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Abstract— Unmanned aerial vehicles (UAVs) that are widely
utilized for video capturing, processing and transmission have
to address jamming attacks with dynamic topology and limited
energy. In this paper, we propose a reinforcement learning
(RL)-based UAV anti-jamming video transmission scheme to
choose the video compression quantization parameter, the chan-
nel coding rate, the modulation and power control strategies
against jamming attacks. More specifically, this scheme applies
RL to choose the UAV video compression and transmission policy
based on the observed video task priority, the UAV-controller
channel state and the received jamming power. This scheme
enables the UAV to guarantee the video quality-of-experience
(QoE) and reduce the energy consumption without relying
on the jamming model or the video service model. A safe
RL-based approach is further proposed, which uses deep learning
to accelerate the UAV learning process and reduce the video
transmission outage probability. The computational complexity
is provided and the optimal utility of the UAV is derived
and verified via simulations. Simulation results show that the
proposed schemes significantly improve the video quality and
reduce the transmission latency and energy consumption of the
UAV compared with existing schemes.

Index Terms— Unmanned aerial vehicles, video transmission,
quality-of-experience, jamming, reinforcement learning.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) equipped with high
definition cameras and sensors support booming multi-

media services such as video surveillance, geographical pho-
tography and patrol, owing to the high mobility, line-of-sight
channel with few obstacles, low cost, convenience and safety
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of UAVs [1]. With limited processor performance and storage,
UAVs have to process the captured video streams and transmit
them to the control stations (CSs) on the ground while
satisfying the quality-of-experience (QoE) of the multimedia
services in a dynamic network [2]. The broadcast nature
and the line-of-sight dominant UAV-ground channel make
UAV video transmissions more vulnerable to jamming attacks,
causing security challenges [3]–[5]. Especially, smart jammers
equipped with intelligent programmable radio devices, which
can optimize the waveforms and power of the jamming signals
are more detrimental to the UAV video service quality, and
might even launch denial-of-service attacks [6].

Video compression coding, channel coding and modulation
are essential to guarantee the reliability and efficiency of the
UAV video service against jamming. For instance, the widely
applied H.264 standard utilizes encoding techniques controlled
by the video quantization parameter (QP) to compress the
UAV video data to overcome the limited processor perfor-
mance and storage [7]. Most UAV video transmission systems
apply the forward error check channel coding such as the
capacity-approaching low density parity check (LDPC) code
and modulate the data before transmission to improve the
reliability, quality and efficiency [8]. However, these systems
usually use constant compression and coding parameters, such
as the QP, the channel coding rate and the modulation type,
which is unable to meet the various requirements of the
video QoE with dynamic UAV-controller channel conditions
in the presence of jamming attacks. For adaptive modulation
schemes, the number of bits per symbol can be set adaptively
to make a tradeoff between the reliability and the spectrum
efficiency [9]. However, existing adaptive modulation tech-
niques usually apply a fixed modulation type for each level
of signal-to-interference-plus-noise ratio (SINR), which is not
always the optimal policy in the dynamic UAV network.

UAV cooperative relay communication, trajectory optimiza-
tion, power control and other resource allocation techniques
are helpful to resist jamming attacks and eavesdropping, and
improve the security performance [10]–[12]. For example,
a UAV anti-jamming scheme proposed in [13] uses Q-learning
to obtain the optimal power control strategy, which makes a
tradeoff between the power consumption and the SINR of the
received signal, but the video service QoE is not addressed.
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In addition, many existing UAV anti-jamming schemes use
machine learning and deep learning to improve detection
accuracy and data quality [14], [15], [15], [16]. For example,
a UAV-based real-time multimedia streaming delivery scheme
proposed in [15] uses long-short term memory and recurrent
neural networks to optimize its beamwidth, tilt angle and
trajectory to improve the SINR. However, some conventional
model-based machine learning and deep learning methods are
dependent on the accurate models of the system and the
attackers. Without sufficient data from practice, the gener-
alization performance might degrade in dynamic UAV-based
applications in practice.

In this paper, a UAV anti-jamming video transmission
scheme based on model-free reinforcement learning (RL)
techniques is proposed to address the problems of the existing
methods and reduce the energy consumption with the video
QoE guarantee. To be specific, the video encoder of the UAV
selects a proper QP to compress the captured video after
receiving a task request with a certain priority from the CS.
After channel coding and modulation, the optimal transmit
power is determined for the delivery of the processed video
to the CS. The anti-jamming video transmission process can
be formulated as a Markov decision process (MDP), where
the RL technique can be applied to determine the optimal
transmission policy based on the observed state via trial-
and-error without being aware of the specific video service
model or the attack model. Moreover, the safe RL technique
is introduced to reduce transmission outage and guarantee the
video QoE, where convolutional neural networks (CNNs) are
utilized to compress the high-dimensional and continuous state
space, and a modified Boltzmann distribution is exploited to
determine the transmission policy.

The main contributions of this paper are outlined as follows:

• A UAV anti-jamming video transmission framework is
proposed, and the RL technique is applied to determine
the optimal QP, channel coding rate, modulation type and
transmit power to improve the video QoE and reduce the
energy consumption when the video service model and
the attack model are difficult to obtain. Transfer learning
is used for initialization, which reduces the initial random
exploration and accelerate the learning process.

• A safe RL-based approach utilizing deep learning and
CNNs is proposed to compress the high-dimensional state
space and further improve the video transmission per-
formance. This scheme introduces safe RL and modifies
Boltzmann distribution to avoid dangerous action explo-
ration and reduce the transmission outage probability.

• The optimal value regarding the utility of the UAV and
the computational complexity of the proposed schemes
are derived. Simulations verify that the proposed schemes
significantly improve the video quality, reduce the trans-
mission latency and energy consumption compared to the
benchmark schemes, and the safe RL-based scheme is
asymptotically approaching the theoretical optimal value.

The structure of this paper is shown as follows. First,
we review related work in Section II and present the system
model in Section III. Then the proposed RL-based UAV

video transmission algorithm against jamming is devised in
Section IV and the safe RL-based approach is proposed in
Section V. The optimal value and the computational com-
plexity of the proposed safe RL-based algorithm are given
in Section VI, and the simulation results are presented in
Section VII. Finally, we conclude this paper in Section VIII.

II. RELATED WORK

Coding parameter selection schemes used in video coding
can improve the video quality. For instance, a block level
adaptive quantization algorithm as proposed in [17] obtains
the proper QP for each block according to the distortion
costs to improve the efficiency and reduce the computational
complexity of video coding. A QP adaptation approach for
groups of frames proposed in [18] applies a prediction method
based on the ratio of the non-zero coefficients to estimate the
encoding time and bit rate accurately subject to time con-
straints, while the performance is dependent on the prediction
accuracy. An adaptive initial QP determination scheme for
H.264-based video transcoding as proposed in [19] obtains the
most suitable initial QP value by formulating the R-QP model
to achieve the target bit rate without increasing complexity,
while this method relies on the specific model between rate
and QP.

Adaptive modulation and coding techniques have been
applied to make better use of the channel conditions, which is
investigated in plenty of works. For example, a modulation
switching scheme as proposed in [20] applies a switching
criterion based on fixed signal-to-noise ratio (SNR) thresholds
to satisfy the bit-error-rate (BER) requirement, while the
proper thresholds are difficult to obtain. An adaptive mod-
ulation scheme proposed in [21] changes the modulation type
according to the calculated desired-to-undesired signal ratio
in unmanned aircraft systems. An adaptive layer switching
algorithm for scalable video coding changes the modulation
type and code rate according to the channel quality indicator
associated with SNR to realize adaptive modulation and coding
[22], while it needs to construct the mapping from SNR to
channel quality indicator.

Power control, game theory and trajectory optimization
are conducted in UAV networks to resist jamming [23]–[30].
A UAV-aided mobile relaying scheme proposed in [24]
exploits difference-of-concave programming and a water-
filling-based solution to optimize the transmit power and
maximize the secrecy rate. A worst-case optimal energy
allocation scheme in [26] calculates the jamming-to-signal-
power ratio thresholds to provide an upper bound of video
transmission distortion in a mobile cognitive radio system
in the presence of an intelligent adversary, which relies on
the accuracy of threshold calculation. A Stackelberg game
approach for anti-jamming defence in wireless networks is
proposed in [27] to choose the optimal transmission power
and channel to resist jamming and improve the transmission
rate. However, the unknown parameters and the inaccurate
or incomplete information of the system might result in
difficulty in game theoretic analysis. A UAV trajectory design
algorithm is proposed in [30] to optimize the UAV movements
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Fig. 1. Anti-jamming video transmission process in the UAV network, where the UAV receives the feedback information and task requirement from the CS
and sends the processed video of the target area to the CS, and a smart jammer aims to block the UAV-CS transmission.

by using multi-agent deep Q-networks, which improves the
probability of successful data transmission in the presence of
interference.

RL has been applied in different applications including
video coding and UAV networks. A Q-learning based UAV
multimedia transmission scheme is proposed in [31] to obtain
the optimal video compression and power control strategy
to improve the received video quality and reduce the energy
consumption of the UAV. However, the security issues in video
transmission are not taken into consideration. A UAV-aided
relay strategy [32] applies a hotbooting policy hill climbing
algorithm to resist smart jammers and improve the BER perfor-
mance, but the performance will deteriorate when the network
consists of a large amount of UAVs and the state-action space
is large. Deep RL and multi-agent RL have been applied in tra-
jectory design and power control in UAV networks [33]–[39].
For example, a joint trajectory design and power control
scheme proposed in [37] uses multi-agent Q-learning to max-
imize the instantaneous sum transmit rate while satisfying the
user rate requirements. A multi-agent deep deterministic policy
gradient based scheme [39] is proposed to maximize the secure
capacity by jointly optimizing the trajectory of UAVs, the
transmit power from UAV transmitter and the jamming power
from the UAV jammers.

III. SYSTEM MODEL

A. Network Model

The model of a UAV network for video compression and
transmission is shown in Fig. 1, where a complete task of
video capturing, processing and transmission is accomplished
by the UAV-side compression coding, channel coding and
modulation, the data transmission on the UAV-CS link, and
the CS-side demodulation and decoding. In this network,
a UAV equipped with camera sensors, which is located at
altitude hU and moving in any direction at a speed of vU,
can be dispatched by the CS to capture the video of the

target area. The UAV compresses the captured video and
transmits it to the CS after channel coding and modulation.
Different tasks have different requirements of video quality
and realtime performance. Thus it is important to realize a
dynamic trade-off between the video quality and transmission
latency.

More specifically, assuming in a time-slotted system, the
CS sends the task requirement to the UAV at time slot k
to obtain the video of the target area which is difficult for
humans to reach. The emergency level of different video
transmission tasks may vary. For instance, realtime or low
latency transmission is more important in the scenario of
traffic accident monitoring than aerial photography, whose
requirement for video quality is higher. Thus an indicator of
priority l(k) (1 ≤ l(k) ≤ L) is used to represent the emergency
level of a task, which is divided into L levels. A higher value
of priority l(k) indicates a stricter requirement of low latency.

The video encoder embedded in the UAV compresses the
video frames to relieve the pressure of the UAV with lim-
ited storage capacity and processing capability. The video
encoder quantizes the video data using the selected QP x(k)

1 ∈
{0, 1, . . . , N} related to the quantization interval in video
compression coding as specified by the standards such as
H.264, where N is the maximum value of QP. A higher value
of x(k)

1 represents a larger quantization interval and leads to
a larger quantization error and compression loss. The channel
encoder of the UAV applies adaptive channel coding using
LDPC codes with the code rate x(k)

2 selected from a certain
range, i.e. x(k)

2 ∈ [R1, R2]. Then adaptive modulation is
applied, where different modulation types such as binary phase
shift keying (BPSK), quadrature phase shift keying (QPSK)
and 16-quadrature amplitude modulation (QAM) can be cho-
sen with x

(k)
3 ∈ {1, 2, . . . ,M} representing the modulation

type index, with M the total number of the feasible mod-
ulation types. A higher value of the modulation parameter
x

(k)
3 represents a higher-order modulation type. The number of
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bits transmitted per symbol is associated with the modulation
parameter x(k)

3 and can be modeled by bx
(k)
3 −1, where b > 1 is

a constant. Thus, channel coding and modulation jointly deter-
mine the amount of video data to be transmitted adaptively.

The UAV buffer stores the compressed video bitstreams
waiting for the processing of channel coding and modulation.
Although the buffer size is limited, it is assumed to be
large enough for general video tasks with a moderate source
bitstream rate and thus no congestion occurs. In an extreme
case when the shot video is of very high definition and the
source bitstream is of very high rate, the processing latency
will increase, but the UAV can choose a larger QP to compress
the source video stream or use a lower definition to shoot the
video to relieve the congestion. The data coming from the
compression block should be stored in the buffer in a first
input first output manner, and the data rate of the original
information leaving the buffer for channel coding is denoted
by RP, which is increased to RP/x

(k)
2 after channel coding.

The processed data leaves the modulation block at a rate of
RBb

x
(k)
3 −1, where RB is the baud rate, with the remaining

processed data saved back in the buffer. The processing
throughput denoted by E(k) can be measured by the difference
between the amount of data stored in the buffer before and
after channel coding and modulation given by

E(k) = RP
x

(k)
2 − 1

x
(k)
2

+RBb
x
(k)
3 −1. (1)

The front-end transmitter of the UAV selects a transmit
power x(k)

4 from a certain range [X1, X2] to transmit the
processed video in the modulated signal to the CS, where
demodulation and decoding are conducted to reconstruct the
received video upon receiving the signal from the UAV. The
CS also measures the peak signal-to-noise ratio (PSNR) using
no reference estimation method similar to [40] via extracting
the transform coefficients by parsing the received bitstream,
and then send the feedback information to the UAV.

B. Attack Model

The video transmission between the UAV and the CS is
vulnerable to jamming and interference due to the mobility of
the UAV and the time-varying UAV-CS link [41]–[43]. In this
work, consider a smart jammer close to the CS on the ground
emitting jamming signals to block the legal video transmission
of the UAV. Because the CS in charge of receiving videos and
controlling is fixed on the ground and the UAV located long
away from the jammer can be moving, it takes the jammer
a much lower cost to attack the CS receiver than the UAV
without exposing itself. Thus, the jammer usually tries to get
illegal reward by attacking the CS receiver rather than the UAV.
The smart jammer equipped with intelligent programmable
radio devices can change its geometric locations and optimize
the waveforms and jamming power to adapt to the dynamic
UAV networks. For the convenience of analysis, the smart
jammer transmits jamming signals with a randomly selected
jamming power y(k) ∈ [0, ymax], where ymax is the maximum
jamming power. If the jammer keeps silent, then y(k) = 0.
It should be noted that the random jammer is considered in this

paper without loss of generality, while the proposed method
is also applicable to other types of jammers, such as sweep
jammer, comb jammer, single jammer, multiple jammers, and
cooperative jammers. The jammer can change the jamming
power to adapt to different scenarios according to the estimated
channel condition. The channel state of the jammer-CS link
denoted by h(k) can be modeled by two-ray path loss model
[44], which mainly consists of a line-of-sight transmission
signal and a ground reflection signal, and is often used to
model the channel between two users on the ground. The
proposed scheme is not limited to the two-ray model and also
applicable to other channel models. The cost of the jammer
is the energy consumption related to the jamming power.
To quantify its utility, the jammer obtains a corresponding
instant payoff, which is calculated by the difference between
the illegal reward and the energy consumption, every time it
selects a jamming power.

C. Video Transmission Model

In the video transmission model in the UAV network, specif-
ically, the channel state of the UAV-CS link denoted by g(k)

can be modeled by the typical air-to-ground channel model
[45]. The video transmission is also affected by noise usually
modeled by the additive white Gaussian noise (AWGN) with
the power of σ2. The SINR of the received signal at the CS
denoted by ρ(k) is usually used to indicate the transmission
quality of the signal. The BER P

(k)
e of the received sig-

nal is used to indicate the transmission reliability, which is
monotonically increasing with the channel coding rate x

(k)
2

and modulation type index x(k)
3 , and decreasing with the SINR

of the received signal ρ(k), i.e. P (k)
e = fP

�
x

(k)
2 , x

(k)
3 , ρ(k)

�
,

where fP(·) is a mapping function. A packet loss occurs when
the BER is larger than a certain threshold T , so the packet error
probability P (k)

r can be defined as P (k)
r = P

�
P

(k)
e > T

�
.

At the receiver of the CS, the received video is recon-
structed through demodulation and decoding. According
to [46], a fixed-point search algorithm combined with succes-
sive convex approximation optimizes the UAV trajectory and
transmit beamforming to minimize the energy consumption by
considering the hardware impairment effects, and simulation
results show that the performance is not much different under
different hardware impairment factors. Thus, this paper mainly
considers the transmission loss and ignores other hardware
impairments. The mean square error distortion D(k) between
the original video and the reconstructed video expressed as
D(k) = fD

�
x

(k)
1 , P

(k)
r

�
consists of two components, i.e. the

source distortion related to the compression ratio reflected
by the QP and the channel loss distortion due to the packet
error [26]. More specifically, the distortion is monotonically
increasing with the QP x(k)

1 and packet error probability P (k)
r .

A larger QP is related to a larger quantization interval. When
using a larger QP for compression coding and thus a larger
quantization interval is used, a larger quantization error will
be introduced and the image precision is reduced, leading to
more severe video compression distortion. The PSNR denoted
by γ(k) is used to measure the video quality, which is related to
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the mean square error distortion as γ(k) = 20lg
�
G/
√
D(k)

�
according to [47]–[49]. G denotes the dynamic range of the
gray value of the image and is usually given by G = 2n−1,
where n represents the number of bits per pixel.

The QoE consists of the video quality measured by PSNR,
and the transmission latency τ (k), which is calculated by the
total time duration from capturing the video to having success-
fully sent all the information by the UAV. As another important
metric of the UAV video transmission, the energy consump-
tion C(k) of the UAV mainly consists of two sources, i.e.
energy consumed by the communication equipment for data
transmission and the energy consumption of power engines for
UAV movements [50]. The motor consumption of the UAV is
inevitable and usually can only be adjusted by improving its
own performance or optimizing its flying trajectory. In our sce-
nario, the UAV usually files at a constant velocity at the same
altitude, which has fixed motor energy consumption. Thus, it is
necessary to optimize the communication energy consumption
and this paper mainly considers the energy consumed by video
compression, channel coding and data transmission. Since the
energy resources of the UAV are quite limited, the total energy
consumption should be taken care of in the video transmission
scheme, in which energy efficient strategies such as power
control that can adjust the transmit power of UAV and adapt
to the varying channel conditions are required [51]. Hence,
it is in great need to find an appropriate trade-off between the
video quality, transmission latency and energy consumption in
the dynamic time-varying wireless environment.

Frequently used symbols in this article are listed in Table I
for the ease of reference.

IV. REINFORCEMENT LEARNING-BASED ANTI-JAMMING

SCHEME FOR UAV VIDEO TRANSMISSION

During the interactions between the UAV and the smart
jammer in the UAV video transmission process, the UAV
optimizes the transmission action, and the jammer also deter-
mines its jamming action dynamically. The smart jammer may
determine its jamming power according to the transmission
policy of the UAV. On the other hand, the UAV has to adapt
to the variation of the jamming policy in the next time slot. The
current decision of the UAV and the jammer is only dependent
on the latest state, so this anti-jamming video transmission
process can be formulated as an MDP. The key elements in
MDP are listed as follows:

State: The UAV receives the feedback information including
the PSNR γ(k−1) from the CS, and measures the processing
throughput E(k−1) through the difference of the amount of
data in the buffer, the transmission latency τ (k−1) via cal-
culating the total time duration from capturing the video to
having successfully sent all the information, and the energy
consumption C(k−1) through the difference of the battery
level of the previous video transmission after accomplishing a
task. Upon receiving a task request with priority l(k) and the
received jamming power y(k)

r from the CS, the UAV estimates
the UAV-CS channel state g(k) and formulates the system state
s(k) as given by

s(k) =
�
l(k), g(k), y(k)

r , γ(k−1), E(k−1), τ (k−1), C(k−1)
�
. (2)

TABLE I

SUMMARY OF SYMBOLS AND NOTATIONS

Action: The UAV anti-jamming video transmission policy
is viewed as the action, which consists of the QP x

(k)
1 , code

rate x(k)
2 , modulation type x(k)

3 and transmit power x(k)
4 . The

action is chosen from the action space denoted by X, which
is the set of all feasible actions, i.e. x(k) = [x(k)

i ]1≤i≤4 ∈ X.
Reward: The reward or utility is the optimization object in

MDP. The video encoder embedded in the UAV transmitter
compresses the captured video with the selected QP x

(k)
1 .

The compressed video is processed through channel coding
with code rate x(k)

2 and then modulated using the modulation
type specified by the parameter x(k)

3 . The processed video is
then sent to the CS using the selected transmit power x(k)

4 .
The CS measures the PSNR γ(k) of the reconstructed video
in the received signal, and then sends feedback information
to the UAV. The transmission latency τ (k) and the energy
consumption C(k) are measured. Then, the utility of the UAV
denoted by u(k) can be given by

u(k) = γ(k) − α0l
(k)τ (k) − α1C

(k), (3)

where α0 is the effective delay coefficient and α1 is the
coefficient denoting the cost per unit energy consumption.
These two coefficients can be used to make a tradeoff among
video quality, transmission latency and energy consumption.
It can be noted from (3) that the utility is dependent on the
PSNR γ(k), transmission latency τ (k) and energy consumption
C(k). The extent to which the latency deteriorates the utility is
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determined by the level of the event priority l(k). The goal of
the UAV is to find the optimal action maximizing the reward.

In practical scenarios, it is infeasible to directly obtain the
optimal video transmission policy since much of the neces-
sary information, such as the channel state, the transmission
and attack models, and the jamming power, is unknown or
not perfectly known. Besides, the transmission environment
keeps changing and the parameters and conditions are also
time-varying. It is difficult to use dynamic programming
or game-theoretic methods to solve this problem while RL
techniques do not need to know such information. Thus,
we propose an RL-based anti-jamming (RL-AJ) scheme for
UAV video transmission to achieve an optimal policy for
the UAV in the MDP mentioned above, in which the UAV
plays a role of a learning agent and determines the optimal
transmission policy based on the observed system state to
maximize the Q-function, without being aware of the video
service model or the attack model. The Q-function therein is
the expectation of the cumulative rewards from taking actions
in the current state. Based on the transfer learning technique,
the Q-function can be initialized with previous experiences
consisting of the action, the resulting utility and the new
state under a given state and Q-values in similar anti-jamming
video transmission scenarios obtained through pre-training.
Thus the previous experiences rather than all zero values can
be adopted to reduce the initial random exploration of the
learning process.

The RL-based anti-jamming video transmission algorithm
for UAV networks is summarized in Algorithm 1. The UAV
observes the state s(k) and chooses the action x(k) according
to the �-greedy method as described in Line 7 in Algorithm 1.
Then the actions determined by the RL-based algorithm are
executed and the utility of the UAV is evaluated by (3).
As described in Line 17 in Algorithm 1, the Q-function will
be updated according to the Bellman equation iteratively using
the current Q-function Q(s(k), x(k)), the instantaneous utility
u(k), and the value function of the next state denoted by
V
�
s(k+1)

	
= max

x∈X
Q
�
s(k+1), x

	
, which represents the max-

imum Q-value for the given state s(k+1) among all possible
actions. The learning rate denoted by α ∈ (0, 1] represents the
weight of the current Q-value on the future Q-function, and
the discount factor denoted by δ ∈ [0, 1] represents the weight
of uncertainty about the future utility in the learning process.

V. SAFE REINFORCEMENT LEARNING-BASED

ANTI-JAMMING SCHEME FOR UAV VIDEO TRANSMISSION

We further propose a safe RL-based anti-jamming (SRL-AJ)
video transmission scheme for the tasks with more stringent
requirements of video QoE to accelerate the learning process
and reduce the transmission outage probability in case the
SINR is too low, thus increasing the security of the UAV video
transmission. Different from the proposed RL-AJ scheme
using classical Q-learning, the safe RL-based scheme models
the risk of transmission outage in an explicit manner using a
risk network, determines the transmission policy based on the
observed state using a modified Boltzmann distribution. CNNs
with convolution kernels are utilized to extract the inherent
features of the system and compress the high-dimensional

Algorithm 1 RL-Based Anti-Jamming (RL-AJ) Algorithm
for UAV Video Transmission

1 Initialize learning rate α, discount factor δ, initial
Q-function Q← Q∗ according to the previous similar
experiences, initial value function V← 0

2 for k = 1, 2, . . . do
3 UAV receives a task requirement with priority l(k)

4 Estimate the channel state of UAV-CS link g(k)

5 Obtain the received jamming power y(k)
r from the CS

6 Observe and formulate the current state

s(k) =
�
l(k), g(k), y

(k)
r , γ(k−1), E(k−1), τ (k−1), C(k−1)

�
7 Select the transmission policy x(k) = [x(k)

i ]1≤i≤4

according to the �-greedy method, i.e.

Pr
�
x(k) = x∗

	
=

⎧⎨
⎩

1− �, x∗ = argmax
x∈X

Q
�
s(k), x

	
�

|X|−1 , otherwise.

8 Video compression with the selected QP x
(k)
1

9 Channel coding with the code rate x(k)
2

10 Modulation with the type of x(k)
3

11 Measure the processing throughput E(k)

12 Transmit the processed video to the CS with the

selected transmit power x(k)
4

13 Receive the feedback information including the PSNR
γ(k) and SINR ρ(k) from the CS

14 Measure the transmission latency τ (k) and energy
consumption C(k)

15 Formulate the next state s(k+1) after taking action x(k)

16 Obtain the utility u(k) via (3)
17 Q

�
s(k), x(k)

	←
(1−α)Q

�
s(k), x(k)

	
+α



u(k) + δmax

x∈X
Q
�
s(k+1), x

	�
18 end

state-action space to reduce the complexity and improve
the performance. Some pre-training such as transfer learning
techniques can be used to reduce the burden of neural network
training and accelerate the process of convergence. In addition,
CNNs can be mapped on a lightweight embedded processing
platform by CNN parameter compression and quantization,
which do not necessarily require excessive complexity and can
be implemented on UAVs with simple hardware and limited
resources [52], [53].

More specifically, in the framework of safe RL, a risk level
of taking the action x(k) in the state s(k), i.e. r(s(k), x(k)),
is defined and utilized to represent the probability of transmis-
sion outage. A certain threshold σT is configured according
to the prior knowledge of the system to determine whether a
state-action pair is safe or not. The risk level is determined by
the relation between the SINR ρ(k) and the given threshold
σT , i.e. r(s(k), x(k)) = I(ρ(k) < σT ). The long-term risk level
denoted by R(s(k), x(k)) for λ time slots in a risk network
(R-network) is given by

R(s(k), x(k)) =
λ�
j=0

βjr(s(k+j), x(k+j)), (4)

where 0 < β < 1 is a risk discount factor.
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The pseudo-code of the proposed safe RL-based algorithm
is shown in Algorithm 2. The state s(k) is formulated in a
similar way as in (2), and reshaped into a z0 × z0 matrix to
serve as the input of the CNN. A typical CNN architecture
mainly consists of Convolution (Conv) layers, pooling layers
and fully-connected (FC) layers. The inherent features of
the data to be trained are extracted layer-by-layer, and the
classification is completed by several FC layers. The operation
of Conv layers is inspired by the concept of local receptive
field, while a pooling layer is mainly adopted to reduce the
high data dimension. As shown in Fig. 2, the CNN consists
of two Conv layers and two FC layers. A Q-network and an
R-network are used to estimate the Q-values Q(s(k), x) and
the long-term risk levels R(s(k), x) of the feasible policies x in
the current state s(k), respectively. The first Conv layer has f1
filters with size z1×z1 and stride s1, and the second Conv layer
has f2 filters with size z2×z2 and stride s2. The first FC layers
in the Q-network and the R-network, i.e. FC 1 and FC 3, have
n1 and n2 neurons, respectively. The output layers of these two
networks both have |X| neurons, with each neuron representing
one of the feasible policies. The hyper-parameters related to
the CNN configuration are assembled to a hyper-parameter
vector denoted by F = [f1, f2, z1, z2, s1, s2, n1, n2].

The video transmission policy is determined according to
the conditional probability distribution π(x|s(k)) to select the
action x in the state s(k), which is obtained through the
modified Boltzmann distribution [54] given by

π
�

x|s(k)
�

=
exp



Q(s(k),x)
R(s(k),x)+1

�
I
�
R
�
s(k), x

	
< ξ
	

�
x′ exp



Q(s(k),x′)
R(s(k),x′)+1

�
I
�
R
�
s(k), x�

	
< ξ
	 ,

(5)

where R(s(k), x) can be regarded as a temperature parameter
in the modified Boltzmann distribution used to adjust the
randomness of the decisions, and ξ is the threshold of the
risk level tolerance to avoid transmission outage.1 It can be
observed from the conditional probability distribution given
in (5) that, the action with a higher Q-value and a lower
risk level within the risk level tolerance is more likely to
be selected. It is implied that the actions that cause the risk
level to exceed the threshold ξ will hardly be selected, so the
transmission outage probability can be reduced.

Similar to the RL-AJ algorithm, the UAV evaluates the
utility u based on (3), observes the next state s(k+1), and eval-
uates the risk level r(s(k), x(k)) based on the feedback SINR
ρ(k). Then the UAV formulates and stores a memory transition
denoted by e(k) = (s(k), x(k), u(k), s(k+1), r(s(k), x(k))) in the
memory pool D, where a memory transition is a piece of
record including the current state and action, the utility, the
next state, and the risk level. The technique of experience
replay is exploited, where a minibatch B is sampled from D to

1There is high probability that there exists at least one action x such that
π
�
x|s(k)

�
is non-zero due to the high dimensionality of the action space.

Even in the extreme case, random exploration can be adopted to enter a new
state with a different Boltzmann probability distribution. If the extreme case
keeps occurring for a long time, the UAV can change its position to reach a
new distribution.

Algorithm 2 Safe RL-Based Anti-Jamming (SRL-AJ)
Algorithm for UAV Video Transmission

1 Initialize discount factor δ, CNN weights θQ and θR and
initial risk level r(s, x) = 0

2 for k = 1, 2, . . . do
3 UAV receives a task requirement with priority l(k)

4 Estimate the channel state of UAV-CS link g(k)

5 Obtain the received jamming power y(k)
r from the CS

6 Observe and formulate the current state

s(k) =
�
l(k), g(k), y

(k)
r , γ(k−1), E(k−1), τ (k−1), C(k−1)

�
7 Select the transmission policy x(k) = [x(k)

i ]1≤i≤4

according to the conditional probability distribution
π(x|s(k)) in (5)

8 Conduct procedures same to the lines 8-15 in
Algorithm 1

9 Obtain the utility u(k) via (3)
10 Observe the feedback SINR ρ(k) and evaluate the risk

level r(s(k), x(k))
11 Formulate a memory transition

e(k) = (s(k), x(k), u(k), s(k+1), r(s(k), x(k)))
12 Store the transition into memory pool: D ← D ∪ e(k)

13 Obtain a minibatch B sampled from D
14 Update the weight of Q-network θQ via (6)
15 Update the weight of R-network θR via (7)
16 end

update the CNN parameters using stochastic gradient descent
(SGD). More specifically, the UAV samples a mini-batch
data to train the deep neural networks and calculate the loss
function in a forward propagation manner. Then the gradient
with respect to each component or weight of the CNN is
calculated by the method of back propagation, which is used
to update the network weights and parameters iteratively using
the training data set. The weight of the Q-network θQ is
updated by minimizing the loss function given by

L(θQ) = Ee(i)∈B

�

u(k) + δmax

x∈X
Q
�

s(i+1), x
�

−Q
�

s(i), x(i)
��2�

, (6)

where E{·} is the expectation operator. The weight of the
R-network θR is updated by minimizing the loss function given
by

L(θR) = Ee(i)∈B

�
 λ�
j=0

βjr
�

s(i+j), x(i+j)
�

−R
�

s(i), x(i)
��2�

. (7)

VI. PERFORMANCE EVALUATIONS

In this section, we analyze the theoretical optimal value
of the proposed safe RL-based anti-jamming algorithm in the
UAV video transmission network regarding the UAV utility
with different constraints. The computational complexity of
the proposed RL-AJ and SRL-AJ scheme is derived, respec-
tively. The superscript k for the time slot is omitted for
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Fig. 2. Illustration of safe RL-based anti-jamming (SRL-AJ) video transmission policy selection algorithm.

notation simplicity when no confusion is incurred in the
following content.

When the channel state of the UAV-CS link g and the
jamming power y are estimated or measured, the SINR ρ and
the BER Pe can be obtained by ρ = x4g

2/(σ2 + yh2) and
Pe = Aerfc(

√
Bρ)
√

2x2bx3−1, respectively, where A and B
are parameters related to the modulation type, and erfc(·) is
the complementary error function [9]. According to [47] and
[55], the PSNR γ in dB is given by

γ (dB) = ω1x1 + ω2

− νI
�
Aerfc

��
Bx4g2

σ2 + yh2

��
2x2bx3−1 > T

�
, (8)

where ω1 < 0 and ω2 > 0 are fitting parameters, and T is a
certain threshold of the BER to determine packet loss, with
the coefficient ν indicating the sensitivity to packet loss. The
indicator function I(·) equals 1 when the condition therein is
true and 0 otherwise. The first two terms in (8) represent the
influence of source distortion caused by video compression,
and the third term represents the packet loss distortion.

According to [7], the transmission latency can be given by

τ = ϕx2
1 + ηx1 +

NB

RBbx3−1
, (9)

where the first two terms represent the time consumed by
compression coding with ϕ > 0 and η < −2ϕN being fitting
parameters. The third term is the transmission delay, in which
NB denotes the bits of the processed video data needed to be
transmitted, and RB and RBb

x3−1 denote the baud rate and the
data rate emitted out of the UAV transmitter after modulation.

The energy consumption can be modeled by C = (a1x1 +
a0)+(b1x2+b0)+cx4, where the coefficients a1 related to the
video compression and b1 related to the energy consumption of
the UAV transmitter are negative, i.e. a1 < 0 and b1 < 0, since
less processing overhead is required for video compression
when the QP is larger and for channel coding when the code
rate is higher. The coefficients a0 > 0 and b0 > 0 are
modifying factors, and c > 0 is a time factor.

Recalling that the action x can be chosen from the range of
x1 ∈ [0, N ], x2 ∈ [R1, R2], x3 ∈ [1,M ], and x4 ∈ [X1, X2],
the optimal value regarding the utility of the UAV can be
derived by the following theorem:

Theorem 1: The optimal value regarding the utility of the
UAV in the proposed safe RL-based anti-jamming algorithm
for UAV video transmission is given by (10), as shown at the
bottom of the next page, with different constraints given by (11)
as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Π1 : ω1 < α0Lη + α1a1 (11a)

Π2 : α0η + α1a1 < ω1 < α0L(2ϕN + η) + α1a1 (11b)

Π3 : ω1 > α0(2ϕN + η) + α1a1 (11c)

Π4 : Aerfc

��
BX1g2

σ2 + ymaxh2

��
2R2bM−1 < T (11d)

Proof: See Appendix A.
Remark 1: The safe RL-based algorithm can converge to

the optimal video anti-jamming transmission policy with a
probability of one in the dynamic environment modeled as
an MDP after a sufficiently long time according to [56]. If the
video quality fitting parameter ω1 is relatively low as shown
in (11a), a slight increase in QP will cause a significant
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decrease in PSNR and thus the utility decreases with QP, so the
minimum QP should be selected in order to compress the video
without too much source distortion. If the fitting parameter
ω1 has a moderate value as shown in (11b), the utility will
increase at first and then decrease with the QP, so the UAV
should search for an optimal QP that maximizes the utility in
the process of video compression. If ω1 satisfies (11c), a larger
QP will not cause a significant decrease in utility while the
processing latency can be much smaller since the quantization
interval is larger. If the UAV-CS link is in a good channel
state as shown in (11d), the maximum code rate with low
computational complexity can be applied for channel coding,
and a higher modulation order can be applied since packet loss
is less likely to occur compared with lower modulation order.
Moreover, the minimum transmit power X1 can be adopted
to reduce the energy consumption of the UAV and meanwhile
the utility and video QoE can be guaranteed.

The computational complexity of Algorithm 1 denoted by
O(Γ1) is mainly contributed by the number of steps required
for the algorithm to converge. Let K denote the number of
steps required for the algorithm to converge in each episode,
and let NF denote the number of episodes. The computa-
tional complexity of Algorithm 1 under the assumption that
KNF > poly{|S|, |X|,K} is given by the following theorem,
where poly{·} is an operator that calculates the characteristic
polynomial of an equation with vector [|S|, |X|,K] as the
solution, and |S| and |X| is the size of the state and action
sets, respectively. In addition, the computational complexity
of Algorithm 2 denoted by O(Γ2) is mainly contributed by
the computational complexity in the CNN. The number of the
input channels of the CNN is denoted by f0, and mψ denotes
the size of the output features of the convolutional layer Conv
ψ. The size of the output features of Conv 1 and Conv 2 is
(z0 − z1)/s1 + 1 and (z0 − z1)/(s1s2) − (z2 − 1)/s2 + 1
according to [57], respectively. The computational complexity
of Algorithm 2 under the assumption that f0 = s1 = s2 = 1
is given by the following theorem.

Theorem 2: The computational complexity of the proposed
RL-based anti-jamming video transmission algorithm is given
by

O(Γ1) = O(KNF). (12)

The computational complexity of the proposed safe RL-based
anti-jamming video transmission algorithm is given by

O(Γ2) = O �f1f2z2
0z

2
2

	
. (13)

Proof: See Appendix B.
Remark 2: The computational complexity of Algorithm 1

increases with the total number of steps required for

convergence. The proposed RL-based scheme uses transfer
learning to initialize the Q-values with prior experiences and
reduce the initial random exploration, which can reduce the
number of steps required for convergence and the computa-
tional complexity of the algorithm. The computational com-
plexity of Algorithm 2 increases with the number of filters
of the Conv layers, i.e. f1 and f2, the CNN input size z0, and
the filter size of Conv 2 z2. However, the system performance
improves with the CNN input size and the number of filters,
because the CNN with a larger input size is able to extract
more learning experiences, and a larger number of filters can
represent more features captured. Thus the CNN parameters
should be properly selected to achieve a good tradeoff between
the computational complexity and the learning performance.

VII. SIMULATION RESULTS

Simulations are performed to evaluate the performance
of the proposed RL-based and safe RL-based anti-jamming
schemes for video transmission in a UAV network, which
consists of a UAV located at the coordinate of (10, 10, 200) m
at the initial time, flying horizontally with the moving speed
vU = 10 m/s, a CS located at (0, 0, 0) m, and a jammer
at (100, 0, 0) m. The task priority is divided into 4 levels
from 1 to 4. The widely applied compression coding standard
H.264 is adopted to compress the captured video with the QP
discretized uniformly into 6 levels from 0 to 50 with the step
of 10. The LDPC code is adopted and the feasible code rate
ranges from 0.5 to 0.9 with the step of 0.2 according to [58].
The number of modulation types is set as M = 3, and BPSK,
QPSK and 16-QAM are adopted as the feasible modulation
types. It should be noted that these coding and modulation
types are considered as an example in our simulations, and
the proposed schemes can be applied for other compression
coding, channel coding and modulation modes. As described
in Eq.(1) in Section III, the rate of the data leaving the buffer
for channel coding is set to RP = 700 kbps according to [22],
and the baud rate RB is set to 6 × 105 symbols/s according
to [59].

In the simulations, the channel state of the jammer-CS
link h can be modeled by the two-ray path loss model [44].
The channel state of the UAV-CS link g can be modeled
by the air-to-ground channel model [45], which consists of
two parts, i.e. the line-of-sight link with probability PLoS =
1/(1 + �exp(−μ(θ − �))) and non-line-of-sight link with
probability PNLoS = 1−PLoS, where θ is the elevation angle
between the UAV and the CS, and � = 0.136 and μ = 11.95
are constant parameters related to the environment. Thus, the
pathloss can be modeled by Λ = |d|κPLoS + ε|d|κPNLoS,
where d is the distance between the UAV and the CS, κ = 3

u∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω2 − α0NB

RBbM−1
− α1(a0 + b0 + b1R2 + cX1), Π1 ∩Π4 (10a)

ω2 +
(ω1 − α0η − α1a1)2

4α0ϕ
− α0NB

RBbM−1
− α1(a0 + b0 + b1R2 + cX1), Π2 ∩Π4 (10b)

ω2 +
�
ω1 − α0(ϕN + η)− α1a1

	
N − α0NB

RBbM−1
− α1(a0 + b0 + b1R2 + cX1), Π3 ∩Π4 (10c)
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is the path loss exponent and ε = 20 is the additional path
loss factor of the non-line-of-sight link. The channel gain g is
then given by

g =
1 +�exp

�− μ(θ −�)
	

��d��κ
1 + ε�exp
�− μ(θ −�)

	� . (14)

The power of the AWGN at the receiver of the CS is set
to 1.2 mW. After estimating the UAV-CS channel state and
measuring the jamming power in the range between 100 and
120 mW, the processed video with the size of NB =
480 kbits is transmitted to the CS using the transmit power
from 100 to 180 mW with the step of 20 mW. The BER
threshold T related to the packet error probability was set as
5 × 10−3 through setting different values and obtaining one
maximizing the performance.

The learning rate α and the discount factor δ are set to
0.7 and 0.4 in Algorithm 1, respectively, unless explicitly
specified otherwise. The risk discount factor β in Algorithm 2
is set to 0.1 and the CNN hyper-parameter vector is set to
F = [20, 40, 3, 2, 1, 1, 180, 180] through grid search, i.e. setting
multiple possible values and selecting a set of values to achieve
a good tradeoff between the computational complexity and the
learning performance. If the setup such as the UAV trajectory
or channel models has changed, appropriate hyper-parameters
can still be obtained through offline tuning. The resource
allocation based data transmission (RADT) scheme [21] is
evaluated as a benchmark scheme, in which the code rate and
the transmit power are invariant and set to 0.5 and 1 W in the
simulations, respectively, which does not adapt to the dynamic
jamming environment. The RADT scheme also applies adap-
tive modulation and employs the desired-to-undesired signal
ratio as a threshold to change between different modulation
types. The method in prior work called RL-based UAV media
transmission (RUMT) in [31] without utilizing the hot-booting
technique is also evaluated as another benchmark.

The performance of the RL-based and safe RL-based anti-
jamming schemes for UAV video transmission is reported in
Fig. 3. The performance is calculated using the average value
over 100 episodes, each of which has 8000 time slots. It is
shown by Fig. 3 that both the proposed RL-AJ and SRL-AJ
schemes can jointly improve the PSNR and the utility, while
reducing the transmission latency and energy consumption. For
instance, the RL-AJ scheme improves the PSNR by 31.7%
from 30 dB to 39.5 dB, and the SRL-AJ scheme is able
to further improve it by 40.1% after 3000 time slots. The
value of PSNR optimized ranging from 25 dB to 45 dB is
common practice and realistic in literature [60] and [40]. For
example, the bit rate can be set as 50, 200, 400 or 1000 kbps
when the PSNR ranges from 25 to 45 dB according to [40],
which indicates that the improvement of PSNR will not curtail
the bitrates and degrade the performance. The RL-AJ scheme
decreases the transmission latency by 35.6% from 208 ms
to 134 ms while the SRL-AJ scheme decreases the latency
by 47.6% at the 3000-th time slot. It can be observed from
Fig. 3 (c) that the energy consumption of the RL-AJ scheme
is decreased by 47.3% from 70 mJ to 36.9 mJ at the 8000-th
time slot. The energy consumption of the SRL-AJ scheme is

Fig. 3. Performance of the RL-based and safe RL-based anti-jamming
schemes for UAV video transmission networks.

further decreased by 62.2% and converges much more rapidly,
which reaches the optimal level at the 3000-th time slot. The
utility of the UAV is improved from 1.5 to 22.3 using the
RL-AJ scheme and from 1.5 to 28 using the SRL-AJ scheme.
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In addition, it is noted from Fig. 3 (d) that the proposed
safe RL-based algorithm is approaching the theoretical optimal
value given by (10) after 3000 time slots. The simulation
results validate that, the proposed SRL-AJ scheme applying
deep learning to extract features and compress the state-action
space can accelerate the learning process, and the required time
of convergence is 62.5% less than that of the RL-AJ scheme.

It can also be noted from the simulation results that, the
performance of the proposed schemes is significantly improved
compared with that of the RADT and RUMT schemes.
As shown in Fig. 3 (a), the RL-AJ scheme improves the PSNR
by 31.7% and 23.4% compared to the RADT and RUMT
schemes, respectively, after 8000 time slots. The SRL-AJ
scheme further improves the PSNR by 6.1% compared to the
RL-AJ scheme. As shown in Fig. 3 (b) and (c), the SRL-AJ
scheme has the lowest transmission latency and energy con-
sumption, and the RL-AJ scheme also has a relatively low
latency. More specifically, the RL-AJ scheme reduces the
transmission latency by 35.6% and 24.3%, and reduces the
energy consumption by 47.3% and 39.5%, compared to
the RADT and RUMT schemes, respectively, at the 8000-th
time slot. The SRL-AJ scheme consumes 22.9% less latency
and 27.9% less energy compared to the RL-AJ scheme at
convergence. In addition, according to Fig. 3 (d), the utility of
the UAV using the RL-AJ scheme is 13.9 and 1.7 times larger
than that using the RADT and RUMT schemes, respectively,
and the SRL-AJ scheme has a 25.6% even larger utility than
the RL-AJ scheme.

The performance of the proposed schemes with respect
to the baud rate in the range between 5 × 105 and
7× 105 symbols/s is reported in Fig. 4. The performance is
calculated using the average value over 100 episodes, each of
which has 8000 time slots. It is shown by Fig. 4 (a) and (b)
that, the processing throughput of the proposed schemes of
SRL-AJ and RL-AJ is increasing with the baud rate while the
average transmission latency is decreasing with the baud rate.
It can also be noted that, the processing throughput of the
proposed SRL-AJ scheme is more than 2.5 times that of the
conventional RUMT and RADT methods, and the latency of
the SRL-AJ scheme is about half of that of the conventional
methods, when the baud rate is 7× 105 symbols/s. Thus, the
throughput is greatly improved and the latency is significantly
reduced. The SRL-AJ scheme has a superior performance
because convolution neural networks are utilized to compress
the state space to accelerate the learning process. Besides, the
risk of transmission outage is modeled in an explicit manner
using R-network and is formulated in probability distribution
using the modified Boltzmann distribution, which can help to
reduce the probability of the actions encountering transmission
outage. In addition, as shown in Fig. 4 (c), the utility of
the UAV using the SRL-AJ scheme is 1.6, 4.4 and 19.3
times larger than those using the RL-AJ, RADT and RUMT
schemes, respectively, at the baud rate of 6.5×105 symbols/s.

In order to show the overall performance versus the UAV
altitude, we assume that the UAV camera over the target
area has a maximum video shooting angle θU, and thus it
has different shooting ranges at different altitudes hU. The
maximum shooting area is denoted by SU = πθ2U tan2 θU.

Fig. 4. Average performance of the dynamic anti-jamming process in UAV
video transmission networks with respect to the baud rate.

In order to consider the influence of UAV altitude on the
learning performance, the utility can be extended as u� =
u+α2SU, where α2 is the reward coefficient. The performance
of the proposed schemes with respect to the UAV altitude in
the range between 100 and 260 m is reported in Fig. 5. The
maximum shooting area increases with the altitude, and the
monitoring range can be improved by increasing the altitude.
On the other hand, if the UAV altitude is higher, the distance
from the CS and the channel loss is larger. SINR and PSNR are
reduced, thus having an impact on the received video quality
as shown in Fig. 5 (a). As shown in Fig. 5 (b), we can find an
optimal altitude, i.e. 180 m, to make a best tradeoff between
the shooting area and the video quality.

Consequently, the simulation results validate that the pro-
posed RL-AJ and SRL-AJ schemes significantly improve
the PSNR, and reduce the transmission latency and energy
consumption compared with benchmark schemes including
RADT in [21] and RUMT in [31]. Furthermore, it can be noted
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Fig. 5. Average performance of the dynamic anti-jamming process in UAV
video transmission networks with respect to the UAV altitude.

from Fig. 3 (d) that the proposed safe RL-based algorithm
is asymptotically approaching the theoretical optimal value
derived in Theorem 1, and the learning process is further
accelerated in the framework of deep RL. Moreover, the
effectiveness of the proposed schemes is also verified by
the average performance including the processing throughput,
transmission latency and utility of the UAV as shown in Fig. 4.

VIII. CONCLUSION

In this paper, we have presented an RL-based UAV video
transmission scheme to guarantee the QoE of the video cap-
turing services while reducing the energy consumption against
smart jamming attacks. Our proposed scheme enables UAVs
to optimize their video compression and transmission policies
without being aware of the jamming model or the video service
model. Moreover, we have developed a safe RL-based scheme
to reduce the UAV transmission outage probability, further
accelerate the UAV policy learning process. Simulation results
verify the derived optimal value of the UAV utility and show
that the proposed schemes significantly improve the video
transmission QoE with lower transmission latency and energy
consumption in the presence of smart jamming. In future
research, the scenario of multiple cooperative jammers can
be taken into consideration and evaluated. The delay and error
caused by many various components in the video transmission
system can be taken into consideration to further improve
the applicability of the proposed scheme, especially in system
implementation in practice.

APPENDIX A
PROOF OF THEOREM 1

We assume that x1 is continuous from 0 to N and x3 is
continuous from 1 to M for simplicity of presentation, so that

u is differentiable for xi(1 ≤ i ≤ 4). According to (3), (8)
and (9), the utility of the UAV can be rewritten as

u = ω1x1 + ω2

− νI
�
Aerfc

��
Bx4g2

σ2 + yh2

��
2x2bx3−1 > T

�

−α0l



ϕx1

2 + ηx1 +
NB

RBbx3−1

�
−α1(a1x1 + a0 + b1x2 + b0 + cx4). (15)

If (11d) holds, we have

Aerfc

��
Bx4g2

σ2 + yh2

��
2x2bx3−1

≤ Aerfc

��
BX1g2

σ2 + ymaxh2

��
2R2bM−1 < T. (16)

The utility now is given by

u = ω1x1 + ω2 − α0l



ϕx1

2 + ηx1 +
NB

RBbx3−1

�
−α1(a1x1 + a0 + b1x2 + b0 + cx4). (17)

Then if (11a) holds, we have

∂u

∂x1
= −2α0lϕx1 + ω1 − α0lη − α1a1

≤ ω1 − α0Lη − α1a1 < 0, (18)
∂u

∂x2
= −α1b1 > 0, (19)

∂u

∂x3
=
α0NBlnb
RBbx3−1

> 0, (20)

∂u

∂x4
= −α1c < 0, (21)

indicating that the utility u increases with x2 and x3, and
decreases with x1 and x4.

Thus, the gradient

∇u =


∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3
,
∂u

∂x4

�
	= 0, (22)

indicating that the utility u has no extreme point in the feasible
domain of x. According to the gradient ascent algorithm, x is
updated along the direction of the gradient ascent, which is
given by

x = x + q∇u, (23)

where q = [qi]1≤i≤4 is the iteration step which can be varying
with different xi or identical.

Keep using the gradient ascent algorithm in (23) and finally
since x1 ∈ [0, N ], x2 ∈ [R1, R2], x3 ∈ [1,M ] and x4 ∈
[X1, X2], we have the optimal solution as x∗ = arg max

x∈X
u =

[0, R2,M,X1]. This result still holds when x1 and x3 are
discrete. By substituting x = x∗ and l = 1 into the utility
in (17), the optimal value regarding the utility (10a) can be
obtained. Eqs. (10b) and (10c) can also be proved in a similar
way.
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APPENDIX B
PROOF OF THEOREM 2

The total steps required for Algorithm 1 to converge is
KNF. According to [61] and [62], if the lower order terms
can be ignored, i.e. KNF > poly{|S|, |X|,K}, where poly{·}
is an operator that calculates the characteristic polynomial of
an equation with vector [|S|, |X|,K] as the solution, and |S|
and |X| is the size of state and action sets, respectively, then the
computational complexity O(Γ1) can be given by O(Γ1) =
O(KNF).

As far as Algorithm 2 is concerned, the computational
complexity of the FC layers can be ignored compared with
the Conv layers because the operations are linear and thus the
computational complexity is sufficiently small compared to the
quadratic operations in convolutional layers. In most cases, the
conditions z0 > z1 > z2 and z1 + z2− 2 ≈ 0 hold. According
to [63], we have

z2
1(z0 − z1 + 1)2 � f2z

2
2(z0 − z1 − z2 + 2)2. (24)

According to (24) and [64], we have
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2
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2
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