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Abstract—A new approach of channel estimation for multi-
antenna systems is put forward in this article, which can be
adopted in high-mobility situations such as high speed trains. The
channel impulse response (CIR) is abstracted as three domains to
improve the modeling accuracy. Both the time-domain preamble
and the frequency-domain pilot are adopted in the OFDM frame.
Firstly, the training in time domain is exploited to obtain the
partial common support (PCS) of the channel. Then, the pilot
location optimized by the genetic algorithm is employed to build
the framework of structured compressive sensing (SCS) and
recover the channel. A novel compressive recovery algorithm
called adaptive support-aware block orthogonal matching pursuit
(ASA-BOMP) for MIMO-OFDM systems is proposed to solve the
problem. It is manifested in the simulation that the scheme in this
article outperforms the traditional ones in both recovery proba-
bility, mean square error (MSE), and bit error rate (BER) over
the doubly selective channel with low computational complexity.

Index Terms—MIMO-OFDM, channel estimation, doubly se-
lective channel, structured compressive sensing (SCS).

I. INTRODUCTION

As the communication requirement is growing by leaps and
bounds, multiple input multiple output (MIMO), which bene-
fits from the property of large capacity, has exerted tremendous
fascination to both academia and industry. Simultaneously, the
system capacity can also be increased by adopting the tech-
nique of orthogonal frequency division multiplexing (OFDM).
For these reasons, the afore-mentioned two techniques are
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usually combined as MIMO-OFDM, which has advantages
to the performance of communications. MIMO-OFDM is not
only one of the most paramount techniques currently and a
potential technique aftertime.

To maintain the system performance, it is very important to
perform the channel estimation with high precision. However,
accurate channel estimation for the MIMO-OFDM system is
challenging due to the multiple antennas. For every receive
antenna in a MIMO-OFDM system, a great deal of channel
information has to be recovered from all of the transmit ends.
Consequently, the time and frequency domain overhead is
ordinarily much larger than that in a single antenna system.
The training usually includes the time-domain preamble [1] or
frequency-domain pilot [2]. Most of the traditional schemes
employ orthogonal training with low capacity, whose number
raises with the transmit antennas linearly. Apart from that,
a high spectral efficiency channel estimation scheme was
proposed [3], whose training is non-orthogonal.

Nevertheless, channel estimation schemes in high-mobility
situations such as high speed trains [4], [5] are not deeply
investigated in most of the conventional works and it is a
new field. Apart from the frequency selectivity caused by the
multipath effect, the channel demonstrates the time selectivity
as well when the mobile terminal is moving at high speed.
The channel estimation in this kind of complex channel,
which is known as doubly selective channel, is quite arduous,
particularly for MIMO-OFDM. A multitude of communication
systems may suffer from the doubly selective channel, such
as long-term evolution rail [6] for high speed train and the
railroad cognitive radio [7], etc.

In this condition, the channel distinguishes from each other
among different samples. Therefore, the channel coefficients
to be recovered is exceedingly large in amount. Under these
circumstances, lots of time or frequency training are needed to
perform channel estimation compared with the time-invariant
channel, which will lead to the spectral efficiency decrease.
When we perform the doubly selective channel estimation
for single input single output (SISO) system, literature [8]
considered the channel variations as a difference model, while
literature [9] abstracted the channel in sample domain by
utilizing a basis expansion model (BEM).

As the study of compressive sensing (CS) is becoming
a research hotspot [10]–[13], a new perspective for channel
estimation is to take advantage of the channel sparsity [14]–
[22]. Literatures [14]–[17] utilized CS theory to perform the
channel estimation in SISO systems. Although the time and
frequency training are considered in these literatures, the
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process can only be performed under time-invariant channel
for SISO systems. Doubly selective channel estimation prob-
lems in MIMO systems cannot be solved directly using these
methods. For multiple antenna approaches, multiple input
single output (MISO) channel estimation scheme based on
the non-orthogonal pilots in frequency domain is investigated
in [18]. Both the pilots location and power were designed by
minimizing the coherence of the associated Fourier submatrix.
Two different relaxations were proposed to solve the non-
convex problem, which was the first fully deterministic pilot
design in a MISO/multi-user scenario with shared pilot subcar-
riers [18]. Literatures [19]–[21] considered the MIMO-OFDM
channel estimation problem, which extended the framework of
CS to the structured CS (SCS). The spatial correlation among
different transmit antennas are used, which indicates a set of
common nonzero support in the SCS framework. Nevertheless,
only frequency selective channel is addressed. In [22] and [23],
the doubly selective channel estimation was performed using
the SCS model, while a differential simultaneous orthogonal
matching pursuit (DSOMP) [24] algorithm and structured
distributed compressive sensing (SDCS) [25] were further
proposed. A channel estimation scheme within multiple sym-
bols was provided in [26]. However, the pilot pattern and
the frame structure were not fully studied in these schemes
which can be further optimized. Literature [27] utilized the
atomic norm minimization to perform doubly selective channel
estimation in SISO systems, while literature [28] adopted the
block-sparse Bayesian learning (BSBL) to solve SISO doubly
selective channel estimation problem. Literature [29] used
the measurements outside the inter block interference (IBI)
free region to solve the channel estimation problem, however
the frequency-domain pilots were not considered. In general,
most existing works conduct non-comprehensive study on
doubly selective channel estimation for MIMO-OFDM system.
Therefore, the relevant research work is highly significant.

In this article, a new approach for channel estimation is
put forward in high-mobility situations. Both the time- and
frequency-domain training (TFDT) are adopted in the MIMO-
OFDM system. The channel is abstracted as three domains.
Firstly, a set of block sparse vectors are acquired for the
tap-based CIRs due to the identical supports of the channel
impulse responses (CIRs) for different samples. Secondly,
the sample-based CIRs can be expanded on a few bases.
Thirdly, the antenna-based CIRs are uniformly zeros or nonze-
ros. The time-domain pseudo-random noise (PN) sequence
provides the information of partial common support (PCS),
while the frequency-domain pilot location optimized by a
genetic algorithm (GA) is put forward to obtain the SCS
framework by taking advantage of the spatial correlation.
After cyclic reconstruction of the OFDM frame, the channel
information can be acquired using the adaptive support-aware
block orthogonal matching pursuit (ASA-BOMP) algorithm. It
can be validated in the simulation that our scheme has superior
performance than the traditional ones with lower complexity.

The article is organized as follows. The models of MIMO-
TFDT-OFDM and the doubly selective channel are presented
in Section II. The approach for channel estimation put forward
in this article is investigated in Section III. The proposed pilot

location design method and sparse signal recovery algorithm
for MIMO-OFDM systems are introduced in Section IV and V,
respectively. Simulation results and discussion are addressed
in Section VI. Finally, the article is concluded in Section VII.

Notation: In this article, lower and upper boldface let-
ters denote column vectors and matrices, respectively. (·)T ,
(·)H , ⊗, E(·), ∥ · ∥2, mod(), and diag(·) denote transpose,
conjugate transpose, the circular convolution, the expectation
of a random variable, the ℓ2-norm of a vector, the modulo
operation, and changing a vector into a diagonal matrix,
respectively. [·]i,j and [·]p,q denote the (i, j)-th element of a
matrix, and a submatrix with row indices p and column indices
q, respectively. I⟨k⟩N is an N ×N permutation matrix, whose
elements in i-th row and (i + k)-th column are filled with 1
(0 ≤ i < N) and others are all 0s.

II. SYSTEM MODEL

A. Frame Structure for MIMO-TFDT-OFDM Systems
The structure for one OFDM frame in time domain is

denoted as t = [yT ,xT ]T . It consists of the data block x
and the guard interval (GI) y. The main purpose of the GI
is to prevent the data block from being interfered by the
previous frame. In this article, the GI, which is filled with the
preamble, has another crucial function of channel estimation.
In the scenario of MIMO, OFDM frames from variant transmit
antennas can be denoted by using an extra subscript, e.g.,

ti = [yT
i ,x

T
i ]

T , (1)

where ti is the OFDM frame from the i-th transmit antenna
and 0 ≤ i < Nt. The corresponding length-M pream-
ble and length-N data block can be represented as yi =
[yi,0, yi,1, . . . , yi,M−1]T , and xi = [xi,0, xi,1, . . . , xi,N−1]T ,
respectively.

It is shown in Fig. 1 that both the pilots and PN sequence are
configured in each TFDT-OFDM frame. The PN sequence ci
can be regarded as one category of the time-domain preamble,
which is the same for different frames. On the one hand, the
PN sequence is utilized to obtain PCS due to its superior
characteristic of auto-correlation. On the other hand, a small
quantity of frequency subcarriers are padded with pilots, which
is used for obtaining accurate information of the channel
subsequently.

It can be seen in Fig. 1 that the frequency-domain pilots
are divided into G pilot groups. There are 2Q− 1 subcarriers
for each pilot group. The Q subcarriers in the middle of
the group are configured with nonzero pilots, while the rest
Q − 1 are configured with zero pilots in order to avoid the
inter carrier interference (ICI). Q is set as an odd number in
this article. The position of the pilot groups are designed and
optimized by a GA for the accuracy of sparse signal recovery,
whose simulation results will be illustrated in Section VI. The
nonzero pilots with identical index from all of the pilot groups
are combined as a vector pq ∈ CG for 0 ≤ q < Q.

The pilot group above is non-orthogonal because the pilot
subcarriers are identical for all of the antennas. To distinguish
different antennas, the amplitude of nonzero pilots is random
with fixed phase in this article. Under these circumstances,
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Fig. 1. The MIMO-TFDT-OFDM frame with the PN sequence and pilots.
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Fig. 2. The channel modeling in three domains.

the nonzero pilots are the measurement when performing
the sparse signal recovery. Although the pilot powers in the
nonzero pilot subcarriers are different, the average power
for one nonzero pilot group will be normalized, which is a
constraint to the pilot power. In comparison with the separate
nonzero pilot scheme [22], which concentrates the power to
the center pilot, our pilot pattern has an average distribution
for the pilots. Consequently, the frequency-domain noise can
be suppressed while the local signal-to-noise ratio (SNR) can
increase visibly. In this way, the proposed scheme will have
an outstanding performance.

B. The Channel Model for Three Domains
As shown in Fig. 2, the CIR in this article is characterized

to be sparse for MIMO-OFDM. The channel is abstracted as
three domains, i.e., sample, tap, and antenna, respectively. The
sets of arrows are CIR gains for the channels. Each arrow
represents a nonzero element for the CIR. Consequently, the
figure illustrates a set of four-tap channels for a MIMO system.

In this article, the indexes of the receive antennas are left
out on account of the same signal processing for every receive
antenna. In this condition, the l-th channel tap at sample m
and the i-th transmit antenna is represented as h[m, l, i], where
0 ≤ l < L and L is the length of the channel. The tap-based
CIR at sample m for the i-th antenna is represented as

h(m,i)
t = [h[m, 0, i], h[m, 1, i], · · · , h[m,L− 1, i]]T . (2)

h(m,i)
t is assumed to be sparse with S nonzero elements

since the channel length is usually much larger than the
number of distinguishable taps [30]. S is commonly referred
to as the sparsity level. The nonzero supports for h(m,i)

t are
deemed to be the same because the channel changes slowly
during an OFDM frame length [31]. Moreover, the channels
among different antennas tend to have a property of spatial
correlation [3], [30], [32] because the time delays for all
transmit-receive antennas are approximately identical [33],
[34]. The spatial correlation in this paper is defined as that
there are uniform nonzero supports, and distinct nonzero
amplitudes and phases for the tap-based CIRs. Accordingly, a
jointly sparse property is shown for the tap-based CIR vectors
h(m,i)

t (0 ≤ m < N, 0 ≤ i < Nt).
The sample-based CIR is written as

h(l,i)
s = [h[0, l, i], h[1, l, i], · · · , h[N − 1, l, i]]T . (3)

It is composed of the l-th delays from every tap-based CIR
over the OFDM frame for the i-th transmit antenna. As the
the channel changes slowly during the OFDM frame length,
h(l,i)

s (0 ≤ l < L) can be expanded by Q0(Q0 ≪ L) bases [9],

h(l,i)
s =

Q0−1∑

q=0

c[q, l, i]bq + el,i, (4)

where c[q, l, i], bq ∈ CN , and el,i ∈ CN denote the q-th BEM
coefficient, the corresponding BEM basis for the l-th channel
tap and the i-th transmit antenna, and the modeling error,
respectively. Utilizing the BEM, the number of the estimated
coefficients is reduced from NSNt to Q0SNt. In this article,
the number of BEM bases and nonzero subcarriers are the
same, i.e., Q0 = Q.

The BEM vector is defined as

cq,i = [c[q, 0, i], c[q, 1, i], . . . , c[q, L− 1, i]]T , (5)

where 0 ≤ q < Q. Based on the description in (4) and (5),
cq,i are jointly sparse for different q and i if the tap-based
CIR vectors h(m,i)

t are jointly sparse. Moreover, the nonzero
supports for cq,i and h(m,i)

t are the same.
In this article, the complex exponential BEM (CE-BEM) [9]

is adopted to reconstruct the sample-based CIR, which can be
written as as

bCE
0 = (1, · · · , ej 2π

N n(−Q−1
2 ), · · · , ej 2π

N (N−1)(−Q−1
2 ))

T

bCE
1 = (1, · · · , ej 2π

N n(1−Q−1
2 ), · · · , ej 2π

N (N−1)(1−Q−1
2 ))

T

...

bCE
Q−1 = (1, · · · , ej 2π

N n(Q−1−Q−1
2 ), · · · , ej 2π

N (N−1)(Q−1−Q−1
2 ))

T

(6)
The antenna-based CIR is denoted as

h(m,l)
a = [h[m, l, 0], h[m, l, 1], · · · , h[m, l,Nt − 1]]T , (7)
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whose entries are simultaneously zeros or nonzeros due to
the assumption of spatial correlation among the antennas. The
representations in (2), (3), and (7) are the channel models for
three domains in this article.

III. THE PROPOSED SCHEME

A. Step 1: Acquisition of PCS
Although the time-variant channel is considered in this

article, the nonzero supports among different samples in one
OFDM frame tend to be identical. In our scheme, the PCS Ω0

of the sparse tap-based CIR is firstly obtained by adopting
the PN sequence. As the PN sequence has superior auto-
correlation characteristic, Ω0 can be obtained by performing
the correlation between the local PN sequence y and the
received PN sequence yr, which can be written as

α =
1

M
y⊗ yr, (8)

where α ∈ CM represents the coarse estimation of the
channel. Although the CIR is time-variant, α will imply the
information of the PCS of the channel.
Ω0 is acquired by means of choosing the entries

which are larger than the threshold value θ, e.g., Ω0 =
{l : ∥α[l] ≥ θ∥}L−1

l=0 . The value of θ can be configured as
θ = 3(

∑L−1
l=0 |α[l]|2)1/2/L [30]. After Ω0 is obtained, it will

be utilized to perform accurate channel estimation afterwards.

B. Step 2: Frame Structure after Reconstruction
The OFDM data block in this article is interfered by the

previous PN sequence. Hence, the process of frame recon-
struction is indispensable to eliminate the contamination for
the channel recovery.

Fig.3 demonstrates the frame reconstruction process. The
idea is according to the method of overlapping and adding
(OLA) [35]. It can be implemented by extending the OLA
operations to every transmit antenna. The differences include
the following three aspects. Firstly, the influence from ev-
ery antenna must be considered in MIMO-OFDM scenario.
Secondly, on account of the time-invariant channel, the IBI
caused by the PN sequence in Step 2.1 is not a simple linear
convolution between CIR and PN sequence, but a complex
effect considering the variant channel. Finally, in Step 2.3, the
first part of the convolution between the PN and CIR should
also take the time-variant channel into consideration.

Note that our scheme is derived from a MISO system.
However, when the multiple receive antennas in a MIMO
system perform signal processing as the single antenna does
in a MISO system, the so-called MISO system is equivalent
to and can be easily extended to the MIMO system. In this
way, the time-domain OFDM frame after performing frame
reconstruction is denoted as [8]

rΣ =
Nt−1∑

i=0

ri =
Nt−1∑

i=0

Hiti + wt, (9)

where ri, ti ∈ CN are the receive and transmit time-domain
OFDM frames from the i-th transmit antenna, respectively. rΣ

PN OFDM Block

-

-

+

Step 2.1:  remove IBI caused by
 the previous PN from all transmit antennas

Step 2.2:  add the next PN

Step 2.3:  remove first part of convolution 
between PN and the channel from all transmit 

antennas

PN

Reconstructed OFDM Block=

Fig. 3. Block cyclic reconstruction for the TFDT-OFDM system.

describes the receive frame superimposed by ri(0 ≤ i < Nt),
while wt ∈ CN represents the i.i.d. additive white Gaussian
noise (AWGN). The matrix Hi ∈ CN×N is made up of the
entries [Hi]k,j = h[k,mod(k − j,N)].

As the signal processing for different receive antennas
are the same, a single receive antenna is considered in the
following deduction. The i in the subscript is left out to
facilitate reading. In this condition, the frequency-domain
received frame is represented by

r̃ = FN (H(FH
N t̃) + wt) = HF t̃ + wf , (10)

where t̃ and r̃ are the transmit and received frames in the
frequency domain, respectively. FN ∈ CN×N is the discrete
Fourier transform matrix, HF = FNHFH

N is the frequency-
domain channel matrix, and wf = FNwt is the noise.

As the channel matrix HF is related with the CE-BEM bases
which has a series of good property like orthogonality, HF is
rewritten as [9]

HF =
Q−1∑

k=0

BCE
k Ck, (11)

where BCE
k =

√
NFNdiag(bCE

k )FH
N and Ck =

diag(FN (cTk,i, 01×(N−L))
T
). Consequently, by taking (11)

into (10), we can get

r̃ =
Q−1∑

k=0

BCE
k Ck t̃ + wf . (12)

C. Step 3: Accurate Doubly Selective Channel Estimation

For one thing, based on the characteristics of CE-BEM
bases, BCE

k is rewritten as [9]

BCE
k =

√
NFNdiag(bCE

k )FH
N =

√
NI⟨k−

Q−1
2 ⟩

N , (13)

For another, Cĩt is transformed to

Ck t̃ = diag(FN (cTk,i, 0(N−L)×1)
T
)̃t = 1√

N
diag(̃t)F′

Nck,i,
(14)

where F′
N = [FN ]0:N−1,0:L−1. Hence, r̃ is denoted by
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r̃ =
Q−1∑

k=0

I⟨k−
Q−1

2 ⟩
N diag(̃t)F′

Nck,i + wf . (15)

The pilots with identical indices pq(0 ≤ q < Q) are obtained
by left multiplying Ψq = [IN ]pq,0:N−1 ∈ CG×N , which is
expressed as

r̃pq
= Ψq r̃ =

Q−1∑

k=0

ΨqI⟨k−
Q−1

2 ⟩
N diag(̃t)F′

Nck,i + w′, (16)

where w′ = Ψqwf . ΨqI⟨k−
Q−1

2 ⟩
N diag(̃t) = 0 for k + q > Q

and k + q < 1 on the basis of the pilot groups in Fig. 1.
Therefore, r̃pq

is rewritten as

r̃pq
=

Q−1∑

k=0

Φk−q+Q−1
2

ck,i + w′, 0 ≤ q < Q, (17)

where

Φk =

{
Ψkdiag(̃t)F′

N , 0 ≤ k < Q
0G×L, other k

. (18)

Combining the cumulation in (18), we can get

r̃pq
= Φc̃q + w′, 0 ≤ q < Q, (19)

where c̃q = [cT−Q−1
2 +q

, cT−Q−1
2 +q+1

, . . . , cTQ+1
2 +q

]T and Φ =

[Φ0,Φ1, · · · ,ΦQ−1] are the sparse vector and the sensing
matrix, respectively. cTk = 0L×1 when k ≥ Q and k < 0.

The next steps utilize Q = 3 and noiseless situation as an
illustration for simple presentation without loss of generality.
Other values of Q with noise share the same results, whose
derivation is analogous.

The formulas for 0 ≤ q < 3 in (19) can be integrated as a
whole, which is

r̃p = ΦΛc̃, (20)

where r̃p = [̃rTp0
, r̃Tp1

r̃Tp2
]T , ΦΛ= diag(Φ,Φ,Φ) ∈ C3G×9L.

c̃ = [̃cT0 , c̃T1 , c̃T2 ]T = [0T , cT0 , cT1 , cT0 , cT1 , cT2 , cT1 , cT2 , 0T ]T in-
cludes both 0T ∈ CL×1 and nonzero parts of cT0 , cT1 , and cT2 .
For simplicity, the zero parts are ignored by deleting the cor-
responding columns in ΦΛ. The nonzero parts are integrated
by summing up the corresponding columns. Therefore, (20)
can be simplified as

r̃p = Φ̂Λč, (21)

where č = [cT0 , cT0 , cT1 , cT1 , cT1 , cT2 , cT2 ]T . Φ̂Λ ∈ C3G×7L is the
matrix after columns delete and replaced from ΦΛ. Rewrite
Φ̂Λ as Φ̂Λ = [Φ̂Λ0, Φ̂Λ1, . . . , Φ̂Λ6] by seperating it into 7
isometric submatrix, where Φ̂Λk ∈ C3G×L for 0 ≤ k < 7.
The ultimate formula in the CS framework can be represented
as

r̃p= Φ̂ĉ, (22)

where Φ̂ = [Φ̂Λ0 + Φ̂Λ1, Φ̂Λ2 + Φ̂Λ3 + Φ̂Λ4, Φ̂Λ5 + Φ̂Λ6]
and ĉ = [cT0 , cT1 , cT2 ]T .

In (22), only one transmit antenna is considered and we
leave out i in the subscript. In general cases, the subscript i
is appended and the received signal is superimposed by r̃p,
which is

r̃p,total=
Nt−1∑

i=0

r̃p,i =
Nt−1∑

i=0

Φ̂iĉi. (23)

Define c = [ĉT1 , ĉ
T
2 , . . . , ĉ

T
Nt−1]

T and Φ =
[Φ̂1, Φ̂2,...,Φ̂Nt−1], then (23) can be simplified as

r̃p,total= Φc, (24)

where c ∈ CQLNt and Φ ∈ CQG×QLNt are the sparse signal
to be recovered and the sensing matrix, respectively. c can
be divided into L blocks because cq have the characteristics
of jointly sparse for 0 ≤ q < Q. The i-th block includes
the entries [ĉ]i:L:(QNt−1)L+i, which are uniformly zeros or
nonzeros. Accordingly, equation (24) is a quintessential block
sparse model and using SCS methods cq will be estimated.

IV. PILOT PATTERN DESIGN

In the CS theroy, the sparse signal recovery is greatly
determined by the sensing matrix Φ̂. The sensing matrix is
determined by the pilot group location of all transmit antennas
according to the derivation from (12) to (24) in this article.
Consequently, a pilot group location, which is appropriately
designed, is beneficial to the sparse signal recovery and the
channel estimation.

For assessing the sensing matrix, the restricted isometry
property (RIP) [36] is a crucial criterion. The RIP is fulfilled
for the sensing matrix Φ̂ if a constant δ(0 < δ < 1) satisfying

(1− δ) ∥η∥22 ≤
∥∥∥Φ̂η

∥∥∥
2

2
≤ (1 + δ) ∥η∥22 , (25)

for all S-sparse vectors η ∈ CL. Nevertheless, the identifica-
tion algorithm with polynomial time complexity for RIP does
not exist [37]. Fortunately, the mutual incoherence property
(MIP), which is the sufficient condition for RIP, can be evaluat-
ed easily instead. The optimized parameter, i.e., the coherence
is the maximum coherence between different columns and is
defined as

µ = max
0≤l,k<L,l ̸=k

|⟨ϕl,ϕk⟩|
∥ϕl∥2 · ∥ϕk∥2

, (26)

where ϕl and ϕk are the l-th and the k-th column vector
in Φ̂, respectively. The minimization of coherence has been
exploited in lots of works to increase the accuracy of sparse
signal recovery [38]–[40].

Considering MIP in SCS scenario, the performance of co-
herence deteriorates due to quantitative growth of the sensing
matrix column vectors. By utilizing the characteristic of block
sparsity, the column vectors corresponding to identical taps are
integrated to blocks. In this condition, the blockcorrelation,
which is also called as blockcoherence [41], is adopted to
assess the correlation in one block. The blockcoherence is the
optimized parameter in this article and is represented by
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µB(Φ) = max
0≤l,k<n,l ̸=k

ρ
(
ΦH

l Φk

)

Nt
, (27)

where ρ (A) is the spectrum norm for A, which is equal to the
maximum singular value. The column vectors of the blocks are
normalized in the sensing matrix. The blockcoherence is the
parameter to describe the coherence among the blocks, which
is similar to the coherence. When the size of the block is 1,
the blockcoherence is degraded to the coherence. Accordingly,
the blockcoherence is an extension of the coherence. Instead of
the column coherence, the coherence between different blocks
is evaluated, which is the feature of the blockcoherence. With
a small blockcoherence, it can be easy for the blocks to be
discriminated from each other, which will increase the accu-
racy of the signal estimation. Therefore, the blockcoherence
should be minimized in this article, i.e.,

Φopt = argmin
Φ

(µB(Φ)) . (28)

It is arduous to find an analytic solutions for the problem
above in (29). Moreover, it is also impractical to do the brute
force search due to the enormous search space. Consequently,
a suboptimal search algorithm is needed.

The uniformly-spaced pilot pattern will lead to a large value
of blockcoherence [42], which will result in the failure of the
sparse signal recovery. Accordingly, the random location of
pilots is more suitable for sparse signal recovery. However,
its performance can be unpredictable. To design a sub-optimal
pilots location, the conventional optimization methods includes
the stochastic sequential search in [42], the cross entropy
optimization in [43], and the greedy pilot allocation method
in [44]. However, all these algorithms are based on the pilot
optimization scheme in SISO system under static channel. In
that condition, the optimization problem can be simplified
to the cyclic difference set (CDS) or almost difference sets
(ADS). For the doubly selective channel in MIMO condition
in this article, the GA for pilot pattern design is proposed,
which is shown in Algorithm 1.

In GA, the items to be optimized are named individuals.
An individual is translated into binary code and contains all
the pilot center location information. There are N subcarriers
in total. However, the eligible pilot center location number
is less than N because different pilot groups cannot overlap.
Actually, there are Y = N − [2Q + (2Q − 1)(G − 1)]
eligible pilot centers in total. Therefore, the individuals can
be generated by randomly obtaining G numbers from 1 to
Y . Then the G different numbers which contains the center
location information will be translated into binary code. When
performing the decoding process, the binary code can be
translated into G numbers according to the coding rule. And
then, sort the numbers in ascending order. For the i-th number
Yi, it corresponds the Yi +Q+ (2Q− 1)(i− 1)-th subcarrier.

The individuals can be mapped to a sensing matrix Φ̂
according to Step 3 in Section III. The fitness value of the
individual, which is the parameter to be optimized, is the
blockcoherence of the mapping sensing matrix.

In the algorithm, the crossover probability pc can be set as
0.5 for a balance of exchanging elements of individuals. The

Algorithm 1 GA for Pilot Pattern Design.
Inputs:

1) Subcarrier number N ;
2) BEM coefficient Q;
3) Pilot groups number G
4) Number of transmit antennas Nt;
5) The crossover probability pc;
6) Individual number for each generation nd;
7) Maximum simulation generations number ng;
8) A discrete probability distribution P for individual
selection;

1: First generation initialization for nd individuals.
2: while simulation generation does not reach ng do
3: Calculate the fitness values of current generation indi-

viduals (using equation (27)) and sort them descending.
4: Distribute the selection probability through P according

to the fitness value of the individuals.
5: for iiter = 0 : nd/2− 1 do
6: Select two individuals based on the selection proba-

bility.
7: For the chromosome pairs selected, determine

whether to be exchanged based on pc.
8: If the new individuals are both available, they will

comprise part of the next generation. Else, return to
Step 6.

9: end for
10: Obtain a new generation.
11: end while
Output: Individual with smallest fitness value.

probability distribution P is discrete and divided into nd parts,
where the non-uniform distribution can be available. After
nd individuals are generated, each individual is distributed
with a selection probability according to the fitness value
and P . After selection, we perform the crossover for every
element of the two individuals in order. On the basis of the
individual definition, the values of individual elements are in
the set of {1,−1}, which is convenient for the crossover. The
crossover is an operation of exchanging an element of the two
individuals. Appropriate crossover probability is indispensable
to avoid the fitness value from going to local convergence.

The loop of the proposed GA ends after the individuals of
a new generation are all the same or the simulation generation
reaches ng. At that time, an optimized individual with small
blockcoherence will be obtained, which can be decoded to a
sub-optimal locations of pilot centers.

V. THE PROPOSED ASA-BOMP FOR MIMO-OFDM
SYSTEMS

A. Algorithm Description
Utilizing the designed pilot pattern and location, the receiv-

er can perform channel estimation based on (24). A novel
recovery algorithm called ASA-BOMP is proposed, which
is detailed in Algorithm 2. The matrix c(s)Ω represents the
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Algorithm 2 Proposed ASA-BOMP for Doubly Selective
Channel Estimation in MIMO-OFDM systems
Inputs:

1) Initial channel PCS Ω0 = ∅;
2) Noisy measurements r̃p,total ∈ CQG;
3) Sensing matrix Φ̂ ∈ CQG×QLNt

Initialization:
1: Ω← Ω0

2: S = ∥Ω0∥0 − 1
Iterations:

3: while ∥r(S−∥Ω0∥0)∥2 > ϵ2 do
4: S ← S + 1
5: for s = 0 : S − ∥Ω0∥0 − 1 do
6: c(s) ← 0; c(s)Ω ← Φ̂†

Ωr̃p,total
7: r(s) ← r̃p,total − Φ̂c(s)
8: g← Φ̂Hr(s)

9: Ω← Ω ∪ argmax
j

QNt−1∑
i=0

|giL+j |
10: end for
11: c(S−∥Ω0∥0) ← 0; c(S−∥Ω0∥0)

Ω ← Φ̂†
Ωr̃p,total

12: r(S−∥Ω0∥0) ← r̃p,total − Φ̂c(S−∥Ω0∥0)

13: end while
Output: ĉ = c(S−∥Ω0∥0)

submatrix of c(s) with blocks in Ω, while Φ̂Ω is a submatrix of
Φ̂ with columns in Ω. The acquired PCS Ω0 is the additional
priori information in ASA-BOMP compared with the tradition-
al algorithm. Moreover, the computational complexity is lower
because only S−∥Ω0∥0 iterations are required instead of S in
BOMP. The adoption of the PCS can also improve the recovery
performance of the algorithm. Furthermore, the algorithm is
more feasible because it assumes no priori information to S
and will adaptively detect the sparsity level.

After the estimation of cq,i(0 ≤ q < Q, 0 ≤ i < Nt), the
elements c[q, l, i] can be acquired by equation (5). And then,
by utilizing (4) the doubly selective channel can be recovered.

B. Computational Complexity
For the inputs of the algorithm, Ω0 and S are constants,

while r̃p,total can be acquired according to the pilot pattern,
which is obtained offline using Algorithm 1. The sensing
matrix Φ̂ can be obtained based on (18) to (24). The com-
putational complexity mainly lies in the generation of Φk in
(18), where Q diagonal matrix multiplications are needed with
the computational complexity of O(QNL).

For the body part of the algorithm, there are two kinds of
iterations: an outer iteration (from step 3 to step 13) and an
inner iteration (from step 5 to step 10), respectively. The outer
iteration is utilized to try different values of the sparsity level
of the channel, which is intensely essential for the adaptive
property of the algorithm. The inner iteration is the main part
of the algorithm, which will run S − ∥Ω0∥0 times to get the
nonzero support. For each inner iteration, the computational
complexity consists of two main parts: the equivalent least
square problem c(s)Ω ← Φ̂†

Ωr̃p,total in step 5, and the inner
product between the observation matrix Φ̂H and the residue
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Fig. 4. Performance of the proposed ASA-BOMP and algorithm without
priori information.

matrix r(s) in step 7. The former has the computational com-
plexity of O(Q2LGNt), while the latter has the computational
complexity of O(Q2LGNt(QG + 1)). The inner iterations
are performed S − ∥Ω0∥0 times for each outer iteration. The
outer is performed S times at most. Compared with these,
the computational complexity for the inputs can be omitted.
Therefore, the total computational complexity of the ASA-
BOMP is on the order of O((S−∥Ω0∥0)SQ2LGNt(QG+2)).

C. Performance Analysis

The performance of the ASA-BOMP is evaluated in Fig. 4.
The simulation was run on the MATLAB 2012b via the CPU
of Intel(R) Core(TM) i7-4770 with 3.40 GHz and memory size
of 10.0 GB. The runtime versus the value of G is simulated.
For other coefficients, Q = 3, L = 256, and Nt = 8
are configured. Note that the scale of the sensing matrix is
Φ̂ ∈ CQG×QLNt . The algorithm without priori information
of PCS is also simulated as comparison. In the figure, it can
be seen that the ASA-BOMP runs faster than the counterpart,
which suggests that the ASA-BOMP is an efficient algorithm
to perform sparse signal recovery problems.

VI. SIMULATION RESULTS

In the following, we simulate our proposed doubly selective
channel estimation scheme and evaluate the performance. For
the antennas, the azimuth angles of arrival (AoA) and angles
of departure (AoD) are assumed to take continuous values,
i.e., not quantized, and are uniformly distributed in [0, 2π].
The parameters in the simulations are listed in Table I.

Using the selectivity of both time and frequency domains,
the doubly selective channel for a single antenna can be
simulated. For multiple antennas, firstly, the non-zero supports
are identical for different channels according to the property
of spatial correlation. Secondly, the amplitudes of the taps
are independent. Therefore, for the specific sample index,
independent channel taps are configured for the channels from
different antennas.
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TABLE I
PARAMETERS IN THE SIMULATIONS

Length of the PN sequences M 256
Length of the OFDM frames N 4096

Center frequency 634 MHz
Bandwidth W 7.56 MHz

Channel frequency selectivity 6-tap ITU vehicular-B
channel model [45]

Channel time selectivity
Normalized Doppler frequency
fmax = 0.08 corresponding to

the speed of 240 km/h
BEM coefficient Q 3

A. Influence of Pilot Group Location

The blockcoherence of different types of pilot patterns are
illustrated in Fig. 5. Apart from the pilot group location
designed by the proposed GA in Algorithm 1 (pc = 0.5, nd =
ng = 100, and P is the Geometric distribution with the
common ratio of 0.95), the random pilot groups of pilot pattern
is also illustrated as a benchmark. Nt = 2, 4, and 8 are
considered, respectively. The blockcoherence for uniformly-
spaced pilot pattern is extremely greater than that of the
random one, which is not illustrated in the figure. It can be
seen that the blockcoherence for the random pilot pattern is
much larger than the proposed one, which indicates that the
designed pilot pattern is more suitable for the sparse channel
recovery. In general, the proposed GA can efficiently reduce
the value of blockcoherence.

It should be noted that the sensing matrix with larger
Nt tends to have a smaller value of blockcoherence, which
is counter-intuitive. As the number of antennas rises, the
additional column vectors will break the orthogonality of the
blocks, which may lead to the increase of the local blockco-
herence (between two blocks). However, the blockcoherence
is the maximum of the local blockcoherences, as shown
in (27). For the maximum value, there is more relevance
than orthogonality. This means when the size of the blocks
increases, the additional column vector will be more likely
to reduce the relevance. Therefore, the sensing matrix with
the largest Nt has the smallest blockcoherence, and Fig. 5
illustrates this observation.

B. Performance of PAPR

The average peak-to-average power ratio (PAPR) for 10000
different frames is simulated. G = 80 and Q = 3 are
configured. The average PAPR for the proposed scheme is
8.9751, while the average PAPR for the conventional scheme
in [20] is 9.2333. The proposed scheme even outperforms the
conventional one in PAPR because the number of the nonzero
pilots is larger and the power of the pilots is less fluctuating.
It indicates that the proposed pilot pattern scheme will not
degrade the PAPR performance, which is intensely essential
for the system stability.

C. Performance of Channel Estimation

The accurate recovery probability is simulated in Fig. 6
between the ASA-BOMP and the traditional BOMP [21] for
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10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

R
ec
ov
er
y
Pr
ob
ab
ilit
y

Number of Pilot Groups

Proposed ASA-BOMP
Conventional BOMP
Standard OMP
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4× 4 MIMO system.

4×4 MIMO systems. Meanwhile, the performance of OMP is
also shown as a reference. The accurate recovery is the correct
recovery of the support. The SNR is set to be 20 dB. Fig. 6
illustrates that the ASA-BOMP algorithm needs only 65 pilot
groups to maintain the accurate CIR recovery, which saves 5
and 25 groups compared with BOMP and OMP, respectively.
The improvements originate from the priori information of
the obtained PCS and the utilization of the block sparse
characteristic.

Fig. 7 demonstrates a quintessential channel estimation
result for 4 × 4 MIMO systems when SNR is configured as
20 dB. For the sake of time-variant channel, only channel
estimation results at sample 0 and L are demonstrated in
the figure. It can be seen that the PCS can be obtained
by selecting the entries larger than the threshold value. By
using the obtained PCS, the nonzero support for the channel
can be efficiently estimated for different antennas. When
SNR = 20 dB, the nonzero support can be accurately estimated,
while the amplitude and angle will have a tiny bias.

Fig. 8 illustrates the mean square error (MSE) simulations
for Nt = 2, 4, and 8. G = 80 is configured for accurate
estimation of the channel. The MSE is defined as
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E(∥ĥ− h∥
2

2) =
N−1∑

l=0

∥
Nt−1∑

i=0

(ĥ
(l,i)

s − h(l,i)
s )∥22. (29)

The conventional BOMP [21] is simulated by contrast, while
the Cramer-Rao lower bound (CRLB) (η = SNtσ2/G, whose
proof can be seen in Appendix) in the ideal case is also eval-
uated as a reference. Our scheme has better performance than
the traditional BOMP because of the auxiliary information of
nonzero support. Moreover, the power of the measurements
is much larger than that in [22] due to more nonzero pilots,
which further improves the performance. It can be seen that
the ASA-BOMP algorithm has 1.5, 1.8, and more than 5 dB
gains compared the conventional BOMP when the MSE of
10−2 is considered for Nt = 2, 4, and 8, respectively. The
MSE is approaching the CRLB and is less than 0.5 dB away
from it above the SNR level of 25 dB. The conventional
TFDT-MIMO-OFDM time-invariant channel estimation tech-
nique in [3] is also simulated. For better presentation, only
Nt = 2 is illustrated. It can be seen that the conventional
TFDT-OFDM channel estimation scheme failed to recover the
doubly selective channel, which proves the importance and
the advantage of our proposed scheme. To summarize, the
proposed scheme outperforms the traditional ones for MIMO-
OFDM systems.

Fig. 9 illustrates the performance in moderate mobility
scenarios, where 30 km/h is simulated. The conventional
moderate mobility scheme [3] is compared as a benchmark.
It can be seen that the performances of the two schemes are
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scheme [3] with Nt=2

Fig. 8. The MSE performance comparison under speed of 240 km/h among
different schemes for different number of transmit antennas.

Fig. 9. The MSE performance comparison under speed of 30 km/h among
different schemes for different number of transmit antennas.

almost the same, which suggests that the proposed scheme has
advantage mainly in high mobility scenarios and can also be
adopted in moderate mobility scenarios with an outstanding
performance.

The BER is considered in Fig. 10 when low density parity
check code (LDPC) is adopted [46] in a 4×4 MIMO system.
The code length is 7493, code rates are 0.4 and 0.8, while the
constellations are 256QAM and 16QAM. The ideal BER is
also considered to indicate the lower bound. On the one hand,
high-order modulations like 256QAM can be supported well
in our scheme under doubly selective channel. On the other
hand, low-order modulations such as 16QAM has excellent
performance with low SNR demands. Our approach has 0.9 dB
and 0.7 dB gains compared with the traditional BOMP when
the BER is 10−3 for 256QAM and 16QAM, respectively.
Moreover, our scheme is approaching and only around 0.2 dB
away from the lower bound.

VII. CONCLUSIONS

A new channel estimation scheme in high-mobility situa-
tions is considered for multiple antenna systems in this article.
The channel is abstracted as 3 domains to describe the doubly
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Fig. 10. BER performance comparison with 256QAM&16QAM constellation
and LDPC rate of 0.8&0.4.

selective property. Both the PN sequence and the pilots are
employed in our scheme. The PN sequence is adopted to ob-
tain the PCS, while the pilots finally recover the channel based
on the SCS model by utilizing the optimized pilot location via
GA and the spatial correlation among antennas. An improved
SCS algorithm ASA-BOMP for MIMO-OFDM systems is
proposed for accurate CIR acquisition. It is demonstrated in
the simulations that our scheme has better performance than
the traditional ones with lower complexity and will be a
promising technique in the future MIMO-OFDM systems.

APPENDIX
THE PROOF OF CRLB OF MSE

In the ideal case, the nonzero support is estimated correctly,
which can be denoted as D(∥D∥0 = QSNt). Consequently,
the entries outside the support D are set to zeros. Equation
(24) is simplified as

r̃p,total = φDcD, (30)

which can be estimated by solving an over-determined equa-
tion under the maximum likelihood (ML) criterion.

cest = φ
+
D r̃p,total = (φ

H
DφD)−1φD r̃p,total. (31)

Then, the CRLB of c can be denoted as

ηc = E{∥cest − cD∥2} =
QSNt

QG
σ2 =

SNt

G
σ2. (32)

Utilizing (4), the CRLB of the proposed channel estimation
method can be derived as

√
Nηh = E{∥ĥ− h∥2}

= E{

√
N−1∑
l=0
∥
Nt−1∑
i=0

(ĥ
(l,i)

s − h(l,i)
s )∥22}

= E{

√
N−1∑
l=0
∥
Nt−1∑
i=0

(
Q−1∑
q=0

ĉ[q, l, i]bq −
Q−1∑
q=0

c[q, l, i]bq)∥22}

= E{

√
N−1∑
l=0
∥(

Nt−1∑
i=0

Q−1∑
q=0

(ĉ[q, l, i]− c[q, l, i]))bq∥22}

= E{

√√√√N−1∑
l=0

[(
Q−1∑
q=0

(ĉ[q, l]− c[q, l])bq)

H Q−1∑
q=0

(ĉ[q, l]− c[q, l])bq]}

= E{

√
N−1∑
l=0

Q−1∑
q=0

Nt−1∑
i=0

bH
q bq(ĉ[q, l, i]− c[q, l, i])2}

=
√
Nηc

=
√
NSNt
G σ2

.

(33)
The derivation utilizes the orthogonality of the expansion

basis, and the ℓ2-norm of the basis is
√

bH
q bq =

√
N for

q = 0, 1, ..., Q− 1. Accordingly, the CRLB is rewritten as

ηh =
SNt

G
σ2. (34)
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