper,
we propose a reinforcement learning based power control scheme
to suppress downlink inter-cell interference and save energy for
ultra-dense small cells. This scheme enables base stations to
schedule the downlink transmit power without knowing the inter-
ference distribution and the channel states of the neighboring
small cells. A deep reinforcement learning based interference
control algorithm is designed to further accelerate learning for
ultra-dense small cells with a large number of active users. Ana-
lytical convergence performance bounds including throughput,
energy consumption, inter-cell interference, and the utility of base
stations are provided and the computational complexity of our
proposed scheme is discussed. Simulation results show that this
scheme optimizes the downlink interference control performance
after sufficient power control instances and significantly increases
the network throughput with less energy consumption compared
with a benchmark scheme.

Index Terms— Ultra-dense small cells, interference control,
power control, reinforcement learning.
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I. INTRODUCTION

ULTRA-DENSE small cell systems use low-cost and low-
power cellular base stations (BSs) to enhance spatial

multiplexing and significantly increase user capacity for fifth
generation (5G) mobile networks. However, ultra-dense small
cells are challenged by the unpredictable and increasing inter-
ference due to the spectrum scarcity and the uncoordinated
network infrastructure. Interference control techniques, such as
[1]–[4], have drawn significant attention for ultra-dense small
cell systems. For instance, a big-data self-organizing network
(Bi-SON) scheme as proposed in [4] statistically analyzes
network data, especially the received signal power of the users
in the neighboring cells, to determine the BS transmit power
and improve the cellular communication efficiency for small
cell networks. However, such an interference control scheme
has to resolve unpredictable inter-cell interference and the
inaccurate channel estimation caused by the over-deployment
of small cells. A practical interference control scheme has to
reduce the signaling and computation overhead of the BS due
to the large number of BSs and wireless devices in ultra-dense
small cells.

To address these issues, we propose a reinforcement learn-
ing (RL) based downlink interference control scheme to enable
a BS to optimize the downlink transmit power without being
aware of the channel states of the neighboring cells and
their inter-cell interference distribution. This scheme depends
on a state that consists of the estimated user density in
the small cells, the downlink signal-to-interference-plus-noise
ratio (SINR) for the users, and their downlink channel power
gains. More specifically, the BS transmit power is chosen
based on a Q-function, i.e., the expected accumulative reward
for the BS to transmit with the power in the current state. The
Q-function is updated via a Bellman iterative equation and
initialized with transfer learning given by [5] to take advantage
of the previous interference control experiences. This scheme
can optimize the BS utility, i.e., increase the SINR, with
less energy consumption and less inter-cell interference in the
dynamic interference control process via trial-and-error.

We also propose a deep RL based interference control
algorithm that applies deep learning to accelerate the opti-
mization. By using a convolutional neural network (CNN) to
estimate the Q values, this scheme compresses the dimension
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of the state space and addresses the state quantization error
for the ultra-dense small cells. We analyze the computational
complexity and provide the convergence performance includ-
ing throughput, energy consumption, interference, and utility,
verified via simulations. We show that the proposed scheme
significantly improves the throughput, reduces energy con-
sumption, and increases the utility compared with Bi-SON [4].

This paper makes the following contributions:

1) We propose a downlink interference control scheme for
ultra-dense small cell systems, in which a BS optimizes
the transmit power without knowing the channel states
of the neighboring cells and suppresses the inter-cell
interference.

2) We introduce a deep RL based algorithm to further
enhance the communication efficiency in the context
of high cell density and analyze its computational
complexity.

3) We analyze the convergence performance to support the
design of the RL-based interference control scheme,
confirming that the scheme can achieve a performance
bound after sufficiently many power control interactions.

The remainder of this paper is organized as follows.
Section II reviews related work, and Section III presents the
system model. We propose the RL-based downlink interfer-
ence control algorithm in Section IV and a deep RL-based
algorithm in Section V. The convergence performance and
the computational complexity are discussed in Section VI.
We provide simulation results in Section VII. Concluding
remarks are given in Section VIII.

II. RELATED WORK

Power control serves as an efficient technique to mitigate
the inter-cell interference in ultra-dense small cell networks.
For example, a power control scheme as investigated in [6]
uses Newton’s method to improve both the network utility
and the energy efficiency for millimeter-wave based ultra-
dense small cell networks. An adaptive on-off power control
method is presented in [7], which is capable of avoiding
interference in a distributed pattern. A distributed target-SINR
tracking based power control algorithm is presented in [8]
by using the tracking power control and opportunistic power
control method in a selective manner to improve the system
throughput. An interference control algorithm as developed
in [9] optimizes the power control to mitigate the cross-tier
interference.

A power control algorithm as proposed in [10] com-
bines the primal decomposition method in the coalition for-
mation game to increase the system-wide utility and save
energy for small cell systems. A δD-interference limited
area control strategy as proposed in [11] combines with the
conventional mechanism to improve the total capacity of
cellular networks and device-to-device systems. An inter-
ference aware cell ranking scheme as proposed in [12] is
combined with the switching on/off power control method
to improve the communication performance for small cell
systems in the dynamic environment. The data-driven resource
management (DDRM) framework as proposed in [13] chooses

the BS to transmit power and the channel according to the
interference power from neighboring BSs to the local users
and the channel characteristics of the other small cells. All this
information can be obtained from the central controller home
eNodeBs (HeNBs) management system, which is connected
to each small cell. Moreover, the computational complexity
and transmission latency of the proposed DDRM framework
depends on the network size. Therefore, the proposed frame-
work could not achieve high scalability when it is applied
to the ultra-dense small cell networks with large coverage
areas.

Recently, game theoretic interference control techniques
are receiving considerable attention in ultra-dense small cell
systems [14]–[16]. A dynamic pricing based power control
scheme as proposed in [14] can derive the Nash equilibrium
of the non-cooperative game for interference management. The
joint power control and user scheduling scheme is proposed
in [15] by formulating the interference control problem as a
dynamic stochastic game between small cell BSs to improve
the energy efficiency. Besides, a resource allocation algorithm
based on graph theory as presented in [16] effectively manages
the interference by a user-centric game.

As an emerging technology, RL has been applied in
the interference control problem of wireless networks with
more advanced features to improve the energy efficiency
[17]–[29]. For instance, an RL-based decentralized power
control strategy is proposed in [17], in which small cells
jointly estimate the time-average performance and optimize the
probability distribution for interference management in closed-
access small cell networks. A centralized Q-learning algorithm
with compact state representation is investigated in [18], where
the BSs derive the optimal traffic offloading strategy based
on the traffic observations to minimize the energy cost and
maintain the quality of service (QoS). A dynamic Q-learning
based interference coordination algorithm as proposed in
[19] offloads traffic to the open-access picocells and then
improves the system throughput. An online learning based
traffic offloading strategy as proposed in [20] chooses the
working mode for each small cell BS for heterogeneous cel-
lular networks. Regret learning is applied in [21] to optimize
the HeNBs in terms of energy efficiency following the QoS
requirement for small-cell networks. The inter-cell interference
coordination scheme as investigated in [22] applies fuzzy
Q-learning to choose the BS transmit power and quantizes the
continuous system state that consists of the physical resource
block transmit power and the spectral efficiency, yielding state
quantization noise in the interference control.

There are several studies that investigate scheduling based
on deep RL for the cellular networks. For example, the down-
link power control and rate adaption scheme as presented
in [23] uses the Lagrange duality theory and artificial neural
networks to enhance the cellular network throughput. A radio
resource management approach as investigated in [24] uses the
deep Q-network to select the on/off state for the cloud proces-
sor and the user equipment communication mode based on the
cloud processor state, the current user communication mode,
and the transmitter cache state to save power for fog radio
access networks. A user scheduling and resource allocation
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Fig. 1. Illustration of the interference mitigation in an ultra-dense small cell system, in which the target small cell BS0 with N mobile users chooses its
transmit power x

(k)
n to mitigate the interference to the neighboring G small cells at time slot k, and the user n returns the estimated SINR r

(k)
n to the target

small cell BS0.

scheme as proposed in [25] applies the policy gradient based
actor-critic method to schedule the users, chooses the transmit
power and the radio channel and uses the SINR of all the
network users and the battery energy level of the BSs in
the neighboring cells to improve the energy efficiency for
heterogeneous networks.

In addition, an interference-aware path-planning scheme as
investigated in [26] that uses the deep echo state network
for the unmanned aerial vehicle (UAV) to select the moving
direction, the transmission power and the cell association
vector based on the UAV location and the BS location, is
able to reduce the transmission latency and the interference on
the ground network. A deep RL based scheduling algorithm
as introduced in [27] determines the user for the resource
block group based on the channel condition and the his-
toric throughput information to improve the throughput for a
single cell cellular network. In addition, the neighbor-agent
actor critic scheduling algorithm as proposed in [28] that
applies the deep RL to choose the resource block based
on the channel information, the previous interference, and
the previously selected resource block can reduce the out-
age probability and improve the sum rate in a single cell
system. The distributed power allocation algorithm as pro-
posed in [29] chooses the downlink transmit power based
on the current channel state information, the last power
set and the assisted feature to improve the average user
sum-rate.

Furthermore, a power control scheme as presented in [30]
uses the hotbooting Q-learning algorithm to determine the
BS transmit power and mitigates the downlink inter-cell
interference for ultra-dense small cells. Compared with the
previous work in [30], we propose a deep RL based downlink
interference control algorithm to accelerate the BS learning
process with better communication efficiency. In addition,

we provide convergence bounds on its interference control
performance and discuss its computational complexity.

III. SYSTEM MODEL

As depicted in Fig. 1, the BS of the target cell BS0

that serves up to N mobile users is assumed to interfere
with the users in the G neighboring cells. Equipped with
multiple isotropic antennas, each BS in the system assigns
orthogonal channel bandwidth B to each user without inter-
cell interference in the downlink transmission. We index the
time slot with k.

At time slot k, each BS obtains the downlink SINR denoted
by r

(k−1)
n from user n on the feedback channel. Let η be

the cell density, i.e., the number of cells in a unit area. The
large-scale fading gain from the BS to user m in cell i is
denoted by ξ

(k)
i,m. The path loss l

(k)
i,m between user m and the

BS increases with distance d
(k)
i,m. According to [15] and [16],

the interference factor denoted by τ
(k)
i,m represents the inter-cell

interference from the BS to user m in the i-th neighboring cell,
with 1 ≤ i ≤ G, which is given by

τ
(k)
i,m =

ξ
(k)
i,m

√
η

l
(k)
i,m

√
|G|

. (1)

Given the maximum BS transmit power Pmax, the BS trans-
mit power to user n denoted by x

(k)
n is quantized into L + 1

levels, i.e. x
(k)
n ∈ Ω = {jPmax/L}0≤j≤L, with 1 ≤ n ≤ N .

Note that the maximum transmit power Pmax will change with
the type of the small cells (e.g., femtocells, microcells, and
picocells) to meet the given coverage and service requirements.
The downlink channel power gain in the target cell is denoted
by h

(k)
n .

Cell i is assumed to have M
(k)
i active users at time slot k.

The average user density in the ultra-dense small cell system
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TABLE I

SUMMARY OF SYMBOLS AND NOTATION

denoted by ρ(k) is assumed to follow a two-dimensional
Poisson process. According to [13], the number of users in cell
i with area φi changes over time and its probability distribution
is given by

Pr{M (k)
i = ω|φi} =

(ρ(k)φi)ω

ω!
e−ρ(k)φi . (2)

The neighboring cell i interferes with user n in the target
cell with channel power gain g

(k)
i,n . The common notations are

summarized in Table I for later reference.

IV. RL-BASED DOWNLINK INTERFERENCE CONTROL

We propose an RL-based downlink interference control
algorithm named RLIC to independently choose the downlink
transmission power for the active users. This algorithm aims
to suppress the inter-cell interference without relying on the
knowledge of the channel state of the neighboring cells and the
entire interference model. The state observed by the BS at time
k is denoted by s(k), which consists of the previous SINR for
user n r

(k−1)
n obtained from the feedback of user n, the esti-

mated user density ρ(k), and the estimated channel state to
user n denoted by h

(k)
n , from the channel estimation function

according to [31], i.e., s(k) = {r(k−1)
1≤n≤N , ρ(k), h

(k)
1≤n≤N} ∈ S,

where S denotes the state space.
A Q-function denoted by Q(s, X) corresponds to the long-

term discounted reward to the BS that takes action X at state
s, with s ∈ S and X = [xn]1≤n≤N , xn ∈ Ω. The Q-values are
initialized with the transfer learning method [32] by exploiting
the previous similar interference control experiences to reduce
the stochastic initial BS interference control explorations.
More specifically, the BS learning parameters, such as the
Q-values in Algorithm 1 are initialized before the dynamic
interference control game, i.e, Q∗ in Algorithm 1 based on λ

interference control experiences sequences for similar scenar-
ios. The learning parameter λ is chosen as a tradeoff between
the fast interference mitigation and the over-fitting risk for the
BS. Each of the λ experiences lasts F time slots, in which the
BS uses Q-learning to choose the downlink transmit power for
a given similar ultra-dense small cell system. In each of the F
time slots, the Q-values are updated according to the Bellman
iterative function.

In the dynamic interference control game, as shown in
Algorithm 1, the BS reuses the prior knowledge, i.e., Q∗

gained in the transfer learning and chooses the downlink
transmit power for the N users served by the BS denoted by
X(k) =

[
x

(k)
n

]
1≤n≤N

based on the ε-greedy criterion similar

to [33] as follows:

Pr
(

X(k) = Θ
)

=

⎧⎨
⎩

1− ε, Θ = arg max
X̂∈ΔΩ

Q(s(k), X̂)

ε
|L+1| , o.w.

(3)

where X̂ is the power control policy that the BS tends to
explore at state s(k), and ΔΩ is the BS action and can be
given by ΔΩ =

{
[x̂n]1≤n≤N | x̂n ∈ Ω

}
.

Algorithm 1 RL Based Downlink Interference Control

1: Initialize: α, β, Ω, Q = Q∗, V = 0 and r
(0)
1≤n≤N = 0

2: For k = 1, 2, . . .
3: Estimate ρ(k) via (2)
4: Estimate the current channel state h

(k)
1≤n≤N

5: s(k) =
{

r
(k−1)
1≤n≤N , ρ(k), h

(k)
1≤n≤N

}
6: Select the transmit power X(k) via (3)
7: Evaluate the energy consumption of the target small

cell and the inter-cell interference
8: Receive r

(k)
1≤n≤N from the users feedback

9: Evaluate u(k) via (4)
10: Update Q(s(k), X(k)) via

Q
(

s(k), X(k)
)
← (1− α)Q

(
s(k), X(k)

)
+α
(
u(k) + β maxX̂∈ΔΩ

Q
(

s(k+1), X̂
))

11: End for

Upon receiving the feedback from the N users, the BS
evaluates the network user density ρ(k) and the SINR of the
signal r

(k)
1≤n≤N to determine the utility u(k) as follows:

u(k) =
B

N

N∑
n=1

log2

(
1 + r(k)

n

)

−Cs
N∑

n=1

x(k)
n − Cs

G∑
i=1

N∑
n=1

M
(k)
i∑

m=1

x(k)
n τ

(k)
i,m. (4)

The first term of u(k) in (4) represents the network throughput
R(k) of the cell, the second term corresponds to the BS
energy consumption E(k), and the third depends on the
overall inter-cell interference I(k) according to [12], where
Cs is the unit transmission cost. This utility function in (4)
represents a tradeoff among the cellular throughput, the energy
consumption and the interference suppression capability in the
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Fig. 2. Illustration of DRLIC for ultra-dense small cells, where u(k) and ρ(k) represent the observed network throughput and user density at time slot k
respectively; and X(k) is the suggested transmission power to N users at time k.

dynamic interference control game. This algorithm provides a
dense reward signal for the BS to evaluate the impact of each
interference control policy quickly.

The learning rate α is the weight of the current interference
control experience and the discount factor β determines the
importance of the future utility in the interference mitigation
process. The Q-function Q

(
s(k), X(k)

)
is updated according

to the iterative Bellman equation as shown in Algorithm 1.

V. DEEP RL-BASED INTERFERENCE CONTROL

In this section, a deep RL-based interference con-
trol (DRLIC) algorithm is proposed by using a CNN to
compress the BS state space, address the state quantization
error and accelerate the dynamic optimization of the down-
link transmit power. This algorithm depends on a current
sequence of actions and states of the BS denoted by ϕ(k),
i.e., ϕ(k) = {s(k−W ), X(k−W ), . . . , X(k−1), s(k−1), s(k)} with
W (3N+1)+(2N+1) random variables. The sequence size W
is set to achieve the tradeoff between the computation overhead
and the interference control performance.

Being developed for the interference control of ultra-dense
small cells, the CNN has 2 convolutional (Conv) layers to
make a tradeoff between the accurate feature exaction from
the sequence and the overfitting risk in the interference control
according to [34] and [35]. As shown in Fig. 2, the sequence
ϕ(k) is shaped into a c0 × c0 matrix and input to the first
Conv layer of the CNN. Conv layer l that convolves fl filters,
each with dimension cl × cl and stride sl, is followed by a
rectified linear unit (ReLU) that has fl feature maps as the
output, with 1 ≤ l ≤ 2. The feature maps in Conv 2 are sent

to two full connected (FC) layers. The first FC layer consists
of v ReLUs. The second FC layer outputs the Q-values for
the feasible transmit power levels. The CNN provides the
(L+1)N estimated Q-values for the power control policies at

the current sequence ϕ(k), i.e., Q
(
ϕ(k), X, θ(k)

)
. The CNN

weight vector denoted by θ(k) contains the weights of the four
layers.

The ε-greedy algorithm in (3) is applied to determine the
transmit power X(k) based on the Q-values estimated to com-
promise between exploitation and exploration. After the down-
link signal transmission and the feedback on the uplink control
channel at time k, the BS evaluates the downlink SINR vector
that is measured by the N users and applies (4) to calculate the
utility u(k). The current interference management experience
e(k) = (ϕ(k), X(k), u(k), ϕ(k+1)) is stored together with the
last Y experiences to realize the experience reuse in the replay
memory, i.e., D = {e(k−Y ), . . . , e(k)} at each time slot.

Similar to the hotbooting process in [36], the BS
exploits the previous interference mitigation experience to
initialize the CNN weights θ for faster initial learning.
By performing the experience replay at time slot k with
H interference control experiences, i.e., {eJ(i)}1≤i≤H =
{ϕJ(i), XJ(i), uJ(i), ϕJ(i+1)}1≤i≤H , with J(·) ∼ U(k−Y, k),
which are randomly sampled from the stored memory pool D.
The resulting minibatch is used to update the CNN weights
θ(k) at each time slot. The experience replay randomizes over
the previous BS interference control experiences, and thereby
removes the correlation in the observation sequences, avoiding
oscillations or divergence in the CNN parameters for better
data efficiency [37].
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According to the previous CNN weights θ(k−1), the target
Q-value function Q′ is given by

Q′ =
[
uJ(i) + β max

X′∈ΔΩ

Q
(
ϕJ(i+1), X′; θ(k−1)

)]
1≤i≤H

,

(5)

where X′ is the next action to maximize the Q-value at state
ϕJ(i+1). Based on the H sampled experiences, the CNN
weights θ(k) are updated by minimizing the mean square
error between the estimated Q-value and the target Q-value
according to the stochastic gradient decent (SGD) method at
time slot k as shown in Algorithm 2, i.e.,

θ(k+1) = argmin
θ̂

EϕJ(i),XJ(i),uJ(i),ϕJ(i+1) [(Q′

−Q
(
ϕJ(i), XJ(i), θ̂

))2
]
1≤i≤H

. (6)

Algorithm 2 Deep RL Based Interference Control

1: Initialize: β, W , Ω, ε, and r
(0)
1≤n≤N = 0

2: Set θ = θ, D = ∅
3: For k = 1, 2, . . .
4: Estimate the average user density ρ(k)

5: Estimate the local channel state h
(k)
1≤n≤N

6: s(k) =
{
r
(k−1)
1≤n≤N , ρ(k), h

(k)
1≤n≤N

}
7: If k < W then
8: Select X(k) randomly
9: Else

10: Set ϕ(k) as input of the CNN
11: Set Q

(
ϕ(k), X, θ(k)

)
as the CNN output

12: Select X(k) via (3) for the local users
13: End if
14: Send messages to the users with power X(k)

15: Receive the SINR r
(k)
1≤n≤N from the feedback

16: Evaluate u(k) via (4)
17: ϕ(k+1) =

{
s(k−W+1), X(k−W+1), . . . , s(k), X(k),

s(k+1)
}

18: D ← D ∪
(
ϕ(k), X(k), u(k), ϕ(k+1)

)
19: D =

{
e(k−Y ), . . . , e(k)

}
20: For J(i) = 1, 2, . . . , H
20: Select eJ(i) ∈ D randomly
21: Calculate Q′ via (5)
22: End for
23: Update θ(k) by (6)
24: End for

VI. PERFORMANCE EVALUATION

In this section, we analyze the performance limit of
the proposed interference control schemes, including the
performance of energy consumption, data throughput, inter-
cell interference, and the utility of the BS. P

(k)
i,n denotes the

power of the interference signal sent from BSi and received by
user n at time slot k. σ is the receiver noise power. According

to [12], the SINR of user n (denoted by rn) and the throughput
of the target cell (denoted by R) are represented respectively as

rn =
xnhn

σ +
∑G

i=1 Pi,ngi,n

(7)

and

R =
B

N

N∑
n=1

log2

(
1 +

xnhn

σ +
∑G

i=1 Pi,ngi,n

)
. (8)

To simplify the notation, the superscript of k denoting
time slot k is omitted in the following content. Also, this
algorithm ignores the circuit power consumption and the
power consumption of the power amplifier in the small cell,
as these factors have negligible impact on the utility of the
BS in the learning process. Thus the energy consumption E
and the overall interference I are modeled respectively as

E = Cs
N∑

n=1

xn (9)

and

I = Cs
G∑

i=1

N∑
n=1

Mi∑
m=1

xnτi,m. (10)

The interference control process in the repetitive game on
multiple interactions can be viewed as a Markov decision
process since the future state of the BS is independent of the
previous states for a given interference control policy at the
current state. Therefore, the convergence performance of
the RLIC algorithm (i.e., Algorithm 1) can be evaluated as
follows.

Theorem 1: The proposed RL-based interference control
algorithm (Algorithm 1) can converge to the optimal transmit
power control policy after a sufficient number of interactions.
Specifically, when

ln 2 · CsN
B

(
σ +

G∑
i=1

Pi,ngi,n

)(
G∑

i=1

Mi∑
m=1

τi,m + 1

)
≤ hn

≤ ln 2 · CsN
B

[(
σ +

G∑
i=1

Pi,ngi,n

)(
G∑

i=1

Mi∑
m=1

τi,m + 1

)

+ Pmax

]
(11)

holds for ∀1 ≤ n ≤ N , the performance bounds of throughput
R, energy consumption E, interference level I , and utility u
of Algorithm 1 can be represented as

R = B log2

B

ln 2 · CsN
(∑G

i=1

∑Mi

m=1 τi,m + 1
) (12)

+
B

N

N∑
n=1

log2

σ +
∑G

i=1 Pi,ngi,n

hn
;

I =
G∑

i=1

Mi∑
m=1

Bτi,m

ln 2 ·
(∑G

i=1

∑Mi

m=1 τi,m + 1
)

−Cs
G∑

i=1

Mi∑
m=1

τi,m

N∑
n=1

σ +
∑G

i=1 Pi,ngi,n

hn
; (13)
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TABLE II

ENVIRONMENT PARAMETERS OF THE ULTRA-DENSE SMALL CELL SYSTEM

TABLE III

CNN PARAMETERS FOR DEEP RL-BASED INTERFERENCE CONTROL

E =
B

ln 2 ·
(∑G

i=1

∑Mi

m=1 τi,m + 1
)

−Cs
N∑

n=1

σ +
∑G

i=1 Pi,ngi,n

hn
; (14)

and

u = B log2

B

ln 2 · CsN
(∑G

i=1

∑Mi

m=1 τi,m + 1
) (15)

+
B

N

N∑
n=1

log2

σ +
∑G

i=1 Pi,ngi,n

hn
− B

ln 2

+ Cs
N∑

n=1

1
hn

(
G∑

i=1

Mi∑
m=1

τi,m + 1

)(
σ +

G∑
i=1

Pi,ngi,n

)
.

Proof: See Appendix A.
Remark 1: The condition (11) means that the channel

power gains of the N users h1≤n≤N exceed the bound based
on the BS transmission cost Cs and the downlink bandwidth
B, and are smaller than the bound given by the maximum
transmission power Pmax. In this case, the BS optimizes
the transmit power for user n after a sufficient number of
interactions, i. e.,

x∗
n =

B

ln 2 ·NCs
(∑G

i=1

∑Mi

m=1 τi,m + 1
)

− σ +
∑G

i=1 Pi,ngi,n

hn
. (16)

The convergence throughput given by (12) increases with the
bandwidth B and decreases with the transmission cost Cs.
The converged inter-cell interference level given by (13)
increases with the cell density η and the number of users in the
neighboring cells. The converged energy consumption given
by (14) decreases with the channel gains between the BSs in
neighboring cells and the users in the target cell.

Let K be the number of steps per episode to converge,
and Z be the number of the episodes. According to [38],
the computational complexity of Algorithm 1 (denoted by T1)
depends on the total number of the convergence steps to the
optimal policy.

Theorem 2: The computational complexity of RLIC in Algo-
rithm 1 is given by

T1 = O (KZ) , (17)

if KZ ≥ ploy (|S| , |ΔΩ| , K).
Proof: See Appendix B.

Remark 2: The computational complexity of RLIC grows
with the total number of learning samples. The random
exploration of Q-learning at the initial interference control
process in RLIC requires more interactions to converge than
the optimal policy [5]. The transfer leaning in RLIC exploits
the interference control experiences in similar networks to
initialize Q∗ to reduce the random initial explorations and thus
reduces the sample size.

The computational complexity of the deep RL-based inter-
ference control algorithm depends on the CNN computational
complexity in Algorithm 2, denoted by T2. According to [39],
the CNN computational complexity depends on the number of
filters, the filter size and the filter stride in each convolutional
layer.

Theorem 3: The computational complexity of DRLIC in
Algorithm 2 is given by

T2 = O
(

f1c
2
2f2

(
c0 − c1

s1s2
− c2 − 1

s2
+ 1
)2
)

. (18)

Proof: See Appendix C.
Remark 3: The communication performance improves with

the number of filters that represents the inter-cell commu-
nication features. A shorter Conv stride that captures more
interference details of the small cell systems has more
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Fig. 3. Performance of the target BS interference control algorithms in the ultra-dense small cell system, with G = 6, α = 0.7, β = 0.5, ε = 0.1
and B = 10 MHz. (a) Throughput of the target cell. (b) Normalized energy consumption of the target cell. (c) Normalized overall inter-cell interference.
(d) Utility of the BS.

computation overhead. The selection of the learning parame-
ters in Algorithm 2 has to make a tradeoff between the com-
munication performance and the computational complexity.

VII. SIMULATION RESULTS

Simulations were performed to evaluate the proposed
RL-based interference control schemes for an ultra-dense
small cell system with 50 small cells. The correspond-
ing cell density is 12 cells/km2. For simplicity, the BS
applies the quadrature phase-shift keying modulation and
the first-tier inter-cell interference G = 6. The BS sends
messages to six (i.e., N = 6) users [15] and receives
feedback at each time slot for 8 ms. The system para-
meters for the small cells summarized in Table II are set
according to [13].

The proposed interference control schemes take empirically
effective learning parameters α = 0.7, β = 0.5, ε = 0.1 and
W = 3 to compromise between communication efficiency
and CNN memory overhead. The other CNN parameters in
Table III are chosen to increase the communication efficiency
according to the simulation results that are not shown here.

For example, the minibatch size H is selected as a tradeoff
between fast interference mitigation and the over-fitting risk
for the BS. The feature size cl captures the number of the
cellular features at the cost of slow optimization. Similar
to [35], the other learning parameters, i.e., the number of the
filters fl and the stride of filters sl, are selected based on
an informal search for the interference control scheme and
the CNN structure that can optimize interference mitigation
in ultra-dense small cells. For instance, the CNN of 30 filters
with size 2× 2 in Conv layer 1 can catch more features about
the small cell system, compared with 20 filters with size 3×3
in Conv layer 1 given in [40].

Figure 3 provides the comparative performance of the
proposed RLIC and DRLIC schemes with Bi-SON [4], which
uses a data-driven based power control algorithm to suppress
downlink interference, and a Q-learning based interference
control (QIC) scheme according to the utility given by (4)
and the same state signal with Algorithm 1.

As shown in Fig. 3, DRLIC converges to the performance
bounds given by (12)–(15) after 300 time slots. Both RLIC
and QIC improve the power control policy in the dynamic
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Fig. 4. Average performance of the target small cell for different schemes versus the load per BS over 100 learning processes and 400 time slots. (a) Average
throughput of the target cell. (b) Average energy consumption of the target cell. (c) Average overall inter-cell interference. (d) Average utility of the BS.

game until reaching the performance bounds given by The-
orem 1 after sufficient interactions with the users and the
other BSs. Nevertheless, both algorithms can reduce the energy
consumption, and the overall interference, and increase the
system throughput and the utility of the BS compared with
Bi-SON in [4] and QIC. For instance, RLIC converges to
its optimal interference control policy after 300 time slots
and saves the convergence time by 80% compared with QIC,
and increases the throughput by 18.3% compared with Bi-
SON. DRLIC can further improve the throughput of RLIC
at the 300-th time slot by 20.2%. DRLIC has the lowest
energy consumption, which is followed by RLIC. For instance,
RLIC consumes 13.2% less energy consumption, yields 8.7%
inter-cell interference, and results in 13.6% more BS utility
than Bi-SON at the 300-th time slot. DRLIC further improves
the performance of energy consumption, interference and the
utility by 23.9%, 22.6% and 19.7% respectively.

Figure 4 provides the simulation results of the average
performance over 100 learning processes with each containing
400 time slots in terms of different number of active users per
cell, i.e., the BS load changes from 2 to 6 according to [15].
The average throughput increases logarithmically with the BS
load. For instance, if the BS load changes from 2 to 6,

the average throughput increases from 51 Mbps to 98 Mbps for
the BS applying DRLIC. It is shown that, the average energy
consumption increases from 3.6 to 7.1, and the average overall
inter-cell interference increases from 4 to 16 if the BS load
changes from 2 to 6. In addition, RLIC improves the average
throughput by 12.6%, saves the average energy consumption
by 14.4%, reduces the average overall interference by 12.5%,
and increases the average utility by 19.2% compared with
Bi-SON, if the BS load is 6. DRLIC further improves the
performance of average throughput, average energy consump-
tion, average interference and the average utility by 12.4%,
19.3%, 24.9% and 29.8% respectively, if the BS load is 6.

VIII. CONCLUSION

In this paper, we have proposed an RL based downlink
interference control scheme for ultra-dense small cell systems,
which enables a BS to optimize its transmit power without
being aware of the inter-cell interference distribution and the
channel state of the neighboring cells. A deep RL based
framework has been presented to further enhance the commu-
nication efficiency of dynamic ultra-dense small cells with an
acceptable computational complexity. A performance bound of
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the proposed interference control schemes has been provided
in terms of the downlink throughput, inter-cell interference,
overall energy consumption and utility of the BS. Simulation
results show that the proposed schemes significantly improve
the throughput, reduce the overall inter-cell interference, and
reduce the BS energy consumption. For example, after con-
vergence the RL-based interference control algorithm reduces
the BS energy consumption by 13.2% and increases the down-
link throughput by 18.3% compared with Bi-SON. The deep
RL-based interference control algorithm further reduces the
energy consumption by 23.9% and increases the throughput
by 20.2%.

APPENDIX A
PROOF OF THEOREM 1

By (4) and (7), if (11) holds, we have

∂u

∂xn
=

∂
[

B
N

∑N
n=1 log2

(
1 + xnhn

σ+
�G

i=1 Pi,ngi,n

)]
∂xn

(19)

−
∂
[
Cs
∑N

n=1 xn

(∑G
i=1

∑Mi

m=1 τi,m + 1
)]

∂xn

=
Bhn

ln 2 ·N
(
xnhn + σ +

∑G
i=1 Pi,ngi,n

)

−Cs

(
G∑

i=1

Mi∑
m=1

τi,m + 1

)
,

and
∂2u

∂x2
n

= − Bh2
n

ln 2·N(xnhn+σ+
�G

i=1 Pi,ngi,n)2 < 0. (20)

From (19), we have

∂u

∂xn

∣∣∣∣
xn=x∗

n

= 0, (21)

where

x∗
n =

B

ln 2 ·NCs
(∑G

i=1

∑Mi

m=1 τi,m + 1
)

− σ +
∑G

i=1 Pi,ngi,n

hn
, (22)

If (11) and (20) hold, we have 0 ≤ xn ≤ Pmax and

u (x∗
n) ≥ u (xn) . (23)

According to [41], the RL-based scheme can achieve the
policy x∗

n in the MDP after a sufficient long time. Therefore,
this algorithm can achieve x∗

n in (22). By integrating (22)
into (4) and (8) - (10), we have (12) - (15).

APPENDIX B
PROOF OF THEOREM 2

According to [38], the computational complexity of RL
algorithms on episodic MDP is O (T ), if T ≥ ploy (S, A, K),
in which T is total number of steps, S denotes the number of
states, and A represents the number of actions. In the RLIC
scheme, the number of the system state is |S|, the number
of the BS action X is |ΔΩ|, and T = KZ . Therefore,
we have (17).

APPENDIX C
PROOF OF THEOREM 3

Similar to the analysis in [39], the computational
complexity of the DRLIC scheme in Algorithm 2 is
O(
∑2

l=1 fl−1c
2
l flm

2
l ), in which fl−1 denotes the number

of input channels of the l-th Conv layer, and ml denotes
the spatial size of the output feature map in the l-th Conv
layer. Conv layer 1 involves f1 filters, each with size c1 × c1

and stride s1. The first Conv layer has f1 output feature
maps. The second Conv layer consists of f2 filters with size
c2 × c2, stride s2, and f2 output feature maps. According to
[42], the output sizes of both convolutional layers are m1 =
(c0−c1)/s1+1 and m2 = (c0−c1)/(s1 s2)−(c2−1)/s2+1,
respectively. Therefore, we have

T2 = O
(

c2
1f1

(
c0 − c1

s1
+ 1
)2

+ f1c
2
2f2

(
c0 − c1

s1s2
− c2 − 1

s2
+ 1
)2
)

. (24)

According to the CNN architecture in [43], we have

c2
1f1

(
c0 − c1

s1
+ 1
)2

� f1c
2
2f2

(
c0 − c1

s1s2
− c2 − 1

s2
+ 1
)2

.

(25)

Thus by (24) and (25), we have (18).
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