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Abstract—The performance of orthogonal frequency division
multiplexing (OFDM) based wireless vehicular communication
systems is faced with the great challenge of impulsive noise (IN),
which could limit the application of OFDM in ultra-reliable low-
latency communication scenarios. In this paper, the challenge of IN
elimination for OFDM-based wireless systems is efficiently over-
come by the proposed sparse learning algorithms and probabilistic
framework inspired by the emerging machine learning theories.
For the first time, the sparse machine learning theory is intro-
duced to IN recovery and elimination. Exploiting the measurement
vector of IN observed from the reserved null sub-carriers as the
input, a novel sparse machine learning based algorithm of sparse
cross-entropy minimization is proposed, in which the probability
distribution of the IN support is iteratively updated by minimizing
the loss function, i.e. the cross-entropy. The proposed algorithm is
able to effectively and efficiently learn the sparse pattern and con-
verge to the accurate distribution of IN support. To facilitate an
accelerated and even more efficient learning process, regularization
is imposed on the loss function by adding a weighting parameter
in favor of the accurate distribution. The computer simulation re-
sults confirm that the proposed scheme outperforms conventional
methods while utilizing fewer spectrum resources over wireless
vehicular channels.

Index Terms—Impulsive noise, sparse machine learning, cross-
entropy minimization, orthogonal frequency division multiplexing.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
is one of the most popular broadband technologies cur-

rently deployed due to its high spectral efficiency and robust-
ness in frequency-selective multipath channels. Due to these
advantages, OFDM has been widely applied in various wireless
or wired vehicular related communications systems to support
high-speed and broadband transmission, including the wire-
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less access in vehicular environments specified in the IEEE
802.11p Wireless Access in Vehicular Environments (WAVE)
standard [1].

Apart from the advantages, an important detrimental char-
acteristic of OFDM-based vehicular communications systems
is its vulnerability to the impulsive noise (IN), which is both
non-Gaussian and non-stationary and prevailing stochastically
in the wireless or wired vehicular channels [2], [3]. In many
scenarios, IN could be generated by ignition in vehicles, the
switches of electric devices, and strong bursty radio frequency
emission, which might cause transmission errors and loss of the
data frames of interest [4]. For instance, ignition sparks and en-
gine rotation in vehicles might generate impulsive noise, which
is a very common RF contamination in vehicular channels [5],
[6]. Due to its impulse nature in time domain, the spectrum of
IN can be extremely wide. It is therefore very difficult to sep-
arate or eliminate IN from the OFDM data block because all
the OFDM sub-carriers are contaminated by the time-domain
bursty IN, especially in the presence of intensive IN with high
power [7]. The ultra-wide coherence bandwidth of IN in fre-
quency domain and its similar statistics to the OFDM signal
in time domain make the separation of IN and OFDM signals
extremely difficult. This could cause even severe degradation to
the OFDM-based vehicular communications performance in the
form of increased symbol error rate/bit error rate and increased
transmission latency in case of packet loss [8], [9]. Hence, it
is crucial and essential to mitigate IN to support ultra reliable
low latency communication (URLLC) services and vehicular
ad hoc networks (VANETs) in the next-generation vehicular
networking and communications scenarios.

There have been some conventional methods aiming at mit-
igating the IN impacts. A heavily investigated approach is ap-
plying nonlinear operations to the receiver, including clipping,
blanking and their combination, to suppress or null out the re-
ceived samples with the power beyond some threshold [10].
However, these conventional methods tried to suppress the noise
power, nonlinearly exclude or clip the noise contaminated sig-
nal instead of estimating and eliminating the IN, so useful data
might be lost, especially for IN with large power.

Recently, the sparse recovery methods based on the theory
of compressed sensing (CS) [11], [12], have been investigated
to estimate the IN [13]–[15]. In the related studies, the IN
is regarded as a sparse signal in the time-domain due to its
bursty nature, and estimated using CS-based algorithms, such
as the sparse convex optimization (SCO) algorithm in [14] and
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the greedy algorithms of sparsity adaptive matching pursuit
(SAMP) in [16] and priori aided SAMP (PA-SAMP) in [15].
Although superior performance over the conventional passive
methods is achieved, the spectral efficiency of the CS-based
methods could still be improved since many OFDM sub-carriers
are reserved for measurements. Besides, large background noise
and sparsity level also cause inaccuracy of IN estimation. An-
other sparse recovery theory of sparse Bayesian learning was
utilized to estimate the asynchronous IN [17] or the narrowband
internet-of-things (NB-IoT) interference [18], which exploited
the sparsity of the noise and estimate it using Bayesian inference
to improve the robustness against large background noise.

Different from the existing methods mentioned above, the
emerging and powerful machine learning theory and techniques
have drawn tremendous research attention recently [19]–[22].
It can be a great inspiration in order to find out a both efficient
and reliable method of sparse recovery, or IN recovery [23].
In machine learning applications, utilizing cross-entropy (CE)
as the loss function to train deep neural networks have solved
many different learning tasks in various areas, such as com-
munications [24] and network security [25], etc. Some recent
studies exploited the CE method to solve combinatorial opti-
mization problems, leading to superior performance than the
brute-force approach [26]. However, existing CE methods are
not designed for sparse approximation. Consequently, the state-
of-art research on IN recovery based on sparse machine learn-
ing and cross-entropy is quite insufficient in literature. To fill
this gap and improve the robustness, efficiency and accuracy of
state-of-the-arts, in this paper, we formulated the sparse machine
learning inspired probabilistic framework of IN recovery, and
proposed the algorithm of sparse CE minimization (SCEM) to
learn the locations of IN. By introducing and properly utilizing
the sparse machine learning methodology in IN recovery, the
unknown IN can be learnt efficiently and accurately in differ-
ent severe conditions. The main contributions of this paper are
twofold as follows:

� The sparse machine learning theory is introduced to the
area of IN recovery for the first time. A novel probabilistic
framework of sparse machine learning is formulated for
IN recovery in OFDM-based vehicular communications,
which improves the spectral efficiency and accuracy of the
conventional and CS-based methods.

� A sparse machine learning inspired algorithm, i.e., SCEM,
is proposed for IN recovery, which significantly devel-
ops the CE method to be capable of supporting sparse
recovery. By imposing regularization on the loss function,
an enhanced algorithm of regularized SCEM (RSCEM)
is further developed to improve the convergence rate and
recovery accuracy.

The rest of this paper is organized as follows: the statistical
models of IN and the signal model in wireless vehicular com-
munication are introduced in Section II. Section III presents
the proposed probabilistic framework formulation and the pro-
posed algorithms of sparse learning for IN recovery, constituting
the main contribution of this paper. The simulation results are
reported in Section IV with detailed discussions, followed by
the conclusions.

Notation: Matrices and column vectors are denoted by bold-
face letters; (·)† and (·)H denote the pseudo-inversion operation
and conjugate transpose; ‖ · ‖r represents the �r -norm opera-
tion; |Π| denotes the cardinality of the set Π; v|Π denotes the
entries of the vector v in the set of Π; Πc denotes the comple-
mentary set of Π; AΠ represents the sub-matrix comprised of
the Π columns of the matrix A.

II. SYSTEM MODEL

A. Statistical Model of IN

In the OFDM-based vehicular communication system con-
taminated by IN, the IN vector corresponding to the i-th OFDM
symbol is denoted by ξi = [ξi,0, ξi,1, . . . , ξi,N−1]T of length N .
Sparsity is the important and intrinsic property of IN, meaning
that the number of nonzero entries is sufficiently small com-
pared with that of the signal dimension. The support is defined
as

Π = {j |ξi,j �= 0 , j = 0, 1, . . . , N − 1}, (1)

where the sparsity level K = |Π| denotes the number of nonzero
entries. Without loss of generality, the support Π can be dis-
tributed randomly and all the entries might be zero or nonzero,
so there is no a priori constraint of the support distribution.
The statistical characteristics of the IN model, including the
distribution of the instantaneous amplitude, as well as the prob-
abilistic distribution of the arrival of IN, have already been
empirically modeled in literature. Among the most commonly
adopted models of instantaneous amplitude are the Gaussian
mixture model [27] and the Middleton’s Class A model [28].

The Gaussian mixture distribution are widely adopted for
the time-domain asynchronous IN [27]. The probability density
function (PDF) of the Gaussian mixture model is represented as

pZ (z) =
Jm∑

j=1

βj · gj (z), (2)

where Jm is the number of Gaussian components, βj is the
mixture coefficient of the Gaussian variable, and gj (z) is the
PDF of a Gaussian variable with zero mean and variance of σ2

j .
The Middleton’s Class A model, which is also a typical sta-

tistical model of IN [28], can be generated by the special case of
Gaussian mixture when the parameters βj and σ2

j in (2) satisfy

βj = e−AAj/j!, (3)

σ2
j = (j/A + ω)/(1 + ω), (4)

Jm →∞, (5)

where the parameters A and ω denote the overlapping factor and
the background-to-impulsive-noise power ratio, respectively.
The Middleton’s Class A model is also a typical statistical model
of IN [28], which is often adopted to describe the IN occurring
in both wired and wireless channels.

Usually, the intensity of IN with respect to background noise
is indicated by interference-to-noise ratio (INR) γ, which is



2308 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 3, MARCH 2019

Fig. 1. Time-frequency OFDM frame structure exploited by the sparse ma-
chine learning based algorithms for IN recovery and cancelation in the wireless
vehicular communication system.

represented by

γ =
1
σ2

E

{
1
K

∑

j∈Π

|ξi,j |2
}

, (6)

where σ2 is the variance of the background additive white
Gaussian noise (AWGN).

The arrival of the IN samples can be described by a Poisson
point process (PPP) [29], in which the number of the IN burst
samples per second is a Poisson random variable Λ with the
probability given by

P (Λ = n) =
λne−λ

n!
, (7)

where λ is the Poisson parameter denoting the rate of IN arrival.
Without loss of generality, the Middleton’s Class A model is
adopted in this paper as the distribution of the instantaneous
amplitude, and the Poisson point process is adopted as the
probability distribution of the IN burst arrival.

B. Signal Model of OFDM-Based Vehicular Communications

The IEEE 802.11p WAVE standard specified a typical
OFDM-based broadband wireless vehicular transmission
system [1], where the signal frame structure in the presence
of IN at the receiver is illustrated in Fig. 1. In the time
domain, the i-th transmitted frame consists of the OFDM
block xi =

[
xi,0, xi,1, . . . , xi,N−1

]T
of length N and its cyclic

prefix (CP) ci of length-M . xi is the inverse discrete Fourier
transform (IDFT) of the corresponding frequency-domain
data block X̃i in the N OFDM sub-carriers, which contains
some reserved null sub-carriers whose indices are denoted by
the set Ω. The number of null sub-carriers is R = |Ω|. Null
sub-carriers are specified in vehicular communication systems
exploited as the reserved tones or virtual sub-carrier masks [1],
and can be utilized as the measurement of the IN, which will
be explained in detail in the proposed algorithms in Section III.
The transmitted OFDM frame then passes through the wireless
vehicular communication channel with the channel impulsive
response (CIR) hi = [hi,0, hi,1, . . . , hi,N−1]

T .

At the receiver, the received i-th time-domain OFDM data
block yi is represented as

yi = [yi,0, yi,1, . . . , yi,N−1]T = hi � xi + ξi + wi , (8)

where ξi and wi denote the length-N vector of time-domain
IN additive to the received OFDM data block, and the corre-
sponding time-domain AWGN with zero mean and variance of
σ2, respectively. The operator � denotes circular convolution.
Then, transforming the received signal to the frequency domain
using discrete Fourier transform (DFT) yields

Ỹi = FN yi = HiX̃i + FN ξi + w̃i , (9)

where FN denotes the N -point DFT matrix with its en-
try (FN )m,n being exp(−j2πmn/N)/

√
N , and w̃i denotes

the frequency-domain AWGN vector. The channel frequency
response (CFR) is denoted by the N ×N matrix Hi =
diag{FN hi}. As is described previously, the R sub-carriers
of X̃i corresponding to the set Ω are reserved to zero at the
transmitter, thus they can be selected out of Ỹi using a se-
lection matrix SR to formulate the measurement vector of IN
represented by

p̃i =SRỸi =SRHiX̃i + FRξi + SRw̃i =0 + FRξi + w̃R,i ,
(10)

where SR is an R×N selection matrix consisting of the cor-
responding R rows from the R rows out of the N ×N identity
matrix IN indicated by the set Ω. Equation (10) holds since
the entries of X̃i corresponding to the set Ω are reserved to
zero, so SRHiX̃i = 0. The frequency-domain length-R vector
p̃i = [p̃i,0, p̃i,1, . . . , p̃i,R−1]T is the measurement vector of the
IN at the null sub-carriers, and w̃R,i denotes the corresponding
length-R AWGN vector. The matrix FR denotes the R×N
partial DFT matrix consisting of the R rows of FN indicated by
the set Ω, which is given by

FR =
1√
N

[χχχ0 χχχ1 · · ·χχχN−1], (11)

where the vector χχχm is composed of the entries
exp(−j2πmk/N), k ∈ Ω,m = 0, . . . , N − 1. The matrix FR

can be regarded as the observation matrix utilized for sparse
machine learning, where an observation matrix is similar to that
in linear sparse inverse problems exploited for measuring data
from the unknown vector.

Consequently, the received data in the null sub-carriers set Ω
can be rewritten briefly as

p̃i = FRξi + w̃R,i . (12)

III. PROBABILISTIC FRAMEWORK FORMULATION AND

ALGORITHMS OF SPARSE LEARNING FOR IN ESTIMATION

A. Probabilistic Framework Formulation of Sparse Learning
for IN Estimation

Since the unknown IN to be recovered is a sparse vector in
the time domain, it is most important to reconstruct the support,
i.e., the indices set of nonzero entries, of IN. Assuming that the
sparsity level of IN is no more than K, to ensure that the IN is
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sparse, the length-N IN vector ξi to be recovered should satisfy

‖ξi‖0 ≤ K (13)

where the �0-norm operation ‖ · ‖0 calculates the number of
nonzero entries of the vector inside. Then, according to the
system model analysis in Section II-B and equation (12), the
optimal estimated IN ξ̂

∗
i that should be recovered is the one that

generates the minimum residue error norm for the frequency-
domain measurement vector p̃i at the null sub-carriers set Ω.
Hence, to recover the optimal IN ξ̂

∗
i is to solve the optimization

problem given by

ξ̂
∗
i = arg min

ξi

‖p̃i − FRξi‖2 , s.t. ‖ξi‖0 ≤ K, (14)

and thus the residue error norm r is defined as

r = ‖p̃i − FRξi‖2 . (15)

Since the �0-norm constraint is non-convex, the problem (14)
is intractable in the conventional signal processing perspective.
Specifically, it is a sparse combinatorial optimization problem
due to the sparse constraint. If denoting the set of all possible
sparse vectors that satisfy the �0-norm constraint (13) by Ξ,
which is given by

Ξ =
{

ξi ∈ CN
∣∣ ‖ξi‖0 ≤ K

}
, (16)

and the cardinality of the solution space Ξ is given by

|Ξ| = CK
N 2K =

N ! · 2K

(N −K)!K!
. (17)

It can be noted from (17) that the possible entries of the solution
space is exponentially and combinatorially increasing with the
parameters.

Some sparse approximation methods, including the popular
CS-based theory, have been exploited to relax the non-convex
optimization problem to a tractable one in literature. For in-
stance, the non-convex �0-norm constraint in (14) can be relaxed
to the convex �1-norm minimization problem [11] as

arg min
ξi

‖ξi‖1, s.t. ‖p̃i − FRξi‖2 ≤ ε, (18)

where ε denotes the error norm bound due to the background
AWGN noise w̃R,i , and thus convex programming can be ex-
ploited to solve it [30]. However, the performance of the CS-
based methods is much related with the restricted isometry prop-
erty (RIP) of the observation matrix [11], [31]. Besides, perfor-
mance degradation could be caused due to intensive background
noise, and the spectral efficiency could still be improved because
many null sub-carriers needs to be reserved [15].

To overcome the difficulties of the state-of-the-art methods,
we propose a different probabilistic framework of sparse ma-
chine learning based on sparse CE minimization for IN recovery.
It is able to efficiently solve the non-convex sparse combinato-
rial optimization problem (14) without prior requirements for
the observation matrix FR compared with classical CS-based
methods, and more spectrum-efficient by reducing the require-
ment of null sub-carriers as validated by simulation results. The
proposed sparse learning based algorithm significantly develops

Algorithm 1: (SCEM): Sparse Cross-Entropy Minimization
for Sparse Machine Learning Based IN Recovery.
Input:

1) Measurement vector p̃i

2) Observation matrix Ψ = FR

3) Threshold for residue error norm ε
4) Candidate supports number Nc , favorable supports
number Nf , maximum iteration number Imax

Initialization:
1: q(0) ← 1

2 ·
−→
1 N×1 (initial probability distribution of the

IN support)
2: k ← 0 (iteration count number)

Iterations:
3: repeat
4: Randomly generate Nc candidate supports

{Π(k)
j }Nc

j=1 based on the current support distribution

q(k) , where each candidate support is generated in a
recursive way s.t. |Π(k)

j | ≤ K, j = 1, . . . Nc

5: Compute the corresponding IN vectors {ξ̂(k)
j }Nc

j=1, s.t.

ξ̂
(k)
j

∣∣∣
Π(k )

j

← Ψ†
Π(k )

j

p̃i , ξ̂
(k)
j

∣∣∣
Π(k ) c

j

← 0

6: Calculate the corresponding residue error norms

r
(k)
j =

∥∥∥p̃i − FR ξ̂
(k)
j

∥∥∥
2
, j = 1, . . . Nc

7: Sort {r(k)
j }Nc

j=1 in the ascending order as

r
(k)
[1] ≤ r

(k)
[2] ≤ · · · ≤ r

(k)
[Nc ]

8: Select the Nf smallest residue error norms {r(k)
[j ] }

Nf

j=1,

and set the corresponding supports {Π(k)
[j ] }

Nf

j=1 as the
favorable supports

9: Update the probability distribution of IN support to
q(k+1) by minimizing the CE based on (22)

10: k ← k + 1
11: until r

(k−1)
[1] ≤ ε or k > Imax (halting condition)

Output:
1) Learnt support probability distribution q̂ = q(k)

2) Recovered IN support Π̂ = Π(k−1)
[1]

3) Recovered sparse IN vector ξ̂ = ξ̂
(k−1)
[1]

and improves the conventional CE method [26], and the un-
known sparse signal can be accurately recovered, as described
in detail in the next sub-section.

B. Proposed Sparse Machine Learning Inspired Algorithm for
IN Recovery: Sparse Cross-Entropy Minimization

Based on the probabilistic framework of sparse learning, the
purpose of the SCEM algorithm proposed in this paper is to effi-
ciently solve the sparse combinatorial optimization problem (14)
by iteratively minimizing the cross-entropy between the current
support distribution and the one minimizing the residue error
norm. The pseudo-code of the proposed SCEM algorithm is
summarized in Algorithm 1, and the computing flowchart of the
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Fig. 2. Computing flowchart of the iterative sparse machine learning based
algorithm of SCEM for IN recovery.

essential computing modules, parameters, nodes, and data flows
of the algorithm is illustrated in Fig. 2.

It can be observed from Fig. 2 that the proposed sparse ma-
chine learning algorithm iteratively learns the probability distri-
bution of the IN support by minimizing the loss function (i.e.,
the cross-entropy). In each iteration within the algorithm loop,
the algorithm generates a set of candidate supports randomly
based on the current support distribution q(k) (initialized by
q(0)), and computes the corresponding residue error norms us-
ing the measurement vector from the input. After sorting the
residue error norms, the set of favorable supports is selected
out, which serves as the training data set. Then, the loss func-
tion is computed by calculating the cross-entropy between the
training data set (obtained from the favorable supports having
the minimum residue error norms thus most close to the real IN
support) and the estimated output (i.e., the current probability
distribution q(k) of the IN support stored by the algorithm). By
minimizing the loss function by gradient descent, the support
distribution is backward updated to q(k+1) for the next iteration.
This process will drive the support distribution gradually to be
trained towards the one with minimum estimation error. The
iterations continue until the halting condition of the algorithm
is met, and the output of the algorithm is thus achieved.

The overall structure and explanations of Algorithm 1 are
described as follows:

Phase 1- Input: The measurement vector p̃i , the observation
matrix Ψ, the residue error norm threshold ε determined by the
power of the background AWGN in (12), and the numbers of
candidate supports and favorable supports, i.e., Nc and Nf , are
input to the algorithm.

Phase 2 - Initialization: The initial probability distribution
of the IN support is set as q(0) ← 1

2 ·
−→
1 N×1, where q(k) =

[q(k)
0 , q

(k)
1 · · · q(k)

N−1]
T , and q

(k)
n denotes the probability that the

n-th entry is in the IN support Π(k) , i.e.,

Pr(n ∈ Π(k)) = q(k)
n , n = 0, . . . N − 1. (19)

Since the nonzero entries can be randomly distributed in the
support, assuming each entry has an initial probability of 0.5 to
be nonzero is rational without loss of generality.

Phase 3 - Main iterations: The main process is composed of
multiple iterations, and terminates until the halting condition of
the algorithm is met. The main process includes the following
steps:

1) Candidate supports generation (Line 4): Nc candidate
supports {Π(k)

j }Nc

j=1 are generated based on the support distri-

bution q(k) . Each candidate support Π(k)
j is generated in an

efficient and simple recursive manner to obtain a K-sparse sup-
port. Let πl denote the current temporary support in the re-
cursive generation process, where the initial temporary support
π0 = {0, 1, . . . , N − 1}. Then, based on the current temporary
support πl and its corresponding probability {q(k)

n }n∈πl
derived

from the current support distribution q(k) , a sparser temporary
support πl+1 can be generated by a Bernoulli trial on each entry
n ∈ πl as

πl+1 = {n|n ∈ πl, and f (πl )
n = 1}, (20)

where the {0, 1}-valued parameter f
(πl )
n is the outcome of the

Bernoulli trial on the entry n ∈ πl with Bernoulli probability
q

(k)
n . Afterwards, l← l + 1 and keep doing this until |πl | ≤ K,

and then the candidate support is set as Π(k)
j = πl .

2) Computing IN and residue (Line 5-6): the estimated IN

vectors {ξ̂(k)
j }Nc

j=1 corresponding to the candidate supports are
calculated based on the least squares principle implemented
on the candidate supports {Π(k)

j }Nc

j=1, and the corresponding

residue error norms {r(k)
j }Nc

j=1 are calculated by (15) using the
estimated IN vectors.

3) Favorable supports selection (Line 7-8): the candidate
supports are sorted by the residue error norms in the ascending
order in order to pick out the best Nf candidate supports with
smallest estimation error, which is closest to the real IN support
and regarded as the favorable supports {Π(k)

[j ] }
Nf

j=1. The implicit
probability distribution implied by the favorable supports is the
training target for the current support distribution q(k) , which is
gradually driven towards the ground-truth distribution by itera-
tive minimizing the CE between them.

4) Learning support distribution by minimizing CE (Line 9):
The CE is utilized as the loss function L(Π(k)

[j ] ;q(k)) in the
perspective of machine learning theory, which is given by

L(Π(k)
[j ] ;q(k)) = − 1

Nf

Nf∑

j=1

ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
, (21)

where {− ln Pr(Π(k)
[j ] |q(k))} is the negative logarithm likelihood

(NLL) of the favorable support Π(k)
[j ] conditioned on the current

probability distribution q(k) . By minimizing the loss function in
(21), the current support distribution q(k) is updated to q(k+1) ,
which is given by

q(k+1) = arg min
q(k )

⎧
⎨

⎩−
1

Nf

Nf∑

j=1

ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
⎫
⎬

⎭ , (22)

Let a {0, 1}-valued length-N vector f[j ] denote the favorable

support Π(k)
[j ] , where its n-th entry f[j ],n = (f[j ])n satisfies

f[j ],n =

⎧
⎨

⎩
1, n ∈ Π(k)

[j ]

0, n /∈ Π(k)
[j ]

(23)
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Then the conditional probability Pr(Π(k)
[j ] |q(k)) in the CE in (22)

is given by

Pr
(
Π(k)

[j ] |q(k)
)

= Pr
(
f[j ]|q(k)

)
, (24)

where f[j ],n is a Bernoulli random variable given by

Pr
(
f[j ],n = 1

)
= q(k)

n , Pr(f[j ],n = 0) = 1− q(k)
n . (25)

Thus, one can derive that

Pr(f[j ]|q(k)) =
N−1∏

n=0

(
q(k)
n

)f [ j ] , n
(

1− q(k)
n

)1−f [ j ] , n
. (26)

By substituting (26) into (22), the first derivative of the CE with
respect to q

(k)
n can be derived as

∂

∂q
(k)
n

⎧
⎨

⎩−
1

Nf

Nf∑

j=1

ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
⎫
⎬

⎭

=
∂

∂q
(k)
n

⎧
⎨

⎩−
1

Nf

Nf∑

j=1

[
f[j ],n ln q(k)

n + (1−f[j ],n ) ln(1− q(k)
n )

]
⎫
⎬

⎭

= − 1
Nf

Nf∑

j=1

[
f[j ],n

q
(k)
n

− 1− f[j ],n

1− q
(k)
n

]
. (27)

To minimize the CE, the first derivative (27) is set to zero, so
the updated support distribution q(k+1) can be learnt by

q(k+1)
n =

1
Nf

Nf∑

j=1

f[j ],n , n = 0, 1, . . . , N − 1. (28)

5) Iteration switching (Line 10-11): if the halting condition
is satisfied when r

(k−1)
[1] ≤ ε or k > Imax , the algorithm ends.

Otherwise, the algorithm goes into the next iteration.
Phase 4 - Output: The output of the algorithm includes the

learnt support probability distribution q̂ = q(k) , the recovered
IN support Π̂ = Π(k−1)

[1] , and the recovered sparse IN vector ξ̂ =

ξ̂
(k−1)
[1] , which obtains the solution of the sparse combinatorial

optimization problem (14) as ξ̂
∗
i = ξ̂. Then, the recovered IN

signal ξ̂
∗
i can be canceled out from the received OFDM data

block yi in (8) before the subsequent demapping and decoding
procedures to eliminate the impacts of IN.

C. Enhanced Sparse Machine Learning Based Algorithm for
IN Recovery: Regularized SCEM

In the proposed SCEM algorithm where the CE plays the im-
portant role of loss function, each NLL corresponding to each
favorable support Π(k)

[j ] has an average contribution to the CE
given in (22), so the favorable supports with different residue
error norms contribute the same to the loss function. In fact, dif-
ferent supports should reflect different contributions on the loss
function so as to encourage the algorithm to learn the support
with less error. Out of this insight, an enhanced sparse learning
algorithm of RSCEM is proposed, in which the loss function
(21) is regularized by multiplying with the weighting parameter

λ[j ] to generate the regularized loss function Lreg(Π
(k)
[j ] ;q(k))

given by

Lreg

(
Π(k)

[j ] ;q(k)
)

= − 1
Nf

Nf∑

j=1

λ[j ] ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
, (29)

where the regularization weighting parameter λ[j ] is given by

λ[j ] =
r(k)

r
(k)
[j ]

, j = 1, 2, . . . , Nf , (30)

where r(k) is the average residue error norm over the favorable
supports given by

r(k) =
1

Nf

Nf∑

j=1

r
(k)
[j ] . (31)

Note that a smaller residue error norm r
(k)
[j ] leads to a larger

weighting parameter λ[j ] in (30). Hence, the NLL corresponding
to a more accurate support will have a larger contribution to the
regularized loss function in (29), which will drive the support
distribution q(k) to converge to the ground-truth support more
accurately and more efficiently. The pseudo-code of RSCEM
is thus similar to that of SCEM given in Algorithm 1 except
for the procedure of minimizing the loss function in Line 9,
where the regularized loss function is now adopted to update
the distribution as given by

q(k+1) = arg min
q(k )

− 1
Nf

Nf∑

j=1

λ[j ] ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
. (32)

To calculate the minimum regularized loss function in (32),
we inherit the same notation as in the previous sub-section, i.e.
the Bernoulli vector f[j ] in (23) denoting the favorable support

Π(k)
[j ] . Through similar deduction from (23) to (26), and substi-

tuting (26) into (32), we can obtain the first derivative of the
regularized loss function with respect to q

(k)
n , represented as

∂

∂q
(k)
n

⎧
⎨

⎩−
1

Nf

Nf∑

j=1

λ[j ] ln Pr
(

Π(k)
[j ]

∣∣∣q(k)
)
⎫
⎬

⎭

=
∂

∂q
(k)
n

⎧
⎨

⎩−
1

Nf

Nf∑

j=1

λ[j ]

[
f[j ],n ln q(k)

n

+ (1− f[j ],n ) ln(1− q(k)
n )

] }

= − 1
Nf

Nf∑

j=1

λ[j ]

[
f[j ],n

q
(k)
n

− 1− f[j ],n

1− q
(k)
n

]
. (33)

Setting the first derivative of the regularized loss function
given in (33) to zero, the regularized loss function can be min-
imized, yielding the updated support probability distribution
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q(k+1) given by

q(k+1)
n =

∑Nf

j=1 λ[j ]f[j ],n
∑Nf

j=1 λ[j ]

, n = 0, 1, . . . , N − 1. (34)

Comparing (34) with (28), it can be observed that, for the
algorithm of SCEM, all the entries {f[j ],n}Nf

j=1 have the same

contribution to the updating of q
(k+1)
n in (28), so the different

accuracy among favorable supports are not taken into consider-
ation. On the other hand, for the enhanced RSCEM algorithm,
a more accurate support Π(k)

[j ] will impose a larger weighting
parameter λ[j ] on and have a larger contribution to the updating

of q
(k+1)
n as implied by (34). In fact, (28) can be regarded as

a special case of (34) when λ[j ] = 1, j = 1, 2, . . . , Nf . Conse-
quently, it can be derived that the enhanced RSCEM algorithm
will learn the ground-true support distribution more accurately
and more efficiently than SCEM, which is also validated in the
simulation results in the next section.

D. Computational Complexity Analysis

The computational complexity of the proposed algorithms
and the state-of-the-art ones are theoretically analyzed and com-
pared in this sub-section.

For the proposed algorithms, considering the complexity of
each iteration of SCEM in Algorithm 1: Line 4 (generating Nc

candidate supports) -O (Nc); Line 5 (calculating Nc IN vectors)
- O (

NcRK2
)
; Line 6 (calculating Nc residue error norms) -

O (NcRK); Line 7–8 (sorting Nc residue error norms and se-
lecting Nf smallest ones) - O (Nc log Nc); Line 9 (updating
the IN support distribution) - O (NNf ). Therefore, summing
them together, the total complexity of each iteration of SCEM is
O (

NcRK2 + NNf

)
. Similarly, since RSCEM only involves

the calculation of Nf weighting parameters in (30) with the
complexity of O (Nf ), one can derive that the total complex-
ity of each iteration of RSCEM is also O (

NcRK2 + NNf

)
.

Then, considering the maximum iteration number Imax , the
total complexity of the SCEM and RSCEM algorithms are
O (

Imax(NcRK2 + NNf )
)
. Since the IN is sparse, the sparsity

level K � N . Moreover, it is not necessary for R, Imax and Nc

to be very large, either, which will be verified in the simulation
results in the next section.

Hence, it can be concluded that the computational complexity
of the proposed algorithms is acceptable, and comparable to the
complexity of the existing CS-based algorithm, i.e.,O (

NRK2
)

as derived in [15].
Furthermore, considering the total number of iterations Imax

required to guarantee accurate recovery, it is difficult to derive
a theoretical closed-form expression of the iteration number for
the proposed machine learning based algorithms. The halting
condition that the residue error norm should be less than the
given threshold ε might be reached at any iteration, which is
irrelevant to the parameters of K, R, N , etc. Besides, the con-
vergence rate of learning is closely related with the initial status
q(0) and the form of loss function. However, one can effectively
evaluate the average number of iterations through the numerical
simulation results in the next section, which shows that the to-
tal iteration number does not linearly increase with the sparsity

TABLE I
PARAMETER PROFILE OF ITU-R VEHICULAR B MULTIPATH CHANNEL

Fig. 3. Graphical visualization of one realization of the IN recovery using the
proposed SCEM algorithm.

level K and Imax does not have to be very large, so the total
complexity is acceptable.

IV. SIMULATION RESULTS AND DISCUSSIONS

The performance of the proposed sparse learning method
of IN recovery in wireless vehicular communication systems is
evaluated through simulations. The simulation setup is basically
configured in a typical wireless vehicular transmission scenario.
The OFDM sub-carrier number N = 1024 and the number of
null sub-carriers R = 128, and the length of CP is M = 128.
The modulation scheme of 16QAM and the low density parity
check (LDPC) code with code length of 1944 bits and code rate
of 0.5 as specified in [1] are adopted. The typical 6-tap multipath
channel model called Vehicular-B specified by ITU-R in low-
speed vehicular scenario with the relative receiver velocity of 30
km/h is adopted, whose parameters are listed in Table I [32]. The
Middleton’s Class A model for the IN amplitude distribution and
the PPP model for the IN arrival distribution are adopted, with
the parameters configured as A = 0.15, ω = 0.02, λ = 50/sec.
In the following simulations results, unless explicitly stated,
the sparsity level of IN K = 10, the INR γ = 30 dB, and the
parameters Nc = 70, Nf = 15, and Imax = 15 are configured
for the proposed SCEM and RSCEM algorithms.

The performance of one realization of the IN recovery using
the proposed algorithm of SCEM with K = 10 is depicted
in Fig. 3. The measurement vector serving as the input of
SCEM in Algorithm 1 is obtained from the R null sub-carriers.
Based on the sparse learning iterations driven by minimizing
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Fig. 4. MSE performance of the IN reconstruction using the proposed algo-
rithms of SCEM and RSCEM compared with state-of-art CS-based methods.

the cross-entropy, the accurate support distribution and the IN
vector are recovered using the proposed algorithm of SCEM.
It is observed from Fig. 3 that the IN estimation matches the
actual IN very well.

The mean square error (MSE) performances of the pro-
posed algorithms and the state-of-art CS-based algorithms
(SAMP [16] and PA-SAMP [15]) for IN recovery in the wireless
vehicular communication system are shown in Fig. 4. The theo-
retical Cramer-Rao lower bound (CRLB) 2σ2 · (N ·K/R) [33]
is illustrated as benchmark. The measurement length is set as
R = 128. It can be observed that the proposed RSCEM and
SCEM algorithms achieve the MSE of 10−3 at the INR of
23.7 dB and 24.8 dB, respectively, which outperforms con-
ventional PA-SAMP and SAMP algorithms by approximately
3.5 dB and 5.0 dB, respectively. It is noted from Fig. 4 that the
MSE of the proposed SCEM and RSCEM algorithms are asymp-
totically approaching the theoretical CRLB with the increase of
the INR, which verifies the high accuracy of the proposed sparse
learning method for IN recovery. It is also shown by Fig. 4 that
the proposed enhanced algorithm RSCEM enjoys a further INR
gain of about 0.8 dB over the SCEM algorithm, which proves
that the accuracy of the RSCEM algorithm can be further im-
proved by imposing regularization on the loss function.

Moreover, the MSE performance of IN recovery for different
schemes with respect to the measurement length R is reported
in Fig. 5, where the INR is set as γ = 30 dB. it is shown in
Fig. 5 that the MSE of the proposed algorithms decreases fast
with the increase of the measurement vector length R, i.e.
the number of null sub-carriers utilized for IN measurement,
whereas the decrease of the MSE of the existing CS-based
methods is much slower. At the MSE of 10−3, the proposed
RSCEM and SCEM algorithms costs only R = 32 and 38 null
sub-carriers, respectively, while CS-based algorithms cost more
than 100 null sub-carriers. Hence, it can be concluded that the
introduction of sparse machine learning will greatly reduce the
amount of measurement data, i.e. spectrum resource required
for accurate recovery, achieving higher spectral efficiency than
conventional counterparts.

Fig. 5. MSE performance of the IN recovery using the proposed and CS-based
algorithms against the measurement vector length R.

Fig. 6. BER performance of different schemes for IN mitigation under the
wireless vehicular transmission channel.

The bit error rate (BER) performance of different IN mitiga-
tion schemes under the wireless vehicular transmission channel
is illustrated in Fig. 6, including the proposed sparse learning
based algorithms of SCEM and RSCEM, as well as the conven-
tional non-CS-based method (clipping and blanking [10]) and
the state-of-art CS-based methods. The worst case without IN
mitigation and the ideal case with no IN are also depicted as
benchmarks. It can be found that at the target BER of 10−4,
the proposed sparse learning based algorithms outperform the
state-of-art CS-based methods, the conventional method of clip-
ping and blanking, and the worst case without IN mitigation by
approximately 0.6 dB, 1.5 dB, and 1.9 dB, respectively. It is
also shown that the proposed enhanced algorithm of RSCEM
using regularization of the loss function can further improve
the performance of the proposed SCEM algorithm by 0.2 dB.
Furthermore, the gap between the proposed RSCEM algorithm
and the ideal case with no IN is only about 0.2 dB, validating
the effectiveness of the proposed scheme.
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Fig. 7. Comparison of the computational complexity of the proposed and
CS-based algorithms with respect to IN dimension N .

TABLE II
THE AVERAGE NUMBER OF ITERATIONS OF DIFFERENT IN RECOVERY

ALGORITHMS AGAINST SPARSITY LEVEL

The runtime, as a transparent indicator of the convergence
rate, i.e. iteration number, and computational complexity, is
simulated with respect to the dimension of the unknown sparse
IN vector N , as shown in Fig. 7. The average runtime of an
algorithm of interest is computed using the average of 103 runs.
Note that for fair comparison, the runtime of different schemes is
compared in the condition that the MSE≤ 10−3 is reached when
the algorithms converge. It can be observed from Fig. 7 that
the runtime of the conventional CS-based algorithms increases
approximately linearly with the IN dimension N , validating
the theoretical complexity O (

NRK2
)
. On the other hand, it

can be observed from Fig. 7 that the runtime of the proposed
RSCEM and SCEM algorithms increases much slower with
N than that of CS-based algorithms, which is also consistent
with the theoretical complexity O (

Imax(NcRK2 + NNf )
)
. It

is shown that the convergence of the proposed algorithms is
faster than that of the CS-based ones when N ≥ 800, and the
gain grows larger with the increase of N . It is also verified that
the enhanced algorithm RSCEM is more complexity-efficient
and converges faster than SCEM.

For both the conventional CS-based and the proposed algo-
rithms, the number of iterations against the sparsity level K is
investigated through numerical experiments, as shown in Ta-
ble II. For fair comparison, the number of iterations of different
schemes is also compared in the condition that the MSE≤ 10−3

is reached when the algorithms converge. It is indicated that
the number of iterations for the CS-based algorithms increase
approximately linearly with the sparsity level, whereas the iter-

ation number of the proposed algorithms almost keep invariant,
which is consistent with the analysis. Besides, it is proved from
the results that the enhanced algorithm RSCEM has fewer itera-
tions than SCEM and thus converges faster. It is also verified that
setting the maximum iteration number as Imax = 15 is sufficient
for accurate recovery.

V. CONCLUSIONS

A novel sparse machine learning based probabilistic frame-
work of IN recovery is formulated for reliable transmission of
OFDM-based wireless vehicular communication systems. The
original non-convex sparse combinatorial optimization problem
of IN recovery is efficiently and accurately solved by the pro-
posed sparse learning algorithm of SCEM, which iteratively
learns the probability distribution of the IN support by minimiz-
ing the loss function of cross-entropy. By imposing regulariza-
tion on the loss function, the enhanced algorithm of RSCEM is
proposed to further improve the convergence rate and accuracy.
It is verified by theoretical analysis and numerical simulation
results that the proposed algorithms outperform conventional
ones in spectrum efficiency, estimation accuracy and complex-
ity. Moreover, the proposed scheme can also be widely applied
in other vehicular related and OFDM-based broadband com-
munication systems contaminated by IN to improve the system
performance in senarios like URLLC.
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