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Visible Light Integrated Positioning and
Communication: A Multi-Task Federated

Learning Framework
Tiankuo Wei, Sicong Liu, Senior Member, IEEE, and Xiaojiang Du, Fellow, IEEE

Abstract—Recently, visible light positioning and visible light communication are becoming a promising technology for integrated
sensing and communication. However, the isolated design of positioning and communication has limited the system efficiency and
performance. In this paper, a visible light integrated positioning and communication (VIPAC) framework is formulated, in which the
positioning task for the sensing service and the channel estimation task for the communication service are integrated into a unified
architecture. Firstly, a multi-task learning architecture, which is composed of a sparsity-aware shared network and two task-oriented
sub-networks, is proposed to fully exploit the inherent sparse features of visible light channels, and achieve mutual benefits between
the two tasks. The depth of the shared network can be adaptively adjusted to extract the optimal shared features, and the two
sub-networks are further optimized for the two tasks, respectively. Moreover, the emerging federated learning technique is introduced
to devise a multi-user cooperative VIPAC scheme, which further improves the generalization ability in spatiotemporally nonstationary
environments while preserving data privacy. It is shown by theoretical analysis and simulation results that, the proposed scheme can
significantly improve the performance of positioning and channel estimation in spatiotemporally nonstationary environments compared
with existing benchmark schemes.

Index Terms—Integrated sensing and communication, visible light positioning, visible light communication, federated learning,
multi-task learning, channel estimation, sparse learning
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1 INTRODUCTION

W ITH the explosive increase of mobile devices and
the requirements of various emerging applications

and services, including sensing, positioning, communica-
tion, and computing, more efficient resource utilization and
stronger support of diversified services are required in
the next-generation beyond 5G and 6G networks [1], [2],
[3]. To address this issue, an emerging wireless technique
paradigm of integrated sensing and communication (ISAC),
which co-designs the sensing and communication systems
in order to achieve mutual benefits between them, has
drawn much attention from academia and industry [4],
[5]. Specific ISAC techniques can be devised to improve
the spectral and energy efficiency by sharing the spectrum
resources and hardware implementations between sensing
tasks such as target detection and navigation, and various
wireless communication tasks. Meanwhile, great perfor-
mance potentials can be attained from the inherent mutual
benefits between the sensing and communication tasks by
designing an effective ISAC mechanism [6].

In recent years, visible light positioning (VLP) and vis-
ible light communication (VLC) have been envisioned as
promising candidates for the applications of indoor broad-
band access and high-precision positioning, because of the
high positioning accuracy of VLP [7], [8], [9], [10], [11], ultra-
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wide spectrum of VLC, as well as many attractive character-
istics such as the cost-effective hardware implementation,
electromagnetic-interference-free transmission, privacy pro-
tection ability, and unregulated spectrum [12], [13], [14], etc.

However, the VLP and VLC systems are usually de-
signed separately. The potential mutual benefits between
positioning and communication have not been utilized ef-
fectively. Lack of a unified ISAC design of VLP and VLC has
limited the potentials of the resource utilization efficiency
and the communication and positioning performance. On
the other hand, exploiting the sparse features of visible light
channels with only a few dominant channel paths, some
compressed sensing (CS) based methods are investigated for
visible light positioning [15] or channel estimation [16], [17].
However, in harsh conditions such as insufficient measure-
ment data, intensive background noise, large sparsity level,
or complicated sparse structure, the performance of existing
CS-based algorithms still needs to be further improved
because the inherent sparse channel features remain to be
extracted and fully exploited [18], [19], [20]. Thus, it is nec-
essary to introduce the sparse learning technique, which can
effectively learn the sparse characteristics from complicated
distributions, to further improve the performance of channel
estimation and positioning simultaneously.

Therefore, in order to solve the above-mentioned prob-
lems of state-of-the-art VLC and VLP systems, it is essential
to design an ISAC framework that integrates the functional-
ities of both accurate positioning and efficient communica-
tion for visible light networks. To this end, we will design
such an ISAC framework in this paper, which intelligently
learns the sparse characteristics of visible light channels,
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with satisfactory generalization and adaptation capability
in spatiotemporally nonstationary environments.

One of the essentials in designing an ISAC framework
is to achieve mutual benefits between the positioning and
communication tasks. Multi-task learning (MTL) [21] is an
emerging machine learning paradigm that jointly learns
multiple related tasks, aiming at sharing the domain-specific
knowledge between different tasks to improve the perfor-
mance of all tasks [22], [23]. Thus, it is very promising to
introduce MTL to effectively explore the potential mutual
benefits between the visible light positioning and commu-
nication tasks to improve the performance of both the two
tasks.

Hence, in this paper, we propose an MTL-based ISAC
framework, called visible light integrated positioning and
communication (VIPAC), where the visible light channel
state information is utilized to facilitate the location pre-
cision for the VLP task, and vice versa, the positioning
information also brings about benefits to channel estimation
for the VLC task. Specifically, an MTL-based deep neural
network, which is composed of a sparsity-aware shared
network and two task-oriented sub-task networks, is de-
vised. The depth of the sparsity-aware shared network can
be adaptively adjusted to extract the optimal shared sparse
features and most mutual benefits between the two tasks
of channel estimation and positioning. The structures of the
two task-oriented sub-networks can be further optimized
specifically for the two tasks, respectively, to further en-
hance the learning ability of the two tasks. Besides, the
pilot subcarriers are also shared to implement the two tasks
simultaneously, which greatly saves the spectrum resources
and improves spectral efficiency.

Furthermore, to avoid the degradation of the perfor-
mance of positioning and channel estimation caused by the
spatiotemporal nonstationary property of the visible light
channel, the emerging technique of federated learning (FL)
[24], [25] can be introduced to improve the generalization
performance of the proposed MTL-based VIPAC scheme in
complicated time-varying and/or spatially variant environ-
ments. FL is an emerging distributive learning paradigm
that allows many data owners to train a global neural
network model cooperatively without sharing local training
data for the purpose of privacy protection [26], [27], [28].
Thus, in the multi-task federated learning (MTFL) frame-
work proposed in this paper, each user equipment (UE)
plays the role of an intelligent agent, which can collect
samples from its corresponding spot to build a local dataset
and train a local model, while many UE agents can combine
the weights of the local models to cooperatively train a
global model for positioning and channel estimation tasks.

Specifically, in the MTFL framework, the weights of the
global model at the central server are updated iteratively
via multiple rounds of communications between the central
server and the UE agents. The weights of the local models
at the UE agents are trained by the local datasets that
are updated over time, and the local weights are aver-
age combined at the central server to generate the global
weights. Thus, the generalization ability towards temporal
variation and the adaptability to time-varying channels can
be improved for the proposed global model. Moreover,
a cellular cluster architecture is devised to facilitate the

training of the MTFL-based model and to improve the
spatial generalization ability of the proposed VIPAC scheme
in spatially nonstationary environments. The entire targe
area of interest can be divided into several cellular clusters,
with each cellular cluster containing a certain number of
identically or similarly deployed hexagonal cells, where a
light emitting diode (LED) lamp is placed in the center
of each cell. Since the MTFL-based global model for the
cellular cluster architecture is jointly trained using many
datasets gathered from different UE agents at variant spatial
locations, the trained model is more likely to be applicable
in variant environments. In addition, thanks to the FL-based
mechanism, the local dataset of a UE agent will not be shared
with other UE agents or the central server, which protects
the data and location privacy of the users very well.

Consequently, a novel framework of VIPAC in the ISAC
technical regime is proposed in this paper, which shares the
spectrum and hardware resources for the resource-efficient
joint positioning and channel estimation tasks. In the VIPAC
framework, a depth-adaptive MTL-based network architec-
ture is devised, which is used to learn the mutual beneficial
features between the positioning and channel estimation
tasks via a sparsity-aware shared network, and to achieve
a better performance via optimizing the two task-oriented
sub-networks. The MTFL framework is further formulated
to improve the spatiotemporal generalization capability of
the global model, and meanwhile to protect the location
and data privacy of the users. Theoretical analysis and
simulation results have shown that, the proposed scheme
can significantly improve the performance of both the
positioning and channel estimation tasks in spatiotempo-
rally nonstationary environments, and outperforms existing
benchmark schemes. To summarize, the main contributions
of this paper are list as follows.

• An ISAC framework called VIPAC is formulated for
joint visible light positioning and communication
tasks, where channel estimation and positioning are
integrated into the unified framework, and a prac-
tically applicable and spatiotemporally migratable
cellular cluster architecture is devised.

• An MTL-based neural network architecture is pro-
posed to exploit the mutual benefits between the po-
sitioning and communication tasks, where the depth
of the shared network can be adaptively adjusted
to learn the optimal shared sparse features of the
visible light channel, while the two task-oriented
sub-networks are further optimized respectively.

• An MTFL framework is formulated for the multi-
user cooperative VIPAC scheme to further improve
the spatial and temporal generalization ability of the
global model in the complicated spatiotemporally
nonstationary environments, while preserving the
privacy and confidentiality of the data and location
of the users.

The remainder of this paper is structured as follows.
The system model of the proposed VIPAC framework is
described in Section 2. The proposed MTL-based network
architecture and the MTFL-based scheme are introduced
in Section 3 and Section 4, respectively. The performance
bound of the proposed MTL-based scheme and the conver-
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Fig. 1. The system model of the VIPAC framework.

gence of the proposed MTFL framework are theoretically
analyzed in Section 5. Simulation results with discussions
are reported in Section 6, followed by the conclusions in
Section 7.

2 VISIBLE LIGHT INTEGRATED POSITIONING AND
COMMUNICATION FRAMEWORK

In this section, we first describe the typical system model
and visible light channel model of the indoor positioning
and communication system. Then, we introduce the VIPAC
framework, including the design of the signal model for
joint positioning and channel estimation, as well as the
proposed multi-lamp cellular cluster architecture.

2.1 System Model of Indoor Visible Light Positioning
and Communication

A typical multi-LED orthogonal frequency division multi-
plexing (OFDM)-based VLC system using intensity modu-
lation/direct detection (IM/DD) is shown in Fig. 1(a). The
input data bits are first mapped to M -ary quadrature am-
plitude modulation (QAM) symbols, and the pilot signals
for channel estimation are inserted. To obtain real-valued
signals required by VLC transmission, Hermitian symmetry
is implemented before imposing the inverse fast Fourier
transform (IFFT) processing. After adding the cyclic prefix
(CP), the resulting digital signal is converted to an analog
electric signal by the digital-to-analog converter (DAC).
Then, a biased direct current (DC) is added to the electric
signal to generate a positive current that drives the LED
light intensity with an electro-optical conversion efficiency
denoted by α. Finally, the modulated LED light is emitted
for simultaneous data transmission and illumination pur-
poses.

In the indoor environments, the optical wireless prop-
agation channel between the LED and the photodetector
(PD) at the receiver is composed of the line-of-sight (LOS)
component and the non-line-of-sight (NLOS) component
[29]. The length-L channel impulse response (CIR) vec-
tor between the t-th LED located at the coordinate of

a(t) = [a
(t)
x , a

(t)
y , a

(t)
z ] and the PD at the receiver located at

c = [cx, cy, cz] can be expressed as

h(t) = h
(t)
LOS + h

(t)
NLOS, (1)

where h
(t)
LOS and h

(t)
NLOS represent the CIR components of

the LOS and NLOS links, respectively.
Usually, it is assumed that the LEDs follow a Lambertian

emission pattern [29], and the n-th element of the LOS CIR
vector can be expressed as

[h
(t)
LOS]n =

(m+ 1)APDcosm(ϕ(t)) cos(ψ(t))gTs

2πd(t)2

rect(
ψ(t)

ψFOV
)δ(nτs −

d(t)

c
),

(2)

where d(t) is the distance between the t-th LED and the
PD. APD is the effective geometrical area of the PD. Ts and
g are the gain of the optical filter and the optical concen-
trator of the PD, respectively. ϕ(t) and ψ(t) are the angles
of irradiance and incidence with respect to the normal
direction, respectively. rect(·) is the rectangular function,
and ψFOV is the field-of-view (FOV) angle of the PD. δ(·)
is the Dirac delta function, and τs is the sampling period.
c is the light speed. m is the Lambertian order given by
m = −ln2/ln(cos(ϕ1/2)), where ϕ1/2 is the half-power
angle of the LED.

Since most of the power of the NLOS link is concentrated
on the first reflected light [29], the NLOS link is modeled as
a diffusion channel of the first reflection, where the wall
can be segmented into many small surfaces regarded as
reflection elements. Thus, the n-th element of the NLOS CIR
vector is given by

[h
(t)
NLOS]n =

∫
walls

(m+ 1)APDgTsρ̄

4π2d
(t)
in

2
d

(t)
ref

2 cosm(ϕ
(t)
in ) cos(ψ

(t)
in )

cos(ϕ
(t)
ref) cos(ψ

(t)
ref)rect(

ψ
(t)
ref

ψFOV
)δ(nτs −

d
(t)
in + d

(t)
ref

c
)dAwalls,

(3)

where d(t)
in and d

(t)
ref denote the distances between the t-th

LED and the surface reflection element, and between the
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surface reflection element and the PD, respectively. ϕ(t)
in and

ϕ
(t)
ref are the angles of irradiance of the LED and the surface

reflection element, respectively. ψ(t)
in and ψ(t)

ref are the angles
of incidence of the surface reflection element and the PD,
respectively. ρ̄ is the average diffuse reflectance of the wall.
dAwalls is a reflective area infinitesimal on the wall.

It is revealed that the visible light channel modeled in
(1) is in fact a sparse multipath channel model [17], [19].
This means that most of the energy is concentrated on
only a few dominant taps in the CIR vector h(t), while the
other taps are zero or relatively much smaller. This sparse
property of the visible light channel can be fully exploited
in the proposed MTL-based framework to facilitate shared
sparse feature extraction between positioning and channel
estimation tasks for a better joint performance.

At the receiver, the received visible light signal is firstly
converted to an electric signal via the PD with a responsivity
of Rp. After passing through a series of the analog-to-digital
converter (ADC), CP removal, FFT processing, frequency-
domain equalization, and M -QAM demapping modules,
the recovered output data bits can be obtained. Meanwhile,
the received pilot subcarriers can be extracted for joint
positioning and channel estimation using the proposed MTL
network, and afterwards the estimated CIR can be utilized
for equalization.

In a traditional VLP system, the position is usually
estimated by some certain metrics of the received visible
light signal, such as received signal strength and angle of
arrival [8]. In the proposed VIPAC framework, the position
coordinates and the CIR can be simultaneously obtained
from the received pilot signal using the proposed MTL
network. The detailed signal model of VIPAC is introduced
in next subsection.

2.2 VIPAC Framework Formulation

In this subsection, the OFDM signal model and the pilot
signal design for the VIPAC are firstly introduced, followed
by the multi-lamp cellular cluster architecture devised to
facilitate federated learning.

2.2.1 Signal Model for VIPAC

An OFDM symbol transmitted by the t-th LED is composed
of the length-NCP CP sequence and the length-N OFDM
data block x(t), which can be expressed as

x(t) = [x
(t)
1 , x

(t)
2 , · · · , x(t)

N ]T = FH x̃(t), (4)

where F represents the N × N discrete Fourier transform
(DFT) matrix. x̃(t) = [0, x̃

(t)
2 , · · · , x̃(t)

N/2, 0, x̃
(t)
N/2, · · · , x̃

(t)
2 ] is

the frequency-domain OFDM data block composed of the
pilot and data subcarriers, because of the Hermitian sym-
metry. As illustrated in Fig. 1(b), for the t-th LED, Np pilot
subcarriers are randomly distributed with the subcarrier
indices given by

P (t) = {p(t)
n }

Np

n=1, (5)

where p(t)
n ∈ {2, 3, · · · , N/2} is the subcarrier index of n-

th pilot for the t-th LED. The pilot distribution patterns of
different LEDs are arranged in an orthogonal manner.

At the PD of the receiver, the received frequency-domain
OFDM data block ỹ = [ỹ1, ỹ2, · · · , ỹN ] is given by

ỹ = αRp

∑Nt

t=1
diag(x̃(t))FLh(t) + w̃, (6)

where diag(x̃(t)) denotes a diagonal matrix whose diagonal
elements are those of the vector x̃(t). The matrix FL denotes
the N × L partial DFT matrix consisting of the first L
columns of the full N × N DFT matrix F. The vector
w̃ denotes the frequency-domain background noise, which
can be usually modeled as additive white Gaussian noise
(AWGN). In the pilot extraction process, the received pilot
subcarriers located at P (t) from the t-th LED are picked
out from ỹ as in (6) and normalized by the corresponding
transmitted pilot values, which yields

u(t) = F(t)
p h(t) + w̃(t), (7)

where u(t) is called the channel measurement vector cor-
responding to the received normalized pilots from the
t-th LED, with its n-th element given by [u(t)]n =

ỹ
p

(t)
n
/(αRpx̃

(t)

p
(t)
n

), n = 1, · · · , Np. The matrix F
(t)
p denotes

the Np × L partial DFT matrix, which is composed of the
Np rows of FL with the indices determined by P (t), and
thus its element [F

(t)
p ]m,n is given by exp(−j2π(p

(t)
m −1)(n−

1)/N)/
√
N . The vector w̃(t) is the noise corresponding to

the pilot locations of the t-th LED.
By stacking all the channel measurement vectors corre-

sponding to the normalized pilots from all the Nt LEDs,
and meanwhile stacking all the CIR vectors between the Nt

LEDs and the receiver, the channel measurement model in
the VIPAC framework can be reformulated as

u = FΛh + w̃Λ, (8)

where u = [(u(1))T , (u(2))T , · · · , (u(Nt))T ]T is
the stacked channel measurement vector, while
h = [(h(1))T , (h(2))T , · · · , (h(Nt))T ]T is the stacked
CIR vector, and w̃Λ is the stacked background noise vector.
The matrix FΛ is called the observation matrix, which is a
block diagonal matrix given by

FΛ =


F

(1)
p · · · 0
...

. . .
...

0 · · · F
(Nt)
p


NtNp×NtL

. (9)

As described above, the indoor visible light channel
is usually concentrated on only a few taps in the delay
domain. Therefore, the CIR vector is usually a sparse vector
[17], [19]. Exploiting the inherent sparsity of the visible light
channel, the stacked CIR vector h can be recovered from
the stacked channel measurement vector u via classical CS-
based algorithms and the emerging sparsity-aware deep-
learning-based methods. Moreover, according to (1)-(3), the
channel measurement data in u contains plenty of position-
related information, so it can also be utilized to estimate
the location coordinate c of the receiver. To this end, an
MTL-based architecture is proposed to extract the shared
features beneficial for both channel estimation and position-
ing, which is elaborated in detail in Section 3.
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2.2.2 Multi-Lamp Cellular Cluster Architecture Design for
Multi-User Cooperative VIPAC

To improve the spatial generalization ability of the learnt
MTL-based network, a multi-lamp cellular cluster archi-
tecture is designed in this paper, which provides a sys-
tematic and spatially transferrable VIPAC model enabling
the proposed MTFL framework. Specifically, as illustrated
in Fig. 1(c), the VLC coverage area in an arbitrary indoor
environment with many LEDs can be divided into multiple
hexagonal VLC cells as is done in mobile cellular networks
[30], [31], where each VLC cell contains an LED in the center
on the ceiling. A certain number of VLC cells constitute a
multi-lamp cellular cluster. Since the light intensity decays
with the propagation distance, the coverage of an LED is
mostly limited in the cell and the same subcarriers can
be reused in different cellular clusters, which is like the
frequency reuse technology in mobile cellular networks.

As a typical example, the cluster pattern with each cel-
lular cluster consisting of four cells is illustrated in Fig. 1(c),
where the orange and blue clusters are two adjacent clusters
reusing the same subcarriers. With the help of the cellular
cluster architecture, different clusters have a property of
approximate spatial equivalence between each other, because
they can be approximately transferred to each other by some
simple operations such as flipping, rotating, and shifting.
In other words, if you look at two different clusters from
some specific spatial perspective, they look quite similar to
each other. This makes it very convenient for a universally
effective global model to be learnt in the MTFL framework.
In fact, the original positioning problem of estimating the
absolute coordinate can be transferred to another equivalent
problem of estimating the relative coordinate with respect
to the cluster center, which is universally applicable for
different clusters. Specifically, as denoted by the orange and
blue dots in Fig. 1(c), the absolute coordinates of the two
pairs of different positions in the two clusters are different.
However, their relative coordinates to their corresponding
cluster center are the same. When the relative coordinates
are estimated correctly, the absolute coordinates can be
easily obtained with the information of the absolute LED
positions in the corresponding cluster. Hence, by converting
the original absolute positioning problem to an equivalent
relative positioning problem using the cellular cluster ar-
chitecture, a generalized global VIPAC model effective for
different clusters in various kinds of environments and
scenarios can be trained in the MTFL framework, which
is an effective way to improve the spatial generalization
ability, as described in detail in Section 4.

3 SPARSITY-AWARE MULTI-TASK LEARNING FOR
ACCURATE CHANNEL AND POSITION ESTIMATION

In this section, we introduce the proposed sparsity-aware
MTL-based network for accurate channel and position es-
timation in the VIPAC system. As illustrated in Fig. 2,
it is composed of a sparsity-aware depth-adaptive shared
network and two task-oriented sub-networks for channel
and position estimation, respectively.

3.1 Multi-Task Learning Based Network Architecture

Different from the traditional single-task learning, MTL is
aimed at training a joint model for multiple related tasks
so that the domain-specific knowledge of each task can be
harnessed to improve the generalization ability of the joint
model for all the tasks [21]. Data augmentation is achieved
by aggregating the training data across all the tasks to
learn a more accurate model for each task, which can better
exploit the domain-specific knowledge and reduce the data
amount required for satisfactory performance. Meanwhile,
with more data from different tasks, MTL can extract the
inherent mutual benefits and provide a more robust and
more general representation for these tasks, which leads to
a lower risk of overfitting for each task [22].

Hence, an MTL-based network is devised in this paper,
which can extract the shared features of the channel sparsity
for both the tasks of channel estimation and positioning,
as illustrated in Fig. 2. By extracting the inherent sparse
features of the visible light propagation channel, the accu-
racy of channel estimation can be improved. Meanwhile, as
shown in (1)-(3), the sparse feature of the channel reflects the
locations of the dominant taps in the CIR, so it contains the
information of the distance between the PD and the LED as
well as the surrounding environment, which can be utilized
for positioning. Therefore, the sparse features of the channel
can be shared between positioning and channel estimation
to improve the performance of both the two tasks.

Specifically, in the proposed MTL-based network ar-
chitecture, a sparsity-aware shared network is devised to
extract the shared sparse features between the two tasks,
and meanwhile to obtain a coarse estimation of the CIR.
To find the optimal equilibrium point of the shared sparse
feature, the depth of the shared network can be flexibly and
adaptively adjusted, and an optimal performance tradeoff
between the two subtasks can be achieved for different
scenarios and QoS requirements. Afterwards, the shared
representation extracted out of the shared network is then
fed into the two task-oriented sub-networks for channel
and position estimation, respectively. The shared network is
jointly trained to achieve the best mutual benefits between
the two tasks, and the two sub-networks can be refined and
further optimized respectively to improve the performance
of either task, which is described in detail as follows.

3.2 Sparsity-Aware Depth-Adaptive Shared Network

To extract shared sparse features, in this paper, a sparsity-
aware deep-unfolding neural network inspired by the clas-
sical iterative sparse recovery algorithm of approximate
message passing (AMP) is utilized as the shared network,
as illustrated by the green dashed block in Fig. 2. The
shared network is utilized to obtain a coarse estimation of
the sparse pattern of the CIR vector, which is an important
shared feature for channel estimation and positioning. In
the structure of the sparsity-aware shared network, each
layer mimics an iteration of the AMP algorithm, and the
operations of the i-th layer are given by

ĥS,i+1 = η(ĥS,i + BS,ivS,i;σS,i, θS,i), (10)

vS,i+1 = u− FΛĥS,i+1 + bS,i+1vS,i, (11)
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Fig. 2. Illustration of the proposed sparsity-aware multi-task learning architecture for accurate channel and position estimation.

where ĥS,i = [(ĥ
(1)
S,i)

T , (ĥ
(2)
S,i)

T , · · · , (ĥ(Nt)
S,i )T ]T denotes the

estimated CIR vector of the i-th layer, and vS,i is the residual
measurement error vector of the i-th layer. BS,i denotes the
layer-dependent learnable weights, which is a parametric
matrix converted from the observation matrix FΛ. The soft
threshold shrinkage function η(·) is defined element-wise
with its n-th element given by

[η (rS,i;σS,i, θS,i)]n , sgn
(
[rS,i]n

)
max

(∣∣[rS,i]n
∣∣− θS,iσS,i, 0

)
,

(12)
which accepts three parameters as the input, including the
noisy measurement vector rS,i = ĥS,i + BS,ivS,i, the stan-
dard deviation of the residual error σS,i = ‖vS,i‖2 /

√
NtNp,

and the learnable threshold parameter θS,i. By exploiting
η(·) as a sparsity inducer, the noisy component with small
amplitude in the noisy measurement vector rS,i can be elim-
inated, while the dominant nonzero elements larger than
threshold are kept with an amplitude shrinkage imposed
thereon. Thus, the sparse vector ĥS,i+1 can be obtained. The
Onsager correction item bS,i+1vS,i aims to make the noise
component in rS,i obey the Gaussian distribution with the
standard deviation σS,i [32], where bS,i+1 is calculated by

bS,i+1 =
1

NtNp

NtL∑
n=0

∂[η(rS,i;σS,i, θS,i)]n
∂[rS,i]n

. (13)

Let us denote the output of the shared network as
ĥS,NI , which can be regarded as a coarse estimate of the
stacked CIR vector h, with NI being the depth of the shared
network. It is more important for the shared network to
acquire the sparse features reflected by the dominant taps of
the CIR rather than the other small-scale elements, because
taking too many other redundant features into consideration
might introduce noise components and interferences that
cause performance degradation to positioning accuracy. The
depth of the shared deep-unfolding sparsity-aware network
NI can be regarded as a critical hyper-parameter that de-
termines the extent to which the channel sparse features
are extracted. Therefore, it is necessary to find the optimal
depth of the shared network, so that the performance of both
positioning and channel estimation can be simultaneously
optimized with an optimal tradeoff. The network depth can
be flexibly and adaptively adjusted in the training process,

which can be determined by the loss functions of the two
tasks as explained in detail in Section 3.4.

3.3 Task-Oriented Sub-Networks for Channel Estima-
tion and Positioning

To further improve the performance of channel estimation
and positioning, two task-oriented sub-networks are spe-
cially designed for the two tasks, respectively, as illustrated
by the blue and yellow dashed blocks in Fig. 2.

In the channel estimation sub-network, an essential
module is introduced in the deep-unfolding network to
further improve the channel estimation accuracy especially
in harsh conditions, such as intensive background noise
and insufficient pilot measurements. Different from the soft
threshold shrinkage η(·) used in the shared network, an
mean squared error (MSE)-optimal denoiser DBG(·) with
a zero-mean Bernoulli-Gaussian (BG) prior is introduced to
eliminate the noise component in the noisy measurement
vector rC,l more effectively. Assuming that h is a sparse
vector following a prior of an i.i.d. BG distribution, whose
probability density function (PDF) of the n-th elements is
given by

p(hn;
K

NtL
, σ2

h) =

(
1− K

NtL

)
δ(hn) +

K

NtL
N
(
hn; 0, σ2

h

)
,

(14)
whereK denotes the sparsity level, and σ2

h is the variance of
the nonzero elements of h, and then the noisy measurement
vector rC,l of the l-th layer is given by

rC,l = h + e, (15)

where e denotes the AWGN vector with the variance of σ2
C,l.

To obtain the channel estimate ĥn = E
[
hn| [rC,l]n

]
, the BG-

prior denoiser, which is MSE-optimal, is given by

ĥn =
[rC,l]n(

1 +
σ2

C,l

σ2
h

)(
1 + NtL−K

K

N ([rC,l]n;0,σ2
C,l)

N ([rC,l]n;0,σ2
C,l+σ

2
h)

) . (16)

To turn the denoiser into a learnable function, we set the
learnable parameters θC,l = [θC,l,1, θC,l,2] as θC,l,1 = σ2

h
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and θC,l,2 = log(NtL−K
K ). Then, the BG-prior denoiser is

then element-wise given by

[DBG (rC,l;σC,l,θC,l)]n
=

[rC,l]n(
1+

σC,l
2

θC,l,1

)(
1+

√
1+

θC,l,1

σC,l
2 exp

(
θC,l,2−

[rC,l]
2
n

2(σC,l
2+σC,l

4/θC,l,1)

)) .
(17)

Compared with the soft threshold shrinkage function,
the MSE-optimal denoiser can accurately estimate the
stacked CIR vector h thanks to its robust ability of denois-
ing, especially in harsh conditions. Since the channel spar-
sity is unavailable before channel estimation, the network
depth should be adjustable and adaptive to variant channel
conditions. Therefore, in the training stage, the number of
layers of the channel estimation sub-network, i.e., NL, is
also determined by the loss function, which is introduced in
detail in Section 3.4.

Considering the outstanding performance of long short-
term memory (LSTM) in learning the long-term dependency
of an input sequence [33], it is employed in the positioning
sub-network in this paper. LSTM is an improved recurrent
neural network containing a cell state and three gates, i.e.,
the input gate, forget gate, and output gate. The cell state
plays a role of storing the useful information of the feature
extracted from the previous entries in the input sequence,
and the gates play a role of the selection and rejection of the
previous information.

For the positioning sub-network, the coarsely estimated
stacked CIR vector ĥS,NI , i.e., the output of the shared net-
work, is firstly unstacked and reshaped into the estimated
CIR matrix Ĥ = [ĥ

(1)
S,NI

, ĥ
(2)
S,NI

, · · · , ĥ(Nt)
S,NI

]T with the size of
Nt×L. Then, an LSTM layer consisting ofNu = Np memory
units is employed to extract the position-related features in
the estimated CIR matrix Ĥ, of which the output is fed into
a tanh activation function. Afterwards, the output data with
the size of Nt × Np is flattened into a vector with length
of NtNp and then fed into a fully connected network, in
which two hidden layers containing Nn = NtL neurons
are adopted to map the features extracted by the LSTM
layer into the label space of the position coordinates. The
two hidden layers are both followed by a rectified linear
unit (ReLu) to improve the non-linear representation ability.
Finally, the last hidden layer is connected to the output layer
with linear connections to generate the estimated position
coordinate ĉ.

3.4 Joint Training of the Depth-Adaptive Multi-Task
Learning Network
To further improve the performance of both the two tasks
and find the globally optimal point for the joint loss of the
two tasks, a joint training strategy for the depth-adaptive
MTL-based network consisting of the cascaded shared net-
work and the sub-networks is proposed. The detailed pro-
cedure of the training strategy is shown in Algorithm 1.
Specifically, in the training stage, the training dataset Ω ={
ud,hd, cd

}D
d=1

contains D pairs of ground-truth data sam-
ples, with each data sample composed of a stacked channel
measurement vector ud, and the corresponding stacked CIR
vector hd and position coordinate cd. The network weights
Θ = {ΘS,ΘC,ΘP} to be learnt include theNI -layer shared

Algorithm 1 Multi-Task Learning Based Joint Channel and
Position Estimation Algorithm (Training Stage)
Input:

1) Training dataset Ω =
{
ud,hd, cd

}D
d=1

withD samples
(each data sample is composed of a stacked channel
measurement vector ud, and the corresponding ground-
truth stacked CIR vector hd and position coordinate cd)
2) Observation matrix FΛ

1: Initialize i← 0, vS,0 ← u, ĥS,0 ← 0
2: repeat
3: Initialize learnable parameters of i-th layer:

BS,i ← FTΛ , θS,i ← 1
4: Compute the noisy measurement vector

rS,i = ĥS,i + BS,ivS,i and the standard deviation
of the residual error σS,i

5: Obtain the estimated CIR vector ĥS,i+1 and the resid-
ual measurement error vector v̂S,i+1 by (10)-(13)

6: Perform Inner-Algorithm (a) procedure to determine
the optimal number of layers for the channel estima-
tion sub-network

7: Go to next layer i← i+ 1
8: until L(Θ[i,NL],Ω) > L(Θ[i−1,NL],Ω)
9: Set the optimal number of layers as NI ← i− 1

Output:
Trained parameters Θ, including ΘS =

{BS,i, θS,i}NI−1
i=0 , ΘC = {BC,l,θC,l}NL−1

l=0 , and ΘP

1: Inner-Algorithm (a). Sub-Network for Channel Estima-
tion Task (Training Stage)

2: Initialize l← 0, vC,0 ← vS,i, ĥC,0 ← ĥS,i

3: repeat
4: Initialize learnable parameters of l-th layer:

BC,l ← FTΛ , θC,l ← 1
5: Compute the noisy measurement vector rC,l and the

standard deviation of the residual error σC,l, and
estimate the denoised CIR vector ĥC,l by (17)

6: Calculate the loss function L(Θ[i,l],Ω) based on (18),
and update {BS,i, θS,i}, {BC,l,θC,l} and ΘP via
backpropagation

7: Go to next layer l← l + 1
8: until L(Θ[i,l],Ω) > L(Θ[i,l−1],Ω)
9: Set the optimal number of layers as NL ← l − 1

network weights ΘS = {BS,i, θS,i}NIi=1, the NL-layer chan-
nel estimation sub-network weights ΘC = {BC,l,θC,l}NLl=1,
and the positioning sub-network weights ΘP. A joint loss
function considering the normalized mean squared error
(NMSE) of both the position coordinate estimate and the
CIR estimate is utilized for training, which is given by

L(Θ,Ω) = λLCE(Θ,Ω) + (1− λ)LPE(Θ,Ω)

= λ
D

D∑
d=1

‖ĥd(ud;Θ)−hd‖2
2

‖hd‖22
+ 1−λ

D

D∑
d=1

‖ĉd(ud;Θ)−cd‖2
2

‖cd‖22
,

(18)

where ĥd(ud; Θ) and ĉd(ud; Θ) denote the output of the
channel estimation sub-network and the positioning sub-
network, respectively, with the input of ud and network
weights of Θ. The coefficient λ is a tradeoff factor compro-
mising between the two loss functions of channel estimation
LCE(Θ,Ω) and positioning LPE(Θ,Ω).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3207164

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xiamen University. Downloaded on September 21,2022 at 00:17:55 UTC from IEEE Xplore.  Restrictions apply. 



8

 !"#$%&'"r

 !"#$"!%&'

"())'*$+#%,(+

-.!,+,+/

0+*&.&+#&

1!#2'3.(3!/!%,(+

45'!/&+%'6

45'!/&+%'7

888

9&:&.!%&:';<&.!/&

-.!,+,+/

0+*&.&+#&
=>

?&,/@%)

?&,/@%)

?&,/@%)

 !"#$%&'#()()*

>!%!)&%

A&.<&.

'43"(!:'"(#!"'B&,/@%)

'1.(!:#!)%'/"(C!"'B&,/@%)

?&,/@%)

+,-

+,.

+,/

+,0
+,1

+,2

34$#5(64%7!8(5(!)

?&,/@%)

7D E E F rDd d d

r r r r d   ! " #

! "
 

rDd

r
d 

 
 

! !" # $ rDd d

r r d  !

"
 ! "

# # # #$ % % &c c c  

 !"#$%&
' (

)*+

r

  !
"  

 
 

 !"#$%&'()*
+,-(./-# (0%-1

 !"#$%&'()*

+"(2/-# (0%-1
f 

f 

x

y

O

x

y

O

 

! "

#

r

N 
 

 

!"#

$N 
 

 

!"#

$N 
 

 

! "

#

r

N 
 

 

!

" #

$

% 

%
N

r

N

rN
  

!

! "  

 

!

" #

$

N

N 
 

 ! "!#" !$"% % % %! " & ! " & & ! "
T

NT T T !" # $     

Fig. 3. The multi-task federated learning framework.

For the shared network and the channel estimation sub-
network, a layer-wise training manner is utilized. Specifi-
cally, the layer numbers for both the shared network and
the channel estimation sub-network can adaptively change
over the training process in order to find the optimal
network depth. The shared network and the channel es-
timation sub-network are jointly trained with the posi-
tioning sub-network to optimize the performance of both
positioning and channel estimation. When training the i-
th layer of the shared network and the l-th layer of the
channel estimation sub-network, all the previous layers
are utilized to calculate the loss function L(Θ[i,l],Ω) =

L
({
{BS,k, θS,k}ik=1 , {BC,n,θC,n}ln=1 ,ΘP

}
,Ω
)

by (18).
The learnable parameters are optimized via back propa-
gation and stochastic gradient descent by minimizing the
loss function, until the loss function does not decrease with
the increase of the network depths, at which the iteration
terminates. Finally, when the loop halts, the total layer
numbers for the shared network and the channel estimation
sub-network are set as NI and NL, respectively.

In the inference stage, the final estimated CIR vector
ĥC,NL and the position coordinate ĉ can be simply obtained
by performing a single-trip feed-forward operation in the
trained MTL-based network.

4 MULTI-TASK FEDERATED LEARNING FRAME-
WORK FOR MULTI-USER COOPERATIVE VIPAC
In this section, we introduce the MTFL framework, which
further improves the spatiotemporal generalization ability
of the multi-user cooperative VIPAC system, as illustrated
in Fig. 3. In the cooperative VIPAC system considered,
Nr UE agents are located in the indoor environment, and
Nt LEDs formulate the cellular clusters with the pattern
shown in Fig. 1(c). Multiple UE agents participate in the
training of a global model in the framework of federated
learning in order to improve the generalization ability in
spatiotemporally nonstationary environments.

Specifically, in the proposed MTFL framework, the UE
agents participate in the collection of training samples.
During a sensing interval, the r-th UE agent collects the
stacked CIR vector hdr and the measurement vector udr
received from the LEDs, and labels them with the corre-
sponding position coordinate cdr = [cdr,x, c

d
r,y, c

d
r,z]. As UE

agents are moving in the indoor environment, the samples
corresponding to different locations are obtained. Moreover,
to exploit the multi-lamp cellular cluster architecture for
cooperative VIPAC as introduced in Section 2.2.2 to improve
the spatial generalization ability, the position coordinates in
different cellular clusters can be standardized by transfer-
ring absolute coordinates to relative coordinates, which can
be expressed as

cd =
(
cdabs − cdref

)
Φ, (19)

where cd, cdabs and cdref denote the relative coordinate, the
absolute coordinate, and the coordinate of the reference
point, i.e., the cluster center, respectively. Φ is a trans-
fer matrix describing the flipping and rotating operations,
which converts the absolute coordinate cdabs in different
locations to a relative coordinate cd in the local cluster with
approximate spatial equivalence between different clusters.
Thus, each UE agent can constitute a local dataset Ωr ={
udr ,h

d
r , c

d
r

}Dr
d=1

consisting of Dr samples. Unlike learning-
based methods using a one-shot site survey, in the proposed
MTFL framework, data collection can be implemented over
time, and the local dataset is accordingly updated using the
latest collected samples, making it suitable for spatiotempo-
rally nonstationary environments.

Subsequently, using the collected training data, an adap-
tive global neural network model can be learnt. To pre-
serve the data privacy of the UE agents and prevent from
confidential data leakage in traditional centralized learning,
federated learning is utilized in the proposed MTFL frame-
work to learn the global model in a distributive manner. The
training process is divided into local model training at the
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Algorithm 2 Multi-Task Federated Learning Based Multi-
User Cooperative VIPAC (Training Stage)
Input:

Local datasets Ω1,Ω2, · · · ,ΩNr

1: Initialize the global weights Θ̄0

2: for each communication round τ = 1, 2, · · · , T do
3: At the Nr UE Agents: (each UE agent performs local

training independently as follows)
4: Initialize the local weights Θ

(r)
τ,0 ← Θ̄τ−1

5: for each local training step s = 1, 2, · · · , Ns do
6: Sample a mini-batch Ωτ,s

r of size B from the local
dataset Ωr

7: Calculate the local loss function L(Θ
(r)
τ,s−1,Ω

τ,s
r )

and update the local weights Θ(r)
τ,s via (20)

8: end for
9: Upload the learnt local weights Θ

(r)
τ,Ns

to the server
10:
11: At the Server:
12: Aggregate the weights Θ

(1)
τ,Ns

,Θ
(2)
τ,Ns

, · · · ,Θ(Nr)
τ,Ns

by
(21) and broadcast Θ̄τ to all the Nr UE agents via
visible light downlink transmission

13: end for

Nr UE agents and global model aggregation at the server.
The detailed procedure is summarized in Algorithm 2, and
introduced as follows.

The training stage of the proposed MTFL-based VIPAC
algorithm consists of a series of communication rounds
indexed by τ over time. Within a certain communication
round, the local model is trained at each UE agent inde-
pendently, and then the updated local models are aggre-
gated at the server to update the global model. Specifically,
at the r-th UE agent, r = 1, 2, · · · , Nr, the local dataset
Ωr =

{
udr ,h

d
r , c

d
r

}Dr
d=1

is used to train the weights of the
local MTL network model, which contains the local infor-
mation for the VIPAC tasks. The local weights for the local
model are firstly initialized by the global weights of the
previous communication round, i.e., Θ

(r)
τ,0 ← Θ̄τ−1, and

then updated via Ns local training steps. In the s-th local
training step, all the local weights Θ(r)

τ,s are updated using
stochastic gradient descent (SGD) and back propagation to
minimize the local loss function L(Θ(r)

τ,s,Ω
τ,s
r ) calculated by

(18) using the mini-batch Ωτ,s
r of size B sampled from the

local dataset Ωr, which is given by

Θ(r)
τ,s = Θ

(r)
τ,s−1 − ζG(r)

τ,s, (20)

where ζ is the learning rate, and G
(r)
τ,s = ∇L(Θ

(r)
τ,s−1,Ω

τ,s
r )

is the gradient of the local loss function. After Ns local
training steps, the r-th UE agent uploads the updated local
weights Θ

(r)
τ,Ns

to the server via uplink wireless transmission
such as WiFi or Bluetooth, etc.

At the server, the local weights Θ
(1)
τ,Ns

,Θ
(2)
τ,Ns

, · · · ,Θ(Nr)
τ,Ns

received from UE agents are aggregated to update the global
weights Θ̄τ , which can be expressed as

Θ̄τ =
1

Nr

Nr∑
r=1

Θ
(r)
τ,Ns

. (21)

Then, the updated global weights Θ̄τ are broadcasted to all
the Nr UE agents via visible light downlink transmission.

After receiving the updated global weights broadcast
from the server, the r-th UE agent replaces its local weights
Θ

(r)
τ+1,0 with Θ̄τ , and then it continues to train its local

model in the next communication round. With the increase
of communication rounds, a spatially generalized global
model can be learnt, which can cover satisfactory VIPAC
service for the whole indoor scenario illuminated by the
LEDs thanks to the cooperation of multiple UE agents.

As for the inference stage of the proposed MTFL-based
VIPAC algorithm at the UE agents, the tasks of channel
estimation and positioning can be performed in an online
manner using the currently-trained global model in any
communication round of the interactive and continuous
training process. Specifically, when a UE agent needs to
perform the task of channel estimation or positioning, the
stacked channel measurement vector u measured by the
UE agent in real time can be fed into the currently-trained
global model stored in the UE agent with the current global
weights of Θ̄τ , and then the output of the global model is
the inference of the stacked CIR vector ĥ and the position
coordinate ĉ of the UE agent.

The proposed MTFL-based framework is adaptive to the
temporal and spatial variations of the visible light channel
and the realistic environments. This is because the local
datasets used for training the local models of the UE agents
can be updated online over time, and thus the local models
can be gradually updated to adapt to the possible spatiotem-
poral variations in a few communication rounds. Besides,
the absolute coordinates of the training samples obtained in
different clusters are standardized with approximate spatial
equivalence by transferring to relative coordinates. This pro-
cedure can further improve the generalization performance
of the global model in different locations and variant scenar-
ios. Consequently, a generalized and adaptive model that
can adapt to spatiotemporally non-stationary environments
is learnt in the MTFL-based framework for effective VIPAC
tasks.

Moreover, unlike traditional distributed learning, the
proposed MTFL-based framework keeps the dataset of a UE
agent locally accessible only. Since the training dataset con-
tains sensitive and private information, such as locations,
trajectories, and personal data, it must be protected well
and isolated from public access. Compared with encryption-
based secrecy-preserving schemes, federated learning has a
nature of local data privacy preservation without requiring
additional dedicated computing resources for secrecy pro-
tection. In the MTFL-based scheme, only the learnt model
weights are transmitted between the UE agents and the
server, while the local training datasets are kept local at
the UE agents only. In this way, the data privacy of the UE
agents can be effectively protected.

5 PERFORMANCE EVALUATION AND THEORETI-
CAL ANALYSIS

5.1 Performance Bounds of Positioning and Channel
Estimation Accuracy
First, we provide a theoretical analysis for the performance
bounds of positioning and channel estimation accuracy.
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Specifically, the Cramér-Rao lower bound (CRLB) for the
channel estimation and positioning tasks will be derived,
which is a widely adopted theoretical lower bound for an
unbiased estimator [34].

For the channel estimation task, the CIR vector h(t)

is estimated from the channel measurement vector u(t)

contaminated by the noise w̃(t) as given by (7). To give a
lower bound of the estimation error, the CRLB of channel
estimation is analyzed as follows.
Corollary 1. Assume that the noise w̃(t) follows an i.i.d. Gaus-

sian distribution of N
(
0, σ2

wINp

)
. For the t-th LED in the

VIPAC system, the asymptotical CRLB of the CIR vector h(t)

with length of L for channel estimation is given by

E
[∥∥∥ĥ(t) − h(t)

∥∥∥2

2

]
≥ L

Np
σ2

w. (22)

Proof: Since the noise vector w̃(t) in (7) follows the i.i.d.
Gaussian distribution of N

(
0, σ2

wINp

)
, the PDF of u(t)

conditioned by the CIR vector h(t) can be expressed as

pu(t)|h(t)

(
u(t); h(t)

)
=

1

(2πσ2
w)
Np/2

exp

{
− 1

2σ2
w

∥∥∥u(t) − F(t)
p h(t)

∥∥∥2

2

}
.

(23)

Then, the Fisher information matrix (FIM) [34] for channel
estimation in (7) can be obtained by the conditional PDF in
(23) as

[Jh]a,b , −E

∂2 ln
(
pu(t)|h(t)

(
u(t); h(t)

))
∂h

(t)
a ∂h

(t)
b


=

1

σ2
w

[(
F(t)

p

)H
F(t)

p

]
a,b

,

(24)

where h(t)
a and h(t)

b are the a-th and b-th elements in the CIR
vector h(t), respectively. Then, the CRLB of the unbiased
estimator ĥ(t) can be derived from the inverse of the FIM
[34], which is given by

E
[∥∥∥ĥ(t) − h(t)

∥∥∥2

2

]
≥ tr

(
J−1

h

)
= σ2

w tr

(((
F(t)

p

)H
F(t)

p

)−1
)
.

(25)

According to some properties in linear algebra [35], we
have

tr

(((
F(t)

p

)H
F(t)

p

)−1
)

=
L∑
i=1

λ−1
i = L

(
L∑
i=1

λ−1
i /L

)

≥ L
(
L/

L∑
i=1

λi

)

=
L2

tr

((
F

(t)
p

)H
F

(t)
p

) ,
(26)

where λ1, λ2, · · · , λL denote the eigenvalues of the matrix(
F

(t)
p

)H
F

(t)
p . It is worth noting that, the inequation in (26)

reaches equality if and only if the condition λ1 = λ2 =
· · · = λL holds, i.e., the columns in the partial DFT matrix

F
(t)
p selected from the matrix F are orthogonal to each other.

Then, it is derived that the matrix
(
F

(t)
p

)H
F

(t)
p contains

identical diagonal elements of Np. Thus, we have

tr

((
F(t)

p

)H
F(t)

p

)
= NpL. (27)

Substituting (26) and (27) into (25), the CRLB of the channel
estimation task in (22) can be derived. �

Remark 1. The CRLB in Corollary 1 can be achieved only
if the inequation in (26) reaches equality, i.e., the Np ×L
partial DFT matrix F

(t)
p has orthogonal columns. Fortu-

nately, since the F
(t)
p contains L rows and Np columns of

the DFT matrix F, which is a perfectly orthogonal matrix,
and the pilot subcarriers are chosen with a random
pattern, F

(t)
p has approximate orthogonality. Thus, the

CRLB in (22) can be asymptotically approached.

In the positioning task, the position coordinate is esti-
mated from the coarsely estimated CIR vector ĥS,NI , where
the LOS component in the CIR vector usually contains the
dominant information related to the locations. Since the
coordinates can be determined from the distances between
the PD and more than 3 LED anchors, the CRLB of the dis-
tance estimation is usually adopted as a metric of the lower
bound of positioning performance [36], which is analyzed
as follows.

Corollary 2. Assume that the noise vector w̃(t) in the visi-
ble light channel follows an i.i.d. Gaussian distribution of
N
(
0, σ2

wINp

)
. The CRLB of the estimated distance d̂ in the

positioning task is given by

E
[
‖d̂− d‖22

]
≥ 1

Np

(
2πσw

(m+ 1)(m+ 3)APDgTszm+1

)2 Nt∑
t=1

(
d(t)
)2m+8

.

(28)

Proof: According to (2), the dominant taps in h correspond-
ing to the LOS component are extracted, which constitutes
a LOS CIR vector hΓ as given by

hΓ,t =
(m+ 1)APD cosm(ϕ(t)) cos(ψ(t))gTs

2πd(t)2
, (29)

where hΓ,t is the t-th element of hΓ. Assuming the PD
is placed horizontally with a vertical distance z from the
ceiling, equation (29) can be rewritten as

hΓ,t =
(m+ 1)APDz

m+1gTs

2π
(
d(t)
)m+3 . (30)

Note that the vector hΓ contains the ground-truth dominant
CIR taps without noise. In practice, the estimated LOS CIR
vector denoted by hw with noise, as the output of the shared
network of the MTL-based network, is given by

hw = hΓ + wΓ, (31)

where wΓ is the estimation error of hΓ in the shared
network, which can be regarded as an additive noise im-
posed on the real vector hΓ, and follows i.i.d. Gaussian of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3207164

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xiamen University. Downloaded on September 21,2022 at 00:17:55 UTC from IEEE Xplore.  Restrictions apply. 



11

N
(
0, σ2

ΓINt

)
. The PDF of hw conditioned by the distance

d = [d(1), d(2), · · · , d(Nt)] can be expressed as

phw|d (hw; d) =
1

(2πσ2
Γ)
Nt/2

exp

{
− 1

2σ2
Γ

‖hw − hΓ‖22
}
.

(32)
Then, the FIM [34] of the distance d can be obtained by

the conditional PDF in (32) as follows:

Jd , E

∂ ln
(
phw|d (hw; d)

)
∂d

(
∂ ln

(
phw|d (hw; d)

)
∂d

)T
= E

[
∂hΓ

∂d

∂ ln
(
phw|d (hw; d)

)
∂hΓ(

∂hΓ

∂d

∂ ln
(
phw|d (hw; d)

)
∂hΓ

)T ]
= AJΓAT ,

(33)
where A is an Nt ×Nt matrix given by

A =


∂hΓ,1

∂d(1) · · · ∂hΓ,Nt

∂d(1)

...
. . .

...
∂hΓ,1

∂d(Nt) · · · ∂hΓ,Nt

∂d(Nt)


= − (m+ 1)(m+ 3)APDgTsz

m+1

2π
(
d(1)

)m+4
· · · 0

...
. . .

...

0 · · ·
(
d(Nt)

)m+4


−1

,

(34)

and JΓ is given by

JΓ = E

∂ ln
(
phw|d (hw; d)

)
∂hΓ

(
∂ ln

(
phw|d (hw; d)

)
∂hΓ

)T
=
(
σ2

ΓINt

)−1
.

(35)
Then, Jd can be derived, which is a diagonal matrix with
the t-th diagonal elements given by

[Jd]t,t =

(
(m+ 1)(m+ 3)APDgTsz

m+1

2πσΓ

(
d(t)
)m+4

)2

. (36)

Thus, the CRLB of the unbiased estimator d̂ in the position
estimation task can be derived from the inverse of the FIM,
which is given by

E
[
‖d̂− d‖22

]
≥ tr

(
J−1

d

)
=

(
2πσΓ

(m+ 1)(m+ 3)APDgTszm+1

)2 Nt∑
t=1

(
d(t)
)2m+8

.

(37)
According to (22) in Corollary 1, the variance of the ele-
ments of the estimation error wΓ has an approximate lower
bound given by

σ2
Γ ≥

1

L
· L
Np

σ2
w =

σ2
w

Np
. (38)

Finally, substituting (38) into (37), the CRLB of the position
estimation task in (28) can be derived. �

Remark 2. The CRLB in Corollary 2 is derived as a func-
tion with an argument of the distance d. Therefore, the
conclusion in Corollary 2 can be utilized as a directive
metric to optimize the LED deployment pattern for im-
proving the positioning performance.

5.2 Convergence Analysis of the MTFL Framework
The convergence guarantee of federated learning algorithms
is usually challenging because the local dataset of the UE
agent may not be able to fully represent the global features
in spatiotemporally varying environments [37]. Specifically,
the proposed MTFL framework trained by some certain
datasets can be modeled as a distributed optimization prob-
lem as given by

min
Θ
L(Θ) ,

1

Nr

Nr∑
r=1

Lr(Θ), (39)

where Lr(Θ) , EΩτ,s
r ∼Ωr

[L (Θ,Ωτ,s
r )] denotes the local

loss function over the local dataset of the r-th UE agent,
and L(Θ) denotes the global loss function over all the local
datasets. For the convenience of description, we define the
average of the local model weights as Θ̄τ,s = 1

Nr

∑Nr

r=1 Θ(r)
τ,s.

According to the SGD update in (20), we have

Θ̄τ,s = Θ̄τ,s−1 −
1

Nr

Nr∑
r=1

G(r)
τ,s. (40)

Although the UE agent jointly trains the global model
weights to fit the environment, the local SGD updates are
still performed in each UE agent, which leads to a locally
optimal solution. The average stochastic gradients in (40)
is a simple average over different UE agents, which may
be inaccurate for the global environment. To measure the
effect caused by the local inaccuracy in gradient averaging
and provide a theoretical guarantee of the proposed MTFL
framework, the convergence of the cooperative training
algorithm as shown in Algorithm 2 is analyzed as follows.

Firstly, some typical assumptions on non-convex feder-
ated optimization that ensures the convergence are given as
follows [37], [38].
Assumption 1. Each local loss function Lr(Θ) is C-smooth,

i.e.,
∥∥∇Lr(Θ)−∇Lr

(
Θ′
)∥∥

2
≤ C

∥∥Θ−Θ′
∥∥

2
, ∀Θ,Θ′,

∀r ∈ {1, 2, · · · , Nr}.
Assumption 2. The variance of the gradient

of the loss function is bounded by σ2
g , i.e.,

EΩτ,s
r ∼Ωr

[
‖∇L (Θ,Ωτ,s

r )−∇Lr(Θ)‖22
]
≤ σ2

g , ∀Θ,
∀r ∈ {1, 2, · · · , Nr}.

Assumption 3. The second moment of the gradi-
ent of the loss function is bounded by G2, i.e.,
EΩτ,s

r ∼Ωr

[
‖∇L (Θ,Ωτ,s

r )‖22
]
≤ G2, ∀Θ, ∀r ∈

{1, 2, · · · , Nr}.
Subsequently, we bound the deviation of the local model

weights Θ(r)
τ,s from the average weights Θ̄τ,s using Lemma

1 as follows. Then, we analyze the convergence rate of
the proposed MTFL framework in Corollary 3 using the
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average of the expected squared gradient norm, which is
widely adopted to characterize the convergence rate [37].

Lemma 1. If Assumptions 1, 2, and 3 hold, it is guaranteed by
Algorithm 2 that,

E
[∥∥∥Θ̄τ,s −Θ(r)

τ,s

∥∥∥2

2

]
≤ 4ζ2N2

s G
2,

∀τ,∀s,∀r ∈ {1, 2, . . . , Nr} ,
(41)

where G is the constant defined in Assumptions 3.

Proof: Consider a certain communication round τ ≥ 1 and
local step s ≥ 1. Based on (20) and the initialization of Θ

(r)
τ,0

in Line 4 of Algorithm 2, for r ∈ {1, 2, . . . , Nr}, we have

Θ(r)
τ,s = Θ

(r)
τ,0 − ζ

s∑
ξ=1

G
(r)
τ,ξ = Θ̄τ−1 − ζ

s∑
ξ=1

G
(r)
τ,ξ. (42)

Similarly, based on (40) and the initialization of Θ
(r)
τ,0 in

Algorithm 2, we have

Θ̄τ,s = Θ̄τ,0−ζ
s∑
ξ=1

1

Nr

Nr∑
r=1

G
(r)
τ,ξ = Θ̄τ−1−ζ

s∑
ξ=1

1

Nr

Nr∑
r=1

G
(r)
τ,ξ.

(43)
Thus, we have

E
[∥∥∥Θ̄τ,s −Θ(r)

τ,s

∥∥∥2

2

]

= E


∥∥∥∥∥∥ζ

s∑
ξ=1

1

Nr

Nr∑
r=1

G
(r)
τ,ξ − ζ

s∑
ξ=1

G
(r)
τ,ξ

∥∥∥∥∥∥
2

2


= ζ2E


∥∥∥∥∥∥
s∑
ξ=1

1

Nr

Nr∑
r=1

G
(r)
τ,ξ −

s∑
ξ=1

G
(r)
τ,ξ

∥∥∥∥∥∥
2

2


≤ 2ζ2E


∥∥∥∥∥∥
s∑
ξ=1

1

Nr

Nr∑
r=1

G
(r)
τ,ξ

∥∥∥∥∥∥
2

2

+

∥∥∥∥∥∥
s∑
ξ=1

G
(r)
τ,ξ

∥∥∥∥∥∥
2

2


≤ 2ζ2sE

 s∑
ξ=1

∥∥∥∥∥ 1

Nr

Nr∑
r=1

G
(r)
τ,ξ

∥∥∥∥∥
2

2

+
s∑
ξ=1

∥∥∥G(r)
τ,ξ

∥∥∥2

2


≤ 2ζ2sE

 s∑
ξ=1

(
1

Nr

Nr∑
r=1

∥∥∥G(r)
τ,ξ

∥∥∥2

2

)
+

s∑
ξ=1

∥∥∥G(r)
τ,ξ

∥∥∥2

2


≤ 4ζ2N2

s G
2,

(44)

where the first three inequalities are derived from the
Jensen’s inequality

∥∥∑n
i=1

1
nzi
∥∥2

2
≤
∑n
i=1

1
n ‖zi‖

2
2, and the

last inequality holds based on Assumption 3. �

Corollary 3. With Assumptions 1, 2, and 3, if the learning rate
is ζ =

√
Nr

NsT
≤ 1

C , the average of the expected squared
gradient norm is bounded by

1

TNs

T∑
τ=1

Ns∑
s=1

E
[∥∥∇L (Θ̄τ,s−1

)∥∥2

2

]
≤ O

(
2√

NrNsT

)
+O

(
4G2C2NrNs

T

)
+O

(
Cσ2

g√
NrNsT

)
.

(45)

Proof: Consider a certain communication round τ ≥ 1 and
local step s ≥ 1. With the smoothness of the local loss
function based on Assumption 1, we have

E
[
L
(
Θ̄τ,s

)]
≤ E

[
L
(
Θ̄τ,s−1

)]
+
C

2
E
[∥∥Θ̄τ,s − Θ̄τ,s−1

∥∥2

2

]
︸ ︷︷ ︸

T1

+ E
[〈
∇L

(
Θ̄τ,s−1

)
, Θ̄τ,s − Θ̄τ,s−1

〉]︸ ︷︷ ︸
T2

.

(46)
Bounding the second term T1. From (40), we have

T1 = ζ2E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

G(r)
τ,s

∥∥∥∥∥
2

2


= ζ2E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

(
G(r)
τ,s −∇Lr

(
Θ

(r)
τ,s−1

))∥∥∥∥∥
2

2


+ ζ2E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

 ,
(47)

where the second equality is derived from the basic in-
equality E

[
‖z‖22

]
= E

[
‖z− E[z]‖22

]
+ ‖E[z]‖22. Then, since

E[G
(r)
τ,s − ∇Lr(Θ(r)

τ,s−1)] = 0, and G
(r)
τ,s − ∇Lr(Θ(r)

τ,s−1) are
independent between the UE agents, we have

T1 = ζ2 1

N2
r

Nr∑
r=1

E
[∥∥∥G(r)

τ,s −∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥2

2

]

+ ζ2E

∥∥∥∥∥ 1

N2
r

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2


≤ 1

Nr
ζ2σ2

g + ζ2E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

 ,
(48)

where the inequality holds based on Assumption 2.
Bounding the third term T2. Note that

T2 =− ζE
[〈
∇L

(
Θ̄τ,s−1

)
,

1

Nr

Nr∑
r=1

G(r)
τ,s

〉]

=− ζE
[
E

[〈
∇L

(
Θ̄τ,s−1

)
,

1

Nr

Nr∑
r=1

G(r)
τ,s

〉 ∣∣∣∣{Ωτ,ξ
r

}s−1

ξ=1

]]

=− ζE
[〈
∇L

(
Θ̄τ,s−1

)
,

1

Nr

Nr∑
r=1

E
[
G(r)
τ,s

∣∣∣∣{Ωτ,ξ
r

}s−1

ξ=1

]〉]

=− ζE
[〈
∇L

(
Θ̄τ,s−1

)
,

1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)〉]

=− ζ

2
E

∥∥∇L (Θ̄τ,s−1

)∥∥2

2
+

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

−
∥∥∥∥∥∇L (Θ̄τ,s−1

)
− 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

 ,
(49)

where the second equality is derived by the law of iter-
ated expectation, since Θ(r)

τ,s is dependent on the selection
of samples in the mini-batches Ωτ,ξ

r , ξ = 1, 2, · · · , s − 1,
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used in the previous (s − 1) local steps. The last equal-
ity holds based on the basic linear algebra property, i.e.,
〈a,b〉 = 1

2

(
‖a‖22 + ‖b‖22 − ‖a− b‖22

)
.

Substituting (48) and (49) into (46) yields

E
[
L
(
Θ̄τ,s

)]
≤ E

[
L
(
Θ̄τ,s−1

)]
− ζ

2
E
[∥∥∇L (Θ̄τ,s−1

)∥∥2

2

]
− ζ − ζ2C

2
E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

+
C

2Nr
ζ2σ2

g

+
ζ

2
E

∥∥∥∥∥∇L (Θ̄τ,s−1

)
− 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

 .
(50)

Note that

E

∥∥∥∥∥∇L (Θ̄τ,s−1

)
− 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2


= E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ̄τ,s−1

)
− 1
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(
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(
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(
Θ

(r)
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2

2


≤ E

[
1

Nr

Nr∑
r=1

∥∥∥∇Lr (Θ̄τ,s−1

)
−∇Lr

(
Θ

(r)
τ,s−1

)∥∥∥2

2

]

≤ C2

Nr

Nr∑
r=1

E
[∥∥∥Θ̄τ,s−1 −Θ

(r)
τ,s−1

∥∥∥2

2

]
≤ 4ζ2N2

s G
2C2,

(51)
where the first inequality holds based on the Jensen’s in-
equality

∥∥∑n
i=1

1
nzi
∥∥2

2
≤
∑n
i=1

1
n ‖zi‖

2
2, the second inequal-

ity comes from the smoothness in Assumption 1, and the
last inequality is obtained from Lemma 1.

Substituting (51) to (50) and rearrange the terms, we
have
ζ

2
E
[∥∥∇L (Θ̄τ,s−1

)∥∥2

2

]
≤ − ζ − ζ2C

2
E

∥∥∥∥∥ 1

Nr

Nr∑
r=1

∇Lr
(
Θ

(r)
τ,s−1

)∥∥∥∥∥
2

2

+
C

2Nr
ζ2σ2

g

+ E
[
L
(
Θ̄τ,s−1

)]
− E

[
L
(
Θ̄τ,s

)]
+ 2ζ3N2

s G
2C2

≤ E
[
L
(
Θ̄τ,s−1

)]
− E

[
L
(
Θ̄τ,s

)]
+ 2ζ3N2

s G
2C2 +

C

2Nr
ζ2σ2

g ,

(52)
where the second inequality holds since 0 < ζ ≤ 1

C .
Subsequently, summing (52) over s ∈ {1, 2, · · · , Ns} and
τ ∈ {1, 2, · · · , T} yields

ζ

2

T∑
τ=1

Ns∑
s=1

E
[∥∥∇L (Θ̄τ,s−1

)∥∥2

2

]
≤ E

[
L
(
Θ̄1,0

)]
− E

[
L
(
Θ̄T,Ns

)]
+ 2ζ3G2C2N3

s T

+
ζ2σ2

gCNsT

2Nr

≤ L
(
Θ̄0

)
− L (Θ∗) + 2ζ3G2C2N3

s T +
ζ2σ2

gCNsT

2Nr
,

(53)

TABLE 1
System Parameters in the VIPAC system

Parameter Symbol Value
Half-power angle of LEDs ϕ1/2 60◦

Electro-optical conversion efficiency α 1 W/A

Average reflectance of walls ρ̄ 0.7
FOV angle of PDs ψFOV 90◦

PD effective area APD 1 cm2

Optical filter gain Ts 1
Optical concentrator gain g 1

PD responsivity Rp 0.6 A/W

where Θ∗ is the globally optimal network weights over
the whole environment. Dividing both sides of (53) by∑T
τ=1

∑Ns

s=1
ζ
2 , the global convergence property of MTFL is

given by

1

TNs

T∑
τ=1

Ns∑
s=1

E
[∥∥∇L (Θ̄τ,s−1

)∥∥2

2

]
≤ 2
L
(
Θ̄0

)
− L (Θ∗)

ζNsT
+ 4ζ2G2C2N2

s +
ζCσ2

g

Nr
.

(54)

By setting the learning rate as ζ =
√

Nr

NsT
, we have (45). �

6 SIMULATION RESULTS AND DISCUSSIONS

6.1 Simulation Setup

In this section, the performance of the proposed MTL-
based and MTFL-based schemes for the VIPAC system are
investigated via extensive simulations. A room with size
of L ×W × H = 5 × 5 × 3m3 deployed with the VIPAC
infrastructure as illustrated in Fig. 1 is considered. The
simulation parameters of the VIPAC system are listed in
Table 1. Each cellular cluster contains Nt = 4 LEDs. The
length of the OFDM data block and the CP are N = 1024
andNCP = 64, respectively. The number of pilot subcarriers
utilized by each LED is Np = 16. The OFDM bandwidth is
20 MHz. The maximum channel length is set as L = 64,
which is same as the CP length. The signal-to-noise ratio
(SNR) γ is defined as the ratio of the received signal power
to the noise power. The training datasets are generated
using the channel model in Section 2, and the position
coordinates are generated randomly. The proposed MTL-
based and MTFL-based networks are implemented with the
TensorFlow platform and the Keras library.

6.2 Channel and Position Estimation Performance of
the MTL-Based Network

To evaluate the performance of the proposed MTL-based
network, an LED deployment pattern in Fig. 4 is considered,
where four LEDs are attached at (15/14, 5

√
3/14, 3),

(15/14,−15
√

3/14, 3), (−15/14, 15
√

3/14, 3), and
(−15/14,−5

√
3/14, 3). The proposed MTL-based network

is trained according to Algorithm 1 using datasets with size
of D = 9000 samples, and the tradeoff factor between the
two sub-tasks is set as λ = 0.9. The Adam optimizer with
the learning rate of 10−3 is adopted to train the parameters.
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Fig. 4. LED deployment in the indoor environment.
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Fig. 5. NMSE of the proposed MTL-based network and the benchmark
schemes for channel estimation task.

Firstly, the channel estimation performance of the pro-
posed MTL-based network is evaluated, which is compared
with the state-of-the-art benchmarks, such as the traditional
least squares (LS) method with linear interpolation [39], the
CS-based algorithms including orthogonal matching pursuit
(OMP) [40] and generalized OMP (gOMP) [41], and the
deep-learning-based method using deep neural networks
(DNN) [9].

To investigate the accuracy of channel estimation, the
NMSE of channel estimation with respect to SNR is reported
in Fig. 5. It is shown that the proposed MTL-based network
can achieve higher estimation accuracy at different SNRs
compared with the benchmarks. At the target NMSE of
7 × 10−3, the proposed MTL network achieves an SNR
gain of greater than 10 dB compared with the CS-based
algorithms of OMP and gOMP, which validates that the ef-
fectiveness of the proposed MTL-based network, especially
in the harsh conditions like intensive noise. Meanwhile,
since the number of pilots used in the simulation is much
smaller than the length of the CIR, the LS method fails to
solve the underdetermined problem. It can also be observed
from Fig. 5 that, by exploiting the sparse characteristics of
the visible light channel, the sparsity-aware MTL-based net-
work can achieve higher accuracy than the deep-learning-
based method using DNN.

To comprehensively investigate the channel estimation
performance of the proposed MTL-based network, the suc-
cessful recovery probability performance is reported in
Fig. 6 as an alternative metric of channel estimation accu-
racy, which is defined as the probability that the NMSE is
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Fig. 6. Successful Recovery probability of the proposed MTL-based
network and the benchmark schemes for channel estimation task.
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Fig. 7. NMSE of the proposed MTL-based network and the benchmark
schemes for positioning task.
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Fig. 8. Positioning error of the proposed MTL-based network and the
benchmark schemes.

lower than -15 dB. It is shown by the results in Fig. 6 that,
with the increase of the SNR, the MTL-based network can
achieve a successful recovery probability of 0.99 at the SNR
of 20 dB, which outperforms the CS-based algorithms by
around 10 dB. Besides, the proposed scheme reaches the
successful recovery probability of one at the SNR of 25 dB,
which cannot be achieved by the deep-learning-based DNN
even at a high SNR.

On the other hand, to evaluate the performance of the
positioning task, the proposed MTL-based network is com-
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pared with some benchmark schemes, such as conventional
machine-learning-based methods including the k-nearest
neighbor (KNN) [20], support vector regression (SVR) [42],
and random forest (RF) [43], and the deep-learning-based
DNN [9]. The NMSE of position estimation is reported in
Fig. 7. It can be observed that the proposed MTL-based
network can achieve a significantly higher positioning ac-
curacy compared with the benchmark schemes at different
SNRs. To visualize the positioning accuracy, the correspond-
ing positioning error, which is calculated by the Euclid
distance between the estimated coordinate and the ground-
truth coordinate, is reported in Fig. 8. It is shown by the
results that, the proposed scheme can achieve centimeter-
level accuracy at an SNR greater than 25 dB, and can reach
the positioning error of 6.72 cm at the SNR of 35 dB, which
significantly outperforms the machine-learning-based and
deep-learning-based benchmarks.

Moreover, to evaluate the overall performance of the
positioning task over the environment, the cumulative dis-
tribution function (CDF) with respect to the positioning
error is reported in Fig. 9. It can be seen that the CDF of
the proposed MTL-based network grows much faster than
the benchmark schemes, and reaches the value of 0.9 at
the positioning error of 10 cm, which demonstrates that the
positioning error of the proposed scheme can be controlled
at centimeter-level with a probability of 0.9.

From these simulation results, it is verified that the pro-
posed MTL-based network greatly outperforms the bench-
mark methods in both the channel estimation and position-
ing tasks, which implies that the mutual benefits between
the two tasks can be effectively extracted and exploited by
the proposed scheme to improve the performance of the
VIPAC system.

6.3 Performance of the MTFL Framework for VIPAC

To demonstrate the performance of the proposed MTFL
framework, a cooperative VIPAC architecture is consid-
ered, where three cellular clusters with the cluster center
coordinates of (−5

√
3/8, 5/4, 3), (−5

√
3/8,−5/4, 3), and

(5
√

3/8, 0, 3) are incorporated for joint training. Each cel-
lular cluster contains four LED cells, which are deployed
in the pattern illustrated in Fig. 10. There are Nr = 10 UE
agents participating in the multi-user cooperative training
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Fig. 10. The deployment of LEDs and cellular cluster layout in the pro-
posed MTFL framework.
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Fig. 11. Training loss over the local datasets of the MTFL framework for
VIPAC with respect to communication rounds in federated learning.

of the global model, and the local dataset of each UE
agent includes Dr = 900 samples. The local datasets are
updated with newly collected samples every 50 communi-
cation rounds. The absolute coordinates in the training and
testing datasets are transferred into the standardized rela-
tive coordinates via (19). The parameters in Algorithm2
are set as follows: batch size B = 128; number of local steps
Ns = 5; maximum communication rounds T = 50.

The average loss function over the local datasets in
the training stage of the MTFL framework with respect to
the communication rounds is shown in Fig. 11. We could
observe that the training losses of both the positioning and
channel estimation sub-tasks, and the joint loss function
given by (18), decrease rapidly with the communication
rounds in the cooperative training process participated by
multiple UE agents. After several communication rounds,
the training losses converge gradually to a relatively low
level, which verifies the efficiency and the convergence
capability of the proposed MTFL framework as is consistent
with the theoretical analysis given in Section 5.2.

Meanwhile, the testing performance of the proposed
MTFL framework is evaluated with randomly moving UE
agents in the cellular clusters. The global model trained
cooperatively after each communication round is tested and
the testing results of channel estimation and positioning are
reported in Fig. 12 and Fig. 13, respectively. As shown in
Fig. 12, the NMSE of channel estimation for the proposed
scheme reduces rapidly with communication rounds, and
gradually converges to 1.3 × 10−3. The successful recov-
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Fig. 12. Performance of MTFL scheme for channel estimation task with
respect to communication rounds in federated learning.
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Fig. 13. Performance of MTFL scheme for positioning task with respect
to communication rounds in federated learning.

ery probability rapidly reaches a high value of 0.978 after
the second communication round, and then gradually con-
verges to 0.999. This indicates that the proposed scheme can
achieve satisfactory performance of channel estimation and
generalization ability enabled by the multi-user cooperative
VIPAC mechanism. The positioning performance is shown
in Fig. 13. It is observed that the NMSE and positioning
error rapidly decrease thanks to the global aggregation of
the learnt local models of multiple UE agents. It is shown by
the results that the positioning error reaches centimeter-level
after only 70 communication rounds, and finally converges
to 6.77 cm, which verifies the efficiency and generalization
ability of the proposed scheme in terms of positioning.

To further investigate the generalization ability of the
proposed MTFL framework in spatiotemporally variant en-
vironments, we consider a dynamically changing scenario
where the environmental parameters, such as room layout,
LED deployment, and ambient noise, change over time
and/or space. A typical demonstration is a person carrying
a UE terminal is walking from one room to another. Specifi-
cally, the parameters including the room size of L×W ×H ,
the average reflectance of walls ρ̄, and the SNR γ, will
suddenly change to a set of different values after every 200
communication rounds, which implies the person has just
walked into a different room. The parameters in the three
rooms are as follows: Room 1, L ×W ×H = 5 × 5 × 3m3,
ρ̄ = 0.7; Room 2, L×W ×H = 7× 7× 5m3, ρ̄ = 0.7; Room
3, L×W ×H = 6× 6× 4m3, ρ̄ = 0.3. The performance of
the channel estimation task and the positioning task using
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Fig. 14. NMSE performance of channel estimation task in spatiotempo-
rally variant environments (the environment changes every 200 commu-
nication rounds).
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Fig. 15. Positioning error in spatiotemporally variant environments (the
environment changes every 200 communication rounds).

the proposed MTFL framework over time are reported in
Fig. 14 and Fig. 15, respectively. It is also compared with
the proposed MTL-based network which is trained in a
centralized rather than distributed manner.

As shown in Fig. 14, the NMSE of the proposed MTFL
framework is a bit greater than that of the MTL network
in the initial 200 communication rounds before the environ-
ment switches. However, the NMSE of the proposed MTFL
scheme can reduce rapidly again to a satisfactory level after
the UE agent walks into a new room every 200 communica-
tion rounds, while the MTL scheme cannot adapt to environ-
mental changes and thus ends up with poorer performance.
Similarly, it can be observed from Fig. 15 that, the posi-
tioning error of the MTL scheme increases to 196.0 cm and
110.5 cm with the environment switching at the 201-th and
401-th communication round, respectively, while the MTFL
scheme can converge back to centimeter-level positioning
accuracy rapidly in only a few communication rounds in a
new environment. This is because in the MTFL framework,
the global model is updated online by the UE agents over
time and space. The local datasets used for training the local
models of the UE agents can be updated online, and thus
the local models can be updated correspondingly to adapt
to the possible spatiotemporal variations. Hence, the global
model weights suitable and adaptive for VIPAC tasks in the
new environment can be learnt rapidly in spatiotemporally
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non-stationary environments.

7 CONCLUSIONS

In this paper, an ISAC framework called VIPAC is proposed,
where the two main tasks, i.e., the positioning task for the
sensing service and the channel estimation task for the com-
munication service are integrated into a unified visible light
architecture, and a spatially migratable multi-lamp cellular
cluster architecture is designed. An MTL-based network
architecture, which is composed of a sparsity-aware shared
network and two task-oriented sub-networks, is devised to
achieve mutual benefits between positioning and channel
estimation. An MTFL framework is formulated to further
improve the generalization ability of the global model for
multi-user cooperative VIPAC in spatiotemporally nonsta-
tionary environments. The theoretical bounds of the chan-
nel estimation and positioning accuracy are derived, and
the convergence rate of the proposed MTFL framework
is derived. The performance of the proposed MTL-based
network and the MTFL framework are evaluated by ex-
tensive simulations, which significantly outperforms the
benchmark schemes in estimation accuracy and the adap-
tation capability in harsh and variant scenarios. Moreover,
the proposed VIPAC framework to serve as an emerging
ISAC solution in the next-generation mobile and wireless
networks.
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Getino Garcı́a, and V. P. G. Jiménez, “Superimposed training-based
channel estimation for MISO optical-OFDM VLC,” IEEE Trans.
Veh. Technol., vol. 68, no. 6, pp. 6161–6166, Jun. 2019.

[20] M. T. Van, N. Van Tuan, T. T. Son, H. Le-Minh, and A. Burton,
“Weighted k-nearest neighbour model for indoor VLC position-
ing,” IET Commun., vol. 11, no. 6, pp. 864–871, Mar. 2017.

[21] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp.
41–75, Jul. 1997.

[22] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Trans. Knowl. Data Eng., 2021.

[23] Y. Lu, P. Cheng, Z. Chen, W. H. Mow, Y. Li, and B. Vucetic, “Deep
multi-task learning for cooperative NOMA: System design and
principles,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp. 61–78,
Jan. 2021.

[24] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, pp. 1–19, Mar. 2019.

[25] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communica-
tions for collaborative federated learning,” IEEE Commun. Mag.,
vol. 58, no. 12, pp. 48–54, Jan. 2021.

[26] Z. Cheng, Z. Gao, M. Liwang, L. Huang, X. Du, and M. Guizani,
“Intelligent task offloading and energy allocation in the UAV-
aided mobile edge-cloud continuum,” IEEE Netw., vol. 35, no. 5,
pp. 42–49, Sep./Oct. 2021.

[27] Q. Kong, F. Yin, R. Lu, B. Li, X. Wang, S. Cui, and P. Zhang,
“Privacy-preserving aggregation for federated learning-based
navigation in vehicular fog,” IEEE Trans. Ind. Informat., vol. 17,
no. 12, pp. 8453–8463, Dec. 2021.

[28] M. Shen, H. Wang, B. Zhang, L. Zhu, K. Xu, Q. Li, and X. Du,
“Exploiting unintended property leakage in blockchain-assisted
federated learning for intelligent edge computing,” IEEE Internet
Things J., vol. 8, no. 4, pp. 2265–2275, Feb. 2021.

[29] T. Komine and M. Nakagawa, “Fundamental analysis for visible-
light communication system using LED lights,” IEEE Trans. Con-
sum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3207164

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xiamen University. Downloaded on September 21,2022 at 00:17:55 UTC from IEEE Xplore.  Restrictions apply. 



18

[30] Y. Zhou, H. Alhazmi, M. H. Alhazmi, A. Almarhabi, M. Alymani,
M. He, S. Peng, A. Samarkandi, Z. Sheng, H. Wang, and Y.-D. Yao,
“Radio spectrum awareness using deep learning: Identification
of fading channels, signal distortions, medium access control
protocols, and cellular systems,” Intell. Converged Netw., vol. 2,
no. 1, pp. 16–29, Mar. 2021.

[31] X. Du, D. Wu, W. Liu, and Y. Fang, “Multiclass routing and
medium access control for heterogeneous mobile ad hoc net-
works,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 270–277, Jan.
2006.

[32] M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep
networks for sparse linear inverse problems,” IEEE Trans. Signal
Process., vol. 65, no. 16, pp. 4293–4308, Aug. 2017.

[33] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[34] S. M. Kay, Fundamentals of Statistical Signal Processing, Volumn I:
Estimation Theory. New Jersey, USA: Prentice-Hall, 1993.

[35] X.-B. Liang, “An algebraic, analytic, and algorithmic investigation
on the capacity and capacity-achieving input probability distribu-
tions of finite-input– finite-output discrete memoryless channels,”
IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 1003–1023, Mar. 2008.

[36] X. Zhang, J. Duan, Y. Fu, and A. Shi, “Theoretical accuracy analysis
of indoor visible light communication positioning system based
on received signal strength indicator,” J. Lightw. Technol., vol. 32,
no. 21, pp. 4180–4186, Nov. 2014.

[37] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster
convergence and less communication: Demystifying why model
averaging works for deep learning,” in Proc. AAAI Conf. Artif.
Intell., Honolulu, Hawaii, USA, Jan. 2019.

[38] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of local-update SGD algorithms,” J. Mach.
Learn. Res., vol. 22, no. 213, pp. 1–50, Sep. 2021.

[39] X. Shi, S.-H. Leung, and J. Min, “Adaptive least squares channel
estimation for visible light communications based on tap detec-
tion,” Opt. Commun., vol. 467, p. 125712, Jul. 2020.

[40] J. Wen, Z. Zhou, J. Wang, X. Tang, and Q. Mo, “A sharp condition
for exact support recovery with orthogonal matching pursuit,”
IEEE Trans. Signal Process., vol. 65, no. 6, pp. 1370–1382, Mar. 2017.

[41] D. Park, “Improved sufficient condition for performance guar-
antee in generalized orthogonal matching pursuit,” IEEE Signal
Process. Lett., vol. 24, no. 9, pp. 1308–1312, Sep. 2017.

[42] D. Su, X. Liu, and S. Liu, “Three-dimensional indoor visible
light localization: A learning-based approach,” in Proc. ACM Ubi-
Comp’21, Sep. 2021, p. 672–677.

[43] X. Guo, S. Shao, N. Ansari, and A. Khreishah, “Indoor localization
using visible light via fusion of multiple classifiers,” IEEE Photon.
J., vol. 9, no. 6, pp. 1–16, Dec. 2017.

Tiankuo Wei received the B.S. degree in com-
munication engineering from Huaqiao University,
Xiamen, China in 2020. He is currently pursu-
ing the M.S. degree with the Department of In-
formation and Communication Engineering, Xi-
amen University, Xiamen, China. His research
interests include compressed sensing and AI-
assisted communications.

Sicong Liu (Senior Member, IEEE) received the
B.S.E. and Ph.D. degrees (Highest Hons.) in
electronic engineering from Tsinghua University,
Beijing, China, in 2012 and 2017, respectively.
He is an Associate Professor with the Depart-
ment of Information and Communication Engi-
neering, School of Informatics, Xiamen Univer-
sity, Xiamen, China. He was a Senior Engineer
with Huawei Technologies Company Ltd., China,
from 2017 to 2018. He was a Visiting Scholar
with the City University of Hong Kong in 2010.

His current research interests are compressed sensing, AI-assisted
communications, integrated sensing and communications, and visible
light communications. He has authored over 60 journal or conference
papers, and four monographs in the related areas.

Dr. Liu won the Best Paper Award at ACM UbiComp 2021 CPD
WS as the corresponding author, and the Second Prize in the Natural
Science Award of Chinese Institute of Electronics. He has served as the
associate editor or TPC chair of several IEEE and other international
academic journals and conferences. He is a Senior Member of China
Institute of Communications.

Xiaojiang (James) Du (Fellow, IEEE) is the An-
son Wood Burchard Endowed-Chair Professor in
the Department of Electrical and Computer En-
gineering at Stevens Institute of Technology. He
was a professor at Temple University between
August 2009 and August 2021. Dr. Du received
his B.S. from Tsinghua University, Beijing, China
in 1996. He received his M.S. and Ph.D. degree
in Electrical Engineering from the University of
Maryland, College Park in 2002 and 2003, re-
spectively. His research interests are security,

wireless networks, and systems. He has authored over 500 journal and
conference papers in these areas, including the top security conferences
IEEE S&P, USENIX Security, and NDSS. Dr. Du has been awarded more
than 8 million US Dollars research grants from the US National Science
Foundation (NSF), Army Research Office, Air Force Research Lab, the
State of Pennsylvania, and Amazon. He won the best paper award at
IEEE ICC 2020, IEEE GLOBECOM 2014 and the best poster runner-up
award at the ACM MobiHoc 2014. He serves on the editorial boards of
three IEEE journals. Dr. Du is an IEEE Fellow, an ACM Distinguished
Member, and an ACM Life Member.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3207164

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xiamen University. Downloaded on September 21,2022 at 00:17:55 UTC from IEEE Xplore.  Restrictions apply. 


