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Eavesdropping
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Abstract— The inherent broadcast characteristics of the visible
light communication (VLC) channel makes VLC downlinks sus-
ceptible to unauthorized terminals in many actual VLC scenarios,
such as offices and shopping centers. This paper considers a
multiple-input-single-output (MISO) VLC scenario with multiple
light fixtures acting as the transmitter, a VLC receiver as the
legitimate user, and an eavesdropper attempting to intercept the
undisclosed information. To improve the confidentiality of VLC
links, a physical-layer anti-eavesdropping framework is proposed
to obscure the unauthorized eavesdroppers and diminishes their
capability of inferring the information through smart beamform-
ing over the MISO VLC wiretap channel. To cope with the
intractable problem of finding the theoretically optimal solution
of the secrecy rate and utility for the MISO VLC wiretapping
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channel, a reinforcement learning (RL)-based VLC beamforming
control scheme is proposed to achieve the optimal beamforming
policy against the eavesdropper. Furthermore, a deep RL-based
VLC beamforming control scheme is proposed to handle the
curse of dimensionality for both observation space and action
space and avoid the quantization error of the RL-based algo-
rithm. Simulation results show that the proposed learning-based
VLC beamforming control schemes can significantly decrease the
bit error rate of the legitimate receiver and increase the secrecy
rate and utility of the anti-eavesdropping MISO VLC system,
compared with the benchmark strategy.

Index Terms— Eavesdropping, visible light communication,
secrecy rate, beamforming, deep reinforcement learning.

I. INTRODUCTION

V ISIBLE light communication (VLC) has been recently
acknowledged as a promising technology for the next-

generation wireless communications, which uses light-emitting
diodes (LEDs) to transmit signals to receivers such as pho-
todiodes (PDs) [1], [2]. In the face of the limited spectrum
of the conventional radio-frequency bands, VLC can meet
the rapidly increasing requirement for high rate transmission
and ubiquitous coverage, especially for indoor communication
environments [3], [4]. Benefiting from the ultra-wide license-
free light spectrum, the robustness against interference and low
implementation cost [5], [6], VLC has been widely applied in
many different kinds of areas including indoor localization,
vehicular networks and mobile health-monitoring [7], [8], etc.
Because of the inherent broadcast characteristics of the line-of-
sight (LoS) VLC transmission and coverage properties, many
potential security loopholes have emerged that jeopardize the
secure transmission of the legitimate VLC users and network
administrators. It is much likely for the transmitted information
to be wiretapped by malicious attackers within the range of the
light, especially in public areas such as offices, train stations,
coffee shops and libraries [9]. Therefore, it is essential for
VLC systems to devise a secure and efficient mechanism
against eavesdropping, as is investigated and emphasized
in [10].

Conventional security approaches protect legitimate users
from eavesdropping via various high-layer techniques such as
authentication and encryption, etc. However, with the rapid
development of the computational capability of illegitimate
terminals, the methods mentioned above may be ineffective

0090-6778 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2402-611X
https://orcid.org/0000-0002-5710-0446
https://orcid.org/0000-0002-0078-4891
https://orcid.org/0000-0002-4755-7231


XIAO et al.: DEEP RL-ENABLED SECURE VLC AGAINST EAVESDROPPING 6995

because the encryption methods can be decrypted by the poten-
tial advanced eavesdroppers. To close the vulnerable backdoor
of these classical encryption techniques to potential attack-
ers, physical (PHY)-layer security technologies have recently
gained considerable attention, which exploit the PHY-layer
channel characteristics and communication and signal process-
ing techniques to hide the secrecy information from unautho-
rized terminals and secure the transmission over the wireless
or VLC wiretap channel [11]–[14]. Among the related studies,
the PHY-layer security framework pioneered in [15] proposes
a fundamental information-theoretic security metric termed as
secrecy capacity over the noisy wiretap environment, where an
wiretapper will have access to the signal of interest with some
degradation. Friendly jamming signals are utilized in [9], [16]
to achieve an effective beamforming scheme to suppress the
reception quality of the eavesdropper and further improve the
secrecy rate of the VLC system. The achievable secrecy rate
is maximized in [10] through zero-forcing beamforming over
the VLC wiretap channel with multiple LED transmitters.

Nevertheless, it might be difficult to obtain the ideal wire-
tapping channel state information (CSI) when the location
of the eavesdropper is unknown in practice, which is neces-
sary for implementing zero-forcing beamforming. To improve
state-of-the-art methods in practical VLC systems, a smart
beamforming approach based on reinforcement learning (RL)
is proposed in this work for the multiple-input single-output
(MISO) VLC wiretap channel. Multiple light sources are
adopted as the transmitter for smart beamforming policies
obtained through the RL process. The purpose of the proposed
RL-based smart beamforming control scheme is to reduce the
information received by the eavesdropper and improve the
desired signal level at the legitimate receiver in the MISO
VLC wiretap channel.

In this paper, the proposed smart transmitter determines
its beamforming policy based on the previous security per-
formance such as the secrecy rate of the VLC system and
the bit error rate (BER) of the legitimate receiver. Since
the repeated beamforming policy control in a dynamic anti-
eavesdropping communication process is modeled by Markov
decision process (MDP), the methods like Q-learning based on
RL [17]–[20] will provide an effective beamforming selection
for the MISO VLC system. However, the Q-learning technique
could only effectively handle discrete and low-dimensional
action spaces. Neural network based methods, such as recur-
rent neural network have been used to achieve the channel
state information (CSI) compression and improve the accu-
racy of quantized CSI feedback [21]. To satisfy the security
requirement of practical VLC systems against wiretapping and
keep track of the information of the complicated and high-
dimensional structure of the beamforming policy domain, deep
reinforcement learning (DRL) based algorithm is introduced,
i.e., deterministic policy gradient (DDPG) [22]. The proposed
DRL-based algorithm for MISO VLC smart beamforming
control fully exploits the actor-critic approach [23] and deep
Q network [24] to make it easier for learning, and to achieve
a better overall anti-eavesdropping performance.

Consequently, an RL-based smart beamforming frame-
work and an RL-based MISO VLC beamforming (RL-VB)

algorithm are proposed for MISO VLC systems to protect the
legitimate receiver from eavesdropping via trial and error. It is
shown that the proposed RL-based scheme is able to achieve
the optimal beamforming policy after a sufficient number of
time slots of learning iterations. Furthermore, a DRL-based
smart beamforming framework along with a DRL-based MISO
VLC beamforming (DRL-VB) algorithm is proposed to cope
with the continuous action space and high-dimensional state
space to support efficient and effective anti-eavesdropping with
higher security requirement. It is verified by the simulations
that the DRL beamforming control method further increases
the utility and the secrecy rate of the MISO VLC system com-
pared with the RL-based scheme, and significantly decrease
the BER of the legitimate receiver compared with the state-
of-the-art benchmark.

To summarize, the main contributions of the work are as
follows:

• A PHY-layer anti-eavesdropping framework is formulated
over the MISO VLC wiretap channel, in which the
transmitter exploits smart beamforming to decrease the
eavesdropped signal level and improve the desired signal
level of the legitimate receiver.

• An RL-based smart beamforming scheme is proposed to
achieve the optimal beamforming, where the transmitter
chooses the beamforming policy dynamically in an MDP.

• A DRL-based smart beamforming method is further pro-
posed to increase the learning rate and performance by
fully exploiting the information of the complicated and
high-dimensional structure of the beamforming policy
domain and jointly utilizing the actor-critic approach and
deep neural networks.

The remainder of the paper is summarized in the following:
Section II shows the related work and Section III presents the
VLC model and eavesdropping model. Section IV and V show
the RL-based and DRL-based smart beamforming control
schemes, respectively. The performance bound of the pro-
posed beamforming control scheme is analyzed in Section VI.
Section VII analyzes the simulation results and Section VIII
summarizes the work with several remarks.

II. RELATED WORK

The lower and upper bounds of a free-space optical SISO
channel capacity with a peak intensity constraint or an average
intensity constraint are investigated in [25]. As an extension,
the lower and upper bounds of the capacity with a total average
intensity constraint is concluded in [26] for the constant
parallel VLC channel assuming perfect CSI at the transmitter.
The perfect secrecy capacity of the MIMO broadcast channel
is developed in [27] to guarantee that the eavesdropper receives
no signal. Considering some commonly adopted metrics of
secrecy performance, a precoding scheme is proposed in [28]
for multi-user MISO VLC broadcast channels.

As a key method for secrecy protection, the beamform-
ing technique has drawn particular attention [10]. A robust
transmit beamformer is proposed for the maximization of
the achievable secrecy rate of a MISO VLC system subject
to amplitude constraints, when part of the CSI or location
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Fig. 1. Transmit beamforming over a MISO VLC wiretap channel, consisting of one transmitter (Alice), one legitimate VLC receiver (Bob), and one
eavesdropper (Eve).

of the eavesdropper is known [29]. A beamforming method
using artificial noise is proposed in [30] to decrease the
eavesdropper’s SNR over the MISO VLC wiretap channel.
To enhance the communication secrecy, a PHY-layer scheme
combining transmit beamforming and friendly jamming is
designed for a MISO VLC system in the presence of multiple
eavesdroppers [31]. The work in [32] provides the analysis of
the mutual information and the achievable secrecy rate for the
generalized space shift keying VLC system with a jamming-
aided secrecy enhancement scheme. To solve the beamforming
precoding problem, a robust MMSE beamforming scheme is
proposed to minimize the cost function indicated by mean
squared error in the VLC beamforming system, which can be
used to suppress both intersymbol interference and crosstalk
interference in wired channels [33], [34].

There have been some studies on RL-based methods for
optimal strategy decision in a MDP [35], [36]. For instance,
a deep RL-based power allocation strategy for unmanned
aerial vehicles is investigated in [19] to obtain the optimal
power allocation against intelligent attacks in a dynamic game.
A hotbooting unmanned aerial vehicle relay algorithm based
on policy hill climbing is investigated in [20] to facilitate
the vehicular ad hoc network to prevent from malicious
interference.

III. SYSTEM MODEL

A. Channel Model

A PAM modulated VLC system with a DC bias is investi-
gated with an LED transmitter driven by a current bias I to
obtain positive values for the pulses. The zero-mean current
data signal x ∈ R is superimposed on I to modulate the
optical power PT going out of the LED. For the sake of
the current-light conversion linearity and clipping distortion
avoidance, the total current I+x should be limited in a specific
range [37]. Thus the amplitude of the current data signal x
satisfies the constraint denoted by |x| ≤ αI , where α ∈ [0, 1]
is the modulation index. Then the transmitter implements
electro-optical conversion and the instantaneous optical power
is derived by PT = η(I + x), where η is the electro-optical
conversion efficiency of the LED.

The optical power collected by a PD at the receiver is given
by PR = GPT, where G represents the path gain. The PD with

the responsivity of R converts the received optical power PR

to the corresponding current. After removing the DC bias, the
signal is amplified with the gain of T to generate the received
signal denoted by y.

Assuming the LEDs are of the Lambertian emission pattern,
the emission angle with respect to the optical axis of the
transmitter is denoted by φ, the LED half luminous intensity
semi-angle is denoted by φ1/2, the incidence angle of the light
at the receiver is denoted by ϕ, the receiver field-of-view (FoV)
is denoted by ϕF , the optical concentrator refractive index
is denoted by n0 , and the photodetector area is denoted by
AP. According to [38], [39], the path gain G between the
transmitter and the receiver is given by

G =

⎧⎨
⎩

n2
0AP(log cos φ 1

2
−log 2)

2πd2 sin2(ϕF) log cos φ 1
2

cos

− log 2
log cos φ 1

2 (φ) cos(ϕ) |ϕ| ≤ ϕF,

0 |ϕ| > ϕF.

(1)

where d is the distance between the LED at the transmitter
and the PD at the receiver.

B. Attack Model

As shown in Fig. 1, an indoor MISO VLC scenario is
considered which consists of one transmitter (Alice) equipped
with NA down-facing light fixtures on the ceiling, one legiti-
mate receiver (Bob) communicating with Alice and one eaves-
dropper (Eve) attempting to intercept the secret information
prepared for Bob. Each light fixture of the transmitter is
composed of a group of LEDs connected in serial and mod-
ulated by the same current signal. The MISO VLC channel
is considered in this paper, because the cost and complexity
of putting several PDs to the receiver as multiple receive
antennas in VLC scenarios are high. Using multiple LEDs
as multiple transmit antennas and a single PD as the receive
antenna can greatly save the cost and complexity. Applying
MISO VLC transmission also allows multiuser transmission,
as investigated in literature [33], [34]. Besides, if multiple PDs
are applied at the VLC receiver, the diversity of the VLC
MIMO channel is insufficient due to the LoS propagation
property, so the spatial diversity or multiplexing gain is not
worth the costs it takes.

Alice applies NA light fixtures to transmit the modu-
lated data symbol denoted by s to Bob, and meanwhile
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TABLE I

LIST OF NOTATIONS

hopes to keep the information hidden from Eve without
using high-layer secret-key encryption. Then the transmitted
signal vector denoted by x = [x1, x2, · · · , xNA ]T can be
expressed as x = ws, where w = [w1, w2, · · · , wNA ]T

is the beamforming vector. Then the channel gains from
Alice to Bob and Eve are denoted by hB and hE,
where hB = RTη[G1B, G2B, · · · , GNAB]T and hE =
RTη[G1E, G2E, · · · , GNAE]T with GiB and GiE being the path
gains from the i-th light fixture to Bob and Eve, respectively.
The signals received by Bob and Eve denoted by yB and yE,
respectively, in the MISO wiretap channel are given by

yB = hT
Bws+ nB, (2a)

yE = hT
Ews+ nE, (2b)

where nB and nE are the corresponding zero-mean additive
white Gaussian noise (AWGN) vectors with variance of σ2.
Because the LED dynamic range is constrained, the trans-
mitted data signal should meet the constraint for amplitude,
i.e. |x| � αI1, where 1 is an all-one vector and the curled
inequality symbol � denotes entry-wise inequality, i.e., the
amplitude of each entry of x is not greater than αI .

C. Secrecy Rate and Zero-Forcing

For the MISO VLC wiretap channel subject to the average
power constraint |x| � αI1, the achievable secrecy rate of
the beamforming system denoted by cs can be obtained as
follows [10]

cs =
1
2

log
6α2I2wThBhT

Bw + 3πeσ2

πeα2I2wThEhT
Ew + 3πeσ2

, (3)

The optimal beamforming vector w∗ maximizing the
secrecy rate in (3) is theoretically derived by the solution of

problem as given by

w∗ = argmax
w

1
2

log
6α2I2wThBhT

Bw + 3πeσ2

πeα2I2wThEhT
Ew + 3πeσ2

s.t. |w| � 1. (4)

The problem in (4) has been shown to be non-convex and NP-
hard [10]. However, there is a chance to derive a suboptimal
solution, when Eve’s geometric location is known to the
transmitter and thus the CSI at transmitter can be obtained.
Then, zero-forcing beamforming can be exploited to obtain a
suboptimal secrecy rate by imposing zero beamforming gain to
Eve while maximizing the beamforming gain of Bob. Hence,
the zero-forcing beamformer w0 is obtained by

w0 = argmax
w

hT
Bw

s.t. hT
Ew = 0, |w| � 1. (5)

Consequently, the secrecy rate via zero-forcing beamforming
can be obtained in closed-form by

c∗s =
1
2

log
(

1 +
2α2I2wT

0hBhT
Bw0

πeσ2

)
. (6)

Table I provides a list of the frequently used symbols.
Nevertheless, the zero-forcing method is aimed at finding

a beamforming vector such that the channel gain of Eve
is nulled, so the degree of freedom of the beamforming
vector is inevitably reduced. Since the solution space of the
beamforming vector w significantly shrinks to only the null
space of hE, it is much unlikely for the zero-forcing method
to approach the optimal secrecy rate as given by the solution
of the original NP-hard problem in equation (4). Meanwhile,
the BER of the legitimate receiver is not taken into account by
the zero-forcing method. Thus, the system utility as defined
by equation (8), which is influenced by the secrecy rate
and the BER of Bob, might be severely limited. Therefore,
there is a desperate need to explore a more effective method
to solve the problem and converge to the theoretical global
optimum.

IV. RL-BASED MISO VLC BEAMFORMING CONTROL

SCHEME AGAINST EAVESDROPPING

In order to balance the influence of the secrecy rate of
the system and the BER of the legitimate receiver on the
system utility, an RL-based MISO VLC beamforming control
scheme is proposed, which is aimed at further improving the
overall performance of the VLC anti-eavesdropping system
and find an approach that can converge to the theoretically
optimal solution of the non-convex problem given by (4).
In the dynamic VLC communication process, the transmitter
Alice selects its beamforming policy to transmit the data signal
to the legitimate receiver Bob based on the learnt Q-values
of the current system state. The current state is composed of
the previous BER and the current channel state information
of Bob, and the system secrecy rate. The action, i.e. the
beamforming policy, taken by the transmitter will influence the
next system state, thus having an impact on the future rewards
and future actions in the dynamic learning process. As a matter
of fact, the next system state is dependent only on the state
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Algorithm 1 RL-Based MISO VLC Beamforming Control
Scheme Against Eavesdropping (RL-VB)

1 Initialize discount factor β and learning rate λ
2 Q (s,w) = 0, ∀s ∈ Λ,w ∈W
3 for k = 1, 2, 3, . . . do
4 Measure the BER of the previous time slot p̂(k−1)

e

5 Estimate the previous secrecy rate ĉ(k−1)
s

6 Obtain the current legitimate channel gain h(k)
B

7 Formulate current state s(k) =
[
p̂
(k−1)
e , ĉ

(k−1)
s ,h(k)

B

]
8 Choose beamforming policy w(k) via ε-greedy method
9 Apply the selected beamforming policy w(k)

10 Measure the current BER p̂
(k)
e

11 Estimate the current secrecy rate ĉ(k)
s

12 Calculate the utility u(k)

13 Update Q(s(k),w(k))←
(1− λ)Q(s(k),w(k)) + λ(u(k) + βmaxw Q(s(k+1),w))

14 end

Fig. 2. RL-based secure MISO VLC beamforming control scheme against
eavesdropping.

and action of the current time slot, and has nothing to do
with the previous states or actions. Therefore, the VLC com-
munication process can be modeled by an MDP. To achieve
an optimal beamforming policy via trial and error, an RL-VB
algorithm is proposed with the pseudo-code summarized in
Algorithm 1.

More specifically, Alice applies the RL technique of
Q-learning to achieve an optimal beamforming policy accord-
ing to the quality function, i.e., Q-function, and the current
state. As illustrated in Fig. 2, Alice receives the feedback
information from the legitimate user Bob to estimate the
previous BER of Bob denoted by p̂(k−1)

e . The prior geometric
information and the statistical model information of the VLC
transmission environment can be utilized to acquire Eve’s
approximate location and the corresponding channel state
information, so the previous secrecy rate denoted by ĉ

(k−1)
s

can be estimated. Specifically, due to the LoS property of the
VLC propagation channel, the possible location of Eve can
be roughly estimated, such as on top of another table in the
LoS range within the VLC transmitters, and thus the coarse
channel of Eve is also obtained. The accuracy of the roughly
estimated location might not be very high, but a relatively
coarse estimation is sufficient for the evaluation of the utility
and secrecy rate exploited in the dynamic learning process,
which is demonstrated by the simulations in Section VII.

Then the transmitter Alice can observe the communication
state at time slot k denoted by s(k) composed of the BER
of the legitimate receiver p̂(k−1)

e in the previous time slot,
the predicted secrecy rate ĉ(k−1)

s , and the current legitimate
channel gain from Alice to Bob h(k)

B . Therefore, the current
state is formulated by s(k) = [p̂(k−1)

e , ĉ
(k−1)
s ,h(k)

B ] ∈ Λ, where
Λ is the state vector space containing all the possible states.

Based on the communication state, the transmitter chooses
the beamforming policy w(k) = [w(k)

1 , w
(k)
2 , . . . , w

(k)
NA

]T with
|wi| ≤ 1, 1 ≤ i ≤ NA and w(k) ∈ W, where W is the
action vector space composed of all the feasible beamforming
policies. For simplicity, during the RL-based learning process
in practice, each entry of the beamforming vector w(k)

i is quan-
tized into 2Lx+1 discrete values with equal space in between,
i.e., w(k)

i ∈ {l/Lx|−Lx ≤ l ≤ Lx}, where Lx can be properly
set as a compromise between the beamforming learning accu-
racy and the computational complexity. The transmitter uses
ε-greedy algorithm to choose the VLC beamforming policy
which aims at keeping the balance between exploration and
exploitation. More specifically, the VLC beamforming policy
w(k) will be chosen with a high probability of 1 − ε to
maximize the Q-value, while other beamforming policy are
selected randomly with a low probability as ε to avoid local
optimum, i.e.,

Pr
(
w(k) = ŵ

)
=

{
1− ε, ŵ = arg max

w′
Q
(
s(k),w′)

ε
|W|−1 , o.w.

(7)

The selected beamforming policy is then applied to the
MISO VLC system. According to the control results and
communication feedback, Alice observes the current BER of
the legitimate receiver Bob p̂(k)

e , obtains the predicted secrecy
rate ĉ(k)

s , and determines the utility u(k) at time slot k for the
MISO VLC system. The utility is thus given by

u(k) = ĉ(k)
s − δp̂(k)

e , (8)

where δ is a coefficient which balances the contribution of
secrecy rate and BER to the utility. The coefficient δ can
play a role of the tradeoff between the reception quality of
the legitimate user and the overall secrecy metric of the VLC
wiretap channel.

In the learning process, the proposed RL-VB algorithm
obtains a Q-value for each beamforming policy, denoted by
Q(s,w). Alice observes the next state s(k+1) to update the
Q-function at time slot k using iterative Bellman equation
given by Line 13 in Algorithm 1. In the Bellman iterative
equation, the learning rate λ ∈ [0, 1] indicates the weight of
the current Q-values. A learning rate of 0 will prevent the
agent from learning anything, while a learning rate of 1 will
make the transmitter consider only the latest Q-values. The
discount factor β ∈ [0, 1] is also a number between 0 and 1
that represents the uncertainty of the learning algorithm on
the rewards in the future. A discount factor of 0 will make the
transmitter “myopic" (i.e., short-sighted) by only focusing on
the current rewards, while a discount factor of 1 will make it
take a high long-term reward into account.
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Fig. 3. DRL-based secure MISO VLC beamforming control scheme against eavesdropping.

Algorithm 2 DRL-Based MISO VLC Beamforming Con-
trol Scheme Against Eavesdropping (DRL-VB)

1 Initialize the weights θQ and θμ for the actor and critic
networks

2 Initialize target networks with weights θQ′ and θμ′

3 Initialize the OU random process N
4 for k = 1, 2, 3, . . . do
5 Measure the BER p̂

(k−1)
e of the previous time slot

6 Estimate the previous secrecy rate ĉ(k−1)
s

7 Obtain the current legitimate channel gain h(k)
B

8 Formulate current state s(k) =
[
p̂
(k−1)
e , ĉ

(k−1)
s ,h(k)

B

]
9 Choose beamforming policy w(k) = μ(s(k)|θμ) +N

10 Apply the selected beamforming policy w(k)

11 Measure the current BER p̂
(k)
e

12 Estimate the current secrecy rate ĉ(k)
s

13 Calculate the utility u(k)

14 Formulate next state s(k+1) =
[
p̂
(k)
e , ĉ

(k)
s ,h(k+1)

B

]
15 Store {s(k),w(k), u(k), s(k+1)} in B
16 Sample minibatch {s(j),w(j), u(j), s(j+1)}, j ∈ [1, J ]

from replay memory B
17 Update the online networks θQ and θμ using (8) and

(9)
18 Soft update the target networks θQ′ and θμ′ using (10)
19 end

V. DRL-BASED MISO VLC BEAMFORMING CONTROL

SCHEME AGAINST EAVESDROPPING

Since the action space is high-dimensional and continuous
in practice, some quantization error inevitably occurs using the
RL-VB algorithm, which might prevent it from approaching
the globally optimal solution of the problem given by (4). To
further improve the efficiency and convergence rate in practical

complicated VLC systems, a DRL-VB algorithm is proposed
to avoid the performance loss due to the quantization error,
and accelerate the learning speed with a continuous action
space enabled by the deep neural networks. Four convolutional
neural networks (CNNs) are used to compress the action space,
and the ε-greedy policy is replaced by a parameterized actor
function denoted by w = μ(s|θμ).

As shown in Fig. 3, the four CNNs included are one actor
network to produce the actor function μ(s|θμ), one critic
network to output the Q-function Q(s,w|θQ) and update the
weights θμ in the actor network, and two corresponding target
networks to update the weights θQ in the critic network. The
function μ′(s|θμ′) andQ′(s,w|θQ′) are the output of the target
critic and target actor networks with θμ′ and θQ′ being the
weights of them, and the structure of the target networks is
copied from the actor and critic networks.

The proposed DRL-VB algorithm is given in detail in
Algorithm 2. Similar to the RL-based beamforming control
scheme, the transmitter firstly initializes the network parame-
ters and then observes the current state of the communication
consisting of the previous secrecy rate, the previous BER of
the legitimate receiver and the current channel gain, which
formulates the current state s(k) = [p̂(k−1)

e , ĉ
(k−1)
s ,h(k)

B ].
The transmitter reshapes the state vector and puts it into
the actor network which is composed of two convolutional
layers (Conv) and two fully connected layers (FC). In the
actor network, the channel features are captured by the CNN
filters which are influenced by the location of Eve and Bob.
Based on the current communication state, the transmitter
chooses the beamforming policy w(k) based on an exploration
policy by adding a noise sampled from an Ornstein-Uhlenbeck
(OU) noise process to the actor policy, i.e., μ(s(k)|θ(k)

μ ) +N ,
where N is the OU noise to generate temporally correlated
exploration to improve exploration efficiency [40]. Then the
beamforming policy w(k) is chosen according to the noisy
actor policy to implement exploration in practice.
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After the selected beamforming policy is applied to the
MISO VLC system, the transmitter obtains the control results
and communication feedback to calculate the utility u(k) and
formulate the next state s(k+1) = [p̂(k)

e , ĉ
(k)
s ,h(k+1)

B ]. To mem-
orize the experience, the transmitter assembles the above
information into one transition ψ(k), consisting of the current
system state s(k), the current policy w(k), the utility u(k) and
the next state s(k+1), i.e., ψ(k) = {s(k),w(k), u(k), s(k+1)}.
The transition ψ(k) is stored into a replay buffer B, which is
a finite-memory cache to store the previous communication
feedbacks and learning experiences, and the earliest samples
will be discarded on a rolling basis when the replay buffer is
full.

To update the actor and critic networks, the transmitter
samples a minibatch uniformly from the replay buffer. More
specifically, the transmitter randomly chooses J transitions
from the replay buffer B to formulate the minibatch J with
ψ(j) = {s(j),w(j), u(j), s(j+1)}1≤j≤J being the j-th selected
transition including the beamforming policy, the utility, the
previous state and next state. The weights of the critic network
θQ is updated using Adam optimizer to minimize the loss
function as

θQ = arg min
θQ

J∑
j=1

(
u(j) + γQ′

(
s(j+1), μ′(s(j+1)|θμ′)|θQ′

)

−Q
(
s(j),w(j)|θQ

))2

, (9)

where γ is the discount factor indicating the uncertainty
of the transmitter on future rewards, μ′(s(j+1)|θμ′) is the
output of the target actor network representing the cho-
sen action with the input of the next state s(j+1) ,
Q′ (s(j+1), μ′(s(j+1)|θμ′ )|θQ′

)
is the output of the target critic

network with the next state and the chosen action through the
target actor network as the input, and Q

(
s(j),w(j)|θQ

)
is the

output of the critic network with the input of the current state
and the action performed.

Similarly, the weights of the actor network θμ is updated
based on Adam optimizer to maximize the sampled policy
gradient as

θμ = argmax
θμ

J∑
j=1

∇wQ (s,w|θQ) |s=s(j),w=μ(s(j))

∗∇θμμ (s|θμ) |s=s(j) . (10)

where ∇wQ (s,w|θQ) is the policy gradient of the Q-function
with respect to w, and ∇θμμ (s|θμ) is the policy gradient of
the actor function with respect to θμ.

To improve the stability of learning and the robustness of
the DRL-based beamforming control system, a learning rate
denoted by τ 	 1 is introduced to ensure that the output of the
target networks changes slowly when the transmitter updates
the weights of the target networks. Therefore, the weights of
both the two target networks are soft updated by letting them
slowly track the learnt weights of the actor network and critic
network as

θQ′ ← τθQ + (1− τ)θQ′

θμ′ ← τθμ + (1− τ)θμ′ . (11)

If the environment such as the location of Eve or Bob
changes, the transmitter can use the same neural networks to
make decisions. More specifically, because the proposed learn-
ing framework is based on a reinforcement mechanism, the
transmitter can utilize the system state dynamically observed
and updated from the current environment as the input of
the CNN, which consists of the feedback of Bob and the
estimated secrecy rate. In this way, the CNN can capture
the features of the system state to keep track of the location
of Eve and Bob and the variant environments, and utilize
the stored communication experiences in the replay buffer to
update the parameters of the network in real time. Thus, it can
be guaranteed that the proposed learning method is capable of
adapting to the dynamic communication process and various
system environments and configurations.

VI. PERFORMANCE ANALYSIS

The performance bound of the proposed MISO VLC beam-
forming control scheme is analyzed using the BER and secrecy
rate of the system. For simplicity, the BER of the receiver in
the MISO VLC system is considered with 4PAM modulation.
Thus the BER is calculated by

pe =
3
4

erfc

(√
2PTwThBhT

Bw
5σ2

)
, (12)

where the σ2 is the noise power and erfc(x) is the comple-
mentary error function given by

erfc(x) = 2/
√
π

∫ ∞

x

e−z2
dz. (13)

The optimal anti-eavesdropping performance bound is for-
mulated by the following theorem.

Theorem 1: The RL-based and DRL-based schemes for
MISO VLC beamforming control in Algorithm 1 and
Algorithm 2 achieve an optimal anti-eavesdropping commu-
nication strategy as

w∗ = argmax
w

hT
Bw, (14)

with the optimal performance given by

u∗ =
1
2

log
(

2α2I2w∗ThBhT
Bw

∗

πeσ2
+ 1
)

−3
4
δerfc

(√
2η(I + x)w∗ThBhT

Bw∗

5σ2

)
, (15)

if the wiretapper’s geometric location is ideally known to the
transmitter, and

hT
Ew = 0, |w| � 1. (16)

Proof: According to (3), (8) and (12), if hT
Ew = 0,

we have

u =
1
2

log
(

2α2I2wThBhT
Bw

πeσ2
+ 1
)

−3
4
δerfc

(√
2η(I + x)wThBhT

Bw
5σ2

)
. (17)
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Fig. 4. Simulation setup in a 5× 5× 3 m3 room, consisting of a legitimate
receiver (Bob), an eavesdropper (Eve) and the beamforming transmitter (Alice)
with 9 light fixtures.

TABLE II

SIMULATION SETUP

For simplicity, the beamforming gain of Bob hT
Bw is denoted

by H , then we have H > 0 and

∂u

∂H
=

2α2I2H

2α2I2H2 + πeσ2

+
3δ

4
√
π

√
2η(I + x)

5σ2
exp

(
−2η(I + x)H2

5σ2

)
. (18)

Since H > 0, it is obvious that ∂u/∂H ≥ 0, which means
the utility performance Therefore, the optimal performance of
u∗ should be reached when H = hT

Bw is maximized, and thus
we have (14) and (15). �

Remark 1: If the CSI of the wiretapper is perfectly avail-
able at the transmitter, the transmitter will choose the beam-
forming control policy as w∗ = arg max

w
hT

Bw, such that
the received signal level of the eavesdropper is subject to
hT

Ew = 0.

VII. SIMULATION RESULTS

Experimental simulations are conducted in a typical indoor
MISO VLC case shown in Fig. 4 and simulation setup is given
in Table II. The experiment is carried out in a space with
the scale of 5 × 5 × 3 m3, where there are 9 light fixtures
facing down on top. Each light fixture contains 4 identical
LEDs. Bob and Eve are located at the height of 0.85m above
the floor, e.g., on desks. In the experimental simulation of
the learning process, we set the learning rate as λ = 0.5,

Fig. 5. Secrecy rate of the proposed RL-based MISO VLC beamforming
control scheme with variant geometric positions of the Bob and Eve.

the discount factor as β = 0.5, the coefficient as δ = 1.2
and the discount factor for the critic network as γ = 0.5
based on the logic of each hyper parameter and according
to the analytical and empirical configurations in related the
previous tasks [18]–[20]. The ε-greedy parameter ε is linearly
annealed from 1.0 to 0.1 during the first 400 time slots of the
learning process for exploitation and is fixed to 0.1 afterwards
for stability. The nine light fixtures are located at the coor-
dinates shown in Fig. 4, and Bob and Eve are located at the
coordinates of (3.5, 3.5, 0.85)m and (2.2, 4.2, 0.85)m.

Firstly, the secrecy rate of the proposed RL-based MISO
VLC beamforming control scheme is derived for variant
geometric locations of Bob or Eve, with the location of Eve
or Bob fixed, respectively. As shown in Fig. 5, it can be
noted that the secrecy rate of the smart beamforming system is
generally satisfactory and sufficiently high in the overall room
scale. It is also observed from Fig. 5(a) that if the location
of Eve was fixed at (3.5, 3.5, 0.85)m, the secrecy rate may
fall into a local minimum as the location of Bob changes, but
it is still much greater than the global minimum when Bob
happens to fall into the location of Eve. On the other hand,
as indicated by Fig. 5(b), if the location of Bob is fixed at
(2.2, 4.2, 0.85)m, the secrecy rate with variant location of Eve
is overall quite high for the system in the entire room, and
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Fig. 6. Performance of the MISO VLC beamforming control scheme.

only has one global minimum, which is when Eve falls into
the location the same with Bob. Fortunately, it is much easier
to spot the eavesdropper directly in practice if Eve is very close
to the legitimate user Bob, so Eve is most likely to choose a
location not so close to Bob. In this case, the proposed smart
beamforming approach is able to learn and reach a sufficiently
high and satisfactory secrecy rate performance as indicated by
the results in Fig. 5.

The learning process and the performance of the proposed
RL-based and DRL-based smart beamforming schemes, i.e.,
RL-VB and DRL-VB, are reported in Fig. 6, compared
with the state-of-the-art benchmarks. In the communication
process, we assume that Alice can exploit the prior geometric

information of the surrounding VLC LoS environment, which
is easily available in the devised VLC system, to estimate
the possible location of Eve, and thus obtain an estimate of
the wiretapping channel gain. Then, the prior information of
the VLC transmission environment as well as the statistical
wiretapping model can be utilized to calculate the secrecy
rate and the utility used in the devised smart beamforming
VLC system in the line-of-sight (LoS) VLC transmission
scenario [10]. The SNR is set as 8 dB. It can be observed
from Fig. 6 that the proposed RL-VB scheme converges to
the performance derived by zero-forcing beamforming in (6).
Moreover, the proposed RL-VB scheme outperforms the
benchmark scheme using the state-of-the-art fixed friendly
jamming (FFJ) method [9], yielding a lower BER, higher
secrecy rate and higher utility. Moreover, it can be noted
that in the framework of the actor-critic enabled deep neural
networks, the proposed DRL-VB scheme can avoid the
quantization error imposed on the RL-VB algorithm, and the
overall system performance is further improved compared
with the RL-VB algorithm. Besides, it can be observed that
the learnt policy using the DRL-VB algorithm outperforms
the zero-forcing method and the MMSE method, indicating
the superior performance of the proposed learning based smart
beamforming framework with respect to the conventional
optimization methods in VLC anti-eavesdropping systems.

To investigate the simulation results more specifically,
as shown in Fig. 6(a), the secrecy rate with the proposed
RL-VB scheme grows rapidly over time and converges to
2.03 after 5000 time slots, which has increased by 107.3%
compared with the beginning of the learning process. It is
noted that the secrecy rate of the RL-VB scheme is approx-
imately 116.3% larger compared with the FFJ method at the
5000th time slot. Furthermore, the proposed DRL-VB scheme
increases the secrecy rate by 29.7% higher than that of the
RL-VB scheme thanks to the high-dimensional and continu-
ous action and state spaces effectively handled by the deep
networks. It is shown by Fig. 6 that, the RL-VB and DRL-
VB schemes even outperform the zero-forcing method which
assumes that the position of the wiretapper is available. This
is because the utility in (8) to drive the learning process has
taken the BER into consideration, and has successfully learnt
to minimize the BER meanwhile maximizing the secrecy rate.
The zero-forcing method is aimed at nulling the channel gain
of Eve so the degree of freedom of the beamforming vector
w is inevitably reduced. Thus the channel gain of Bob as well
as the BER performance is constrained especially for a low
SNR, which constraints the utility given by (8). According to
(3), the secrecy rate of zero-forcing might be constrained by
the limited channel gain of Bob, while the proposed learning
algorithms are able to overcome this constraint and learn a
better policy for secrecy rate. However, due to the quantization
error introduced by the discrete states and actions, there exists
a performance gap between the proposed RL-VB method and
the theoretical upper bound given by the solution of (4), which
can be converged to by the further enhanced deep RL based
DRL-VB algorithm as an improvement.

As illustrated by Fig. 6(b), the BER of the legitimate
receiver decreases rapidly using the RL-VB scheme, and
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Fig. 7. Performance of the MISO VLC beamforming control system with
respect to SNR.

finally approaches 2.8 × 10−3, which is much lower than
the BER at the beginning. It is shown by Fig. 6(b) that the
BER of the RL-VB scheme is about 9 × 10−4, which is
far much lower than that of the FFJ method at the 5000th
iteration. Furthermore, the BER of the legitimate receiver of
the proposed DRL-VB scheme finally reaches 3.9 × 10−4,
which is even lower than that of the RL-VB scheme.

Considering the utility of the VLC system, as reported by
Fig. 6(c), the utility of the proposed RL-VB scheme increases
over time and converges to about 2.03 after approximately
5000 time slots, which is approximately 107.3% higher com-

pared with the beginning of the learning process. Besides, the
utility of the proposed RL-VB scheme significantly exceeds
the benchmark FFJ scheme by 2.39 at the 5000th time slot,
which validates the good performance of the proposed RL-VB
scheme in anti-eavesdropping. The proposed DRL-VB scheme
further improved the utility of the system by 29.8% compared
by the RL-VB method.

The performance of the proposed schemes are investigated
through simulations with respect to different SNR values, with
the results reported in Fig. 7. The average performance over
5000 time slots shows that the BER of the legitimate receiver
decreases with the SNR while the utility of the system and
secrecy rate of the transmitter increase with the SNR. For
instance, if observed at the target SNR of 10 dB, the secrecy
rate of the system increases by 37.4% and the utility of the
system increases by 37.5%, respectively, compared with those
at SNR of 0 dB. From Fig. 7(b), it is noted that at the
target BER of 2 × 10−3, the proposed DRL based DRL-
VB scheme has the SNR gain of about 8 dB and more
than 10 dB compared with the proposed RL-based RL-VB
scheme and the conventional FFJ scheme, respectively. If
observed the target SNR of 10 dB, it can be shown from
Fig. 7 that the RL-VB scheme has 112.4% higher utility and
112.0% higher secrecy rate compared with FFJ. The DRL-VB
scheme further increases the utility by 50.1% and the secrecy
rate by 50.5% compared with the RL-VB scheme, which
validates the effectiveness of the proposed DRL framework
for VLC smart beamforming against eavesdropping. Moreover,
the DRL-VB scheme increases the utility by 20.0% and the
secrecy rate by 20.0% compared with the zero-forcing method.
The performance of the zero-forcing method reported in Fig. 7
shows that, the solution space of the zero-forcing method is
seriously limited and it cannot find the global optimal solu-
tion of the system. Compared with the zero-forcing method,
the proposed RL-based framework, especially the DRL-VB
algorithm without quantization error, is able to outperform the
zero-forcing one and converge to the optimal solution in the
VLC anti-eavesdropping system.

VIII. CONCLUSION

In this paper, a MISO VLC wiretap scenario has been
studied, where an eavesdropper attempts to wiretap the infor-
mation which is originally sent for the legitimate receiver.
A learning-based anti-eavesdropping framework via smart
beamforming over the MISO VLC wiretap channel has been
proposed to prevent the eavesdropper from wiretapping the
secret signals. To derive the optimal beamforming policy, an
RL-based MISO VLC beamforming control scheme has been
designed for the MDP in a dynamic environment. To cope with
the high-dimensional and continuous action and state spaces
more effectively and efficiently, a DRL-based MISO VLC
beamforming control scheme has been introduced to further
increase the convergence speed and the learning performance
of the smart beamforming based anti-eavesdropping system.
Simulation results verify that the proposed DRL-based scheme
can significantly increase the secrecy rate and utility, and
decrease the BER of the legitimate receiver compared with the
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existing benchmark scheme. Moreover, the proposed schemes
are able to approach or even outperform the performance of
the zero-forcing beamforming.
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