
Xiaofeng Chen
Willy Susilo
Elisa Bertino Editors

Cyber Security
Meets
Machine
Learning

Cyber Security Meets Machine Learning

Xiaofeng Chen • Willy Susilo • Elisa Bertino
Editors

Cyber Security Meets
Machine Learning

Editors
Xiaofeng Chen
School of Cyber Engineering
Xidian University
Xi’an, Shaanxi, China

Willy Susilo
School of Computing and Information
Technology
University of Wollongong
Wollongong, NSW, Australia

Elisa Bertino
Department of Computer Science
Purdue University
West Lafayette, IN, USA

ISBN 978-981-33-6725-8 ISBN 978-981-33-6726-5 (eBook)
https://doi.org/10.1007/978-981-33-6726-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-33-6726-5

Preface

Cyber threats are growing in complexity. Hundreds of millions of new strains
of malware are identified each year. New types of malware programs can avoid
detection by traditional anti-virus or even operate without using binary files at
all (i.e., fileless attacks). Attacks are becoming more multilayered, involving a
combination of network-based techniques, malware, and web application attacks.
Insider threats are a growing problem, and insider attacks are very difficult to
distinguish from legitimate user activity. Attackers are also leveraging devices such
as mobile phones, connected devices in the office and home, and IoT infrastructure
to carry out large-scale attacks. Machine learning algorithms can help detect and
mitigate many of these new threats. They are able to analyze a much larger
volume of data than human security professionals, intelligently identify anomalies
and suspicious behavior, and investigate threats by correlating many data points.
However, the results given by the machine learning model are not entirely credible.
Furthermore, the vulnerability of the machine learning models against adversarial
attacks is a major issue of artificial intelligence technologies, not to mention that the
privacy of the data used in the training and testing is a major users’ concern as well.
The current book, Cyber Security Meets Machine Learning, timely focuses on those
critical issues by covering research advances on the following areas: Cyber Security
based on Machine Learning, Security in Machine Learning Methods and Systems,
and Security and Privacy in Outsourced Machine Learning.

The book comprises 6 chapters, written by 22 authors who are active researchers
or practical experts in areas related to cyber security and machine learning tech-
nologies. Although the authors are from different areas and subareas, they share a
common goal: design effective approaches to secure the cyberspace.

Chapter “IoT Attacks and Malware,” by Anand Mudgerikar and Elisa Bertino,
opens with a survey of different types of attacks on various IoT devices according
to the goals of the attackers, including Passive/Information Stealing Attacks, Service
Degradation Attacks, and Botnet-Based Attacks, followed by a discussion on
machine learning-based security solutions.

v

vi Preface

Chapter “Machine Learning-Based Online Source Identification for Image
Forensics,” by Yonggang Huang, Lei Pan, Wei Luo, Yahui Han, and Jun Zhang,
presents a novel scheme based on machine learning for online identification of
image sources, especially images shot by unknown camera models.

Chapter “Reinforcement Learning Based Communication Security for
Unmanned Aerial Vehicles,” by Liang Xiao, Donghua Jiang, and Sicong Liu,
introduces a study of a reinforcement learning-based scheme for UAV transmission
against jamming attacks, which improves the secrecy capacity of the UAV system
against smart attackers.

Chapter “Visual Analysis of Adversarial Examples in Machine Learning: A
State-of-the-Art and Future Trend,” by Wei Zong, Yang-Wai Chow, and Willy
Susilo, presents an overview of research on adversarial examples, studying the tools
for visualizing the generation of adversarial examples and the methods of detecting
adversarial examples while investigating the means for improving the robustness of
the machine learning model.

Chapter “Adversarial Attacks Against Deep Learning-Based Speech Recognition
Systems”, by Xuejing Yuan, Yuxuan Chen, Kai Chen, Shengzhi Zhang, and
XiaoFeng Wang, details an approach to attack Automatic Speech Recognition
systems in the real world by utilizing generated adversarial audio examples, which
succeeded against Google Assistant, Google Home, Amazon Echo, and Microsoft
Cortana.

Chapter “A Survey on Secure Outsourced Deep Learning,” by Xu Ma, Xiaoyu
Zhang, Changyu Dong, and Xiaofeng Chen, presents a comprehensive view on
outsourced computation in deep learning, analyzing the underlying cryptography
techniques and outsourced architectures concerning efficiency, security, and privacy
and providing the insights of research issues to be addressed in the future.

Overall, this book makes a solid contribution to cyber security and machine
learning area, not only helping develop suitable machine learning tools effective
against cyber threats but also inspiring researchers to carry out analyses and
experiments to identify vulnerabilities in existing machine learning techniques and
improve the adversarial robustness of models. The editors are confident that this
book will significantly contribute toward the challenging field of cyber security and
machine learning.

Preface vii

We would like to conclude this preface with our acknowledgments. First and
foremost, we would like to thank the contributors to this book for their support and
patience. We are also very grateful to the team from Springer for their dedication
in putting together this significant book. This book is supported by the National
Natural Science Foundation of China (no. 61960206014) and China 111 Project
(no. B16037).

Xi’an, China Xiaofeng Chen
Wollongong, NSW, Australia Willy Susilo
West Lafayette, IN, USA Elisa Bertino
November 5, 2020

Contents

IoT Attacks and Malware . 1
Anand Mudgerikar and Elisa Bertino

Machine Learning-Based Online Source Identification for Image
Forensics . 27
Yonggang Huang, Lei Pan, Wei Luo, Yahui Han, and Jun Zhang

Reinforcement Learning Based Communication Security for
Unmanned Aerial Vehicles . 57
Liang Xiao, Donghua Jiang, and Sicong Liu

Visual Analysis of Adversarial Examples in Machine Learning 85
Wei Zong, Yang-Wai Chow, and Willy Susilo

Adversarial Attacks Against Deep Learning-Based Speech
Recognition Systems . 99
Xuejing Yuan, Yuxuan Chen, Kai Chen, Shengzhi Zhang,
and XiaoFeng Wang

A Survey on Secure Outsourced Deep Learning. 129
Xu Ma, Xiaoyu Zhang, Changyu Dong, and Xiaofeng Chen

ix

IoT Attacks and Malware

Anand Mudgerikar and Elisa Bertino

1 Introduction

As of today, there are around 5.8 billion IoT devices or end points. This number
is estimated to grow to 30 billion in 2021. These devices are part of the “Internet
of Things” (IoT), which is defined as a “system of interrelated computing devices,
mechanical and digital machines, objects, animals or people that are provided with
unique identifiers (UIDs) and the ability to transfer data over a network without
requiring human-to-human or human-to-computer interaction [55].” Along with
IoT, advances in other technologies like cloud/edge computing [49], embedded
devices [34], and machine learning [36] have enabled the creation of complex,
intelligent, and autonomous IoT ecosystems. Such IoT ecosystems consist of
multiple devices interacting with one another using various services, APIs, apps,
etc. All components of such an ecosystem typically work asynchronously in order
to run efficiently. The basic methodology toward executing a command, such as
turning a light switch on, is “fire and forget.” Therefore, each IoT device takes
actions to achieve local goals but without considering the global environment, which
leads to safety and security issues. In addition, many IoT devices are designed
with poor or no security mechanisms in place. Along with this, the huge number
of devices and heterogeneity in terms of functions, protocols, manufacturers, etc.
add to the complexity. All these factors lead to security, safety, and privacy issues in
IoT ecosystems.

Due to the heterogeneity and complex nature of IoT systems, traditional security
approaches seem infeasible. A possible solution is to design artificial intelligence
(AI)-based security solutions able to handle complexity. Notable examples of AI-
based security solutions are the intrusion detection/prevention systems (IDSs/IPSs)

A. Mudgerikar · E. Bertino (�)
Purdue University, West Lafayette, IN, USA
e-mail: amudgeri@purdue.edu; bertino@purdue.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_1&domain=pdf
mailto:amudgeri@purdue.edu
mailto:bertino@purdue.edu
https://doi.org/10.1007/978-981-33-6726-5_1

2 A. Mudgerikar and E. Bertino

that are able to detect patterns in network traffic, system behavior, access control,
service usage, etc. [30, 66] either to match with attack signatures or to report the
behavior as anomalous. There have been attempts to build such AI-based IDS for
IoT networks [15]. Most of these intelligent IDSs build patterns or models for steps
of the attack rather than the entire attack which would be infeasible, essentially
breaking down an attack into steps or “kill chain.” So, in order to build better AI-
based attack models for IoT networks, we need to classify and analyze IoT attacks
as kill chains rather than attack instances.

A kill chain makes detection feasible by breaking down an attack into steps,
so that the AI-based IDS can detect patterns to match these steps rather than the
entire attack. The general approach to classify and structure attacks in traditional
networks is through a cybersecurity kill chain like the ones by Lockheed Mar-
tin [43], Gartner [12], and MITRE [58]. Those kill chains break down the attack
into the following steps: reconnaissance, intrusion, exploitation, lateral movement,
obfuscation, and finally ex-filtration. Some of the chains combine some steps into
one or break one into several steps.

In traditional security solutions, the focus for detecting attacks is on the first 3
steps of the attack kill chain, namely reconnaissance, intrusion, and exploitation.
This is a reasonable choice as the attacks should be detected as soon as possible
and detection becomes more difficult as the attacker “gains a better foothold”
in the system through rootkits and obfuscation techniques. However, in an IoT
environment, detection in these initial steps is very difficult because of two factors:
heterogeneity and vulnerability of devices. Because of those factors, signature
datasets of exploits are huge in size, which results in large numbers of false
positives. Another issue is that, since so many IoT devices have weak passwords or
other well-known security issues, it is difficult to differentiate between benign usage
and attacks in just these three steps. Also, many IoT-based attacks like distributed
denial of service (DDoS) generally do not follow the trend of traditional kill chains
as they directly move from step 1 to step 6. This is the case, for example, IoT used
as bots in a botnet to launch attacks.

IoT devices have been exploited in several large-scale DDoS attacks, like the
attack on Dyn DNS and other major websites which reached a peak of 1.1 Tbps
(terabits per second) and involved 1.48 million compromised IoT devices. Botnets
are not a new problem, and there have been numerous instances of botnets in the
past. However, with the exponential growth of IoT devices with weak security
mechanisms, these botnets have become very powerful and can be used to perform
massive-scale DDoS attacks. In February 2018, there was the largest scale DDoS
attack, known as “MemCrashed” [40], which reached a peak of 1.35 Tbps using
amplification techniques and exploiting the “Memcached” service. DDoS attacks
are the most popular form of attacks that exploit IoT devices, but these devices
are vulnerable to other forms of attacks. Many IoT devices include smart home
devices (home appliances like fridges, TV, cameras, etc.), personal/wearable devices
(like wristwatches, fitness devices, music players, etc.), and medical devices used in
hospitals (heart rate monitors, implants, skin sensors, etc.). Such kind of devices
operates on and stores private information and is thus prone to privacy breaching

IoT Attacks and Malware 3

attacks. However, IoT malware has since evolved to not only steal the data but also
lock devices and demand ransoms. Unlike traditional ransomware, IoT ransomware,
also called “Jack-ware,” performs full-disk encryption which intends to completely
lock the device until the ransom is paid rather than encrypting particular files on
the system. Recently, a number of IoT devices, like thermostats, were shown to be
vulnerable to such ransomware. Such jack-ware could lock IoT devices like cars,
TVs, thermostats, etc. and could prove to be even more harmful than traditional
ransomware.

IoT devices with embedded sensors are widely used in critical infrastructure
systems; for example, smart meters used to monitor and manage power consumption
in buildings. Attackers have exploited such vulnerable smart meters to underreport
the power usage [65]. Similarly, smart homes devices, like home heating systems
(increase heating or turn it off) and smart locks (gaining unauthorized entry to
homes), have been exploited to cause damage [23]. Another example is attackers
compromising a smart vehicle and manipulating the braking/steering of the vehi-
cle [50]. Wireless sensor networks are also been slowly integrated into the IoT
environment with protocols such as 6LowPan and CoAP. Such wireless sensors
with poor security mechanisms provide the perfect opportunity for attackers to
disrupt industrial and enterprise systems. A recent alert issued by FDA reported
vulnerabilities in Abott’s implantable cardiac pacemakers that allowed attackers to
send malicious commands to the device [14].

There have been numerous instances of service degradation attacks on wireless
sensor networks (WSNs). More recently, a massive attack, called “brickerbot” [9],
infected 2 million IoT devices. It completely wiped the firmware on these devices
and replaced it with random data.

The previous discussion clearly shows that the attackers have different motiva-
tions and goals for compromising IoT devices. We see that the intrusion points for
all these attacks are often the same, such as known vulnerabilities in devices, weak
passwords, etc. However, the goals of the attackers are often different. This means
that the first three steps of the kill chain are similar for most of those attacks, but the
last three steps are highly different. Therefore, the goal of this chapter is to take an
important initial step toward the design of scalable AI solution for IoT ecosystems
by classifying IoT attacks based on the last three steps of the kill chain, namely
lateral movement, obfuscation, and ex-filtration, collectively referred to as “goals of
the attacker.”

In this chapter, we survey attacks on/using IoT devices and classify them into
following categories according to the goals of the attacker:

– Passive/Information Stealing Attacks: The goal of the attacker is to steal impor-
tant or private information stored or being communicated from IoT devices.

– Service Degradation Attacks: The goal of the attacker is to deny or degrade the
services provided by IoT devices.

4 A. Mudgerikar and E. Bertino

– Botnet-Based Attacks: The goal of the attacker is to take control of IoT devices
and use them as bots in attacker-controlled botnets. They can be used to launch
large-scale DDoS attacks or perform other malicious activities such as crypto-
mining. The goal of our classification is to help build better attack profiles and
models for AI-based IDSs and IPSs.

This chapter is organized as follows. In Sect. 2, we provide relevant background
on traditional cybersecurity kill chains and major IoT security weaknesses. In
Sect. 3, we discuss our classification scheme in detail and survey different attacks
from each attack category. In Sect. 4, we perform an analysis of IoT malware in
terms of system calls. In Sect. 5, we discuss related work and how AI-based security
solutions can benefit from our classification work. We outline some conclusions and
future work in Sect. 6.

2 Background

In this section, we discuss the major steps involved in attacks and give some
examples of popular cybersecurity kill chains. After which we analyze the major
security weaknesses in IoT-based networks due to which detection is hard in the
initial steps of the kill chain.

2.1 Cybersecurity Kill Chains

There are a number of popular kill chains with different number of steps, but
essentially all these chains can be considered as organized into the six following
steps:

1. Reconnaissance: In this step, the attacker gathers information about the network
and environment which will later help in the attack. This step generally involves
detecting potential victim devices, network sniffing, port scanning, etc.

2. Intrusion: In this step, the attacker gains access to the network or device
using some vulnerabilities like weak passwords, known system vulnerabilities,
malware, etc. This is the stage by which the attacker establishes a channel
between himself/herself and the victim.

3. Exploitation: In this step, the attacker establishes a foothold in the network by
exploiting the device. It typically involves installing some form of rootkits or
malware through ftp or drive by downloads after the initial intrusion is successful.
In IoT networks, this step would download a device’s CPU architecture-specific
malware binary on the target device. Now, the attacker has complete control of
that particular device in the network.

4. Lateral Movement: In this step, the attacker attempts to infect more systems
in the network and execute more fine-grained active reconnaissance as now the

IoT Attacks and Malware 5

attacker is posing as a legitimate device. This step usually involves spreading the
malware to other vulnerable devices by probing, brute-forcing passwords, etc.
It could also involve escalating privileges in the device itself, by, for example,
identifying stored passwords or sensitive user data on the device itself. Again,
now the attacker can pose as a legitimate device to gain application sensitive data
on the network like certificates, keys, user data/credentials, etc.

5. Obfuscation: In this step, the attacker tries to hide from security services running
on the network. This involves clearing logs, rootkits, uninstalling security
services, etc.

6. Ex-filtration: In this step, which is the final one, the attacker proceeds to achieve
the goal or main function of the attack. This could be denial of service (DOS),
DDoS, stealing information, etc.

2.2 Major IoT Security Concerns

We now analyze some of the known design decisions of IoT networks which make
it easier for the attacker to infect or gain access to devices. In fact, these are the main
reasons for which detection in first three steps of a kill chain is difficult.

Exposure to the Internet One of the main reasons for the ease of large-scale
exploitation of IoT devices is the exposure of IoT devices on the Internet, which
makes it very easy to locate them. For example, Shodan is a search engine that
allows the user to find different types of IoT devices accessible over the Internet. It
returns data about standard services such as web servers (HTTP ports), FTP, SSH,
Telnet, SNMP, IMAP, SIP, and RTSP. A Shodan scan executed in 2016 across the
USA returned 1.78 million records with 0.45 million unique IPv4 addresses and
0.26 million IPv6 unique addresses. These devices are not behind a firewall as they
should be, but rather accessible remotely over the internet. This is a major security
concern. Another issue with IoT networks is that they expose services over the
Internet which were designed for local networks and never meant to be directly
accessible from Internet. For example, the “memcached” service is a local network
caching service that allows database-driven websites to cache data and objects.
Many servers misconfigure this service and allow attackers to access this service
over the Internet. Such a misconfiguration allowed attackers to use this service to
launch the massive 1.35 Tbps DDoS attack on GitHub [40].

Host Vulnerabilities Even though standard operating system and protocol vulner-
abilities are being patched in IoT devices, there are still numerous vulnerabilities
in the firmware and application layers of these devices. Another problem is
that IoT devices rarely update their firmware and applications and continue to
run insecure versions. This is evident in a recent vulnerability analysis of 1501
services in 12 different institutions using ShoVAT [19], in which 3922 known
vulnerabilities were identified. These known vulnerabilities were from the list of
common vulnerabilities in the national vulnerability database (NVD) maintaining

6 A. Mudgerikar and E. Bertino

the common vulnerabilities and exposures (CVEs). It is important to note that there
are also numerous zero-day or unknown vulnerabilities that can also be used to
attack the devices.

Weak Passwords One of the main injection points for IoT devices is the use of
password-based offline dictionary attacks. Most IoT devices use default or weak
passwords which make them easy targets for compromise even if no vulnerabilities
are known or used by the attackers. The open SSH and telnet ports give the
attackers the perfect opportunity to gain root access to the devices using password
dictionaries. The most powerful DDoS malware Mirai [67] used a dictionary of
60 common/default factory passwords, and it was able to compromise more than
49,000 devices.

3 Attack Classification

We surveyed and analyzed different kinds of attacks on IoT devices that have been
reported over the years. We found that all of the analyzed attacks can be classified
into the three main categories defined before as shown in Fig. 1. In this section, we
categorize and analyze the attacks based on the differences specifically in the final
steps of the kill chain, that is, lateral movement, obfuscation, and ex-filtration rather
than the initial infection steps.

3.1 Passive/Information Stealing Attacks

These kinds of attacks include passive sniffing and eavesdropping techniques.
The goal of the attacker is to obtain private information. Such privacy breaching
attacks are generally used to attack smart home devices and wearable health
care/monitoring devices. Examples of offline information recorded are personal
information like music tastes, sleep patterns, exercise routines, child behavior,
medical information, etc. The most effective detection of such attacks is during
the eavesdropping step, by which the attacker sniffs the data, or during the data
transfer step, by which the attacker transfers data learnt from the network to some
external server controlled by the attacker. Popular eavesdropping techniques include
man-in-the-middle (MITM) attacks, network traffic sniffing, masquerading as fake
gateways, forging, etc. Generally, attackers use the file transfer protocol (TCP), IRC
channels, HTTP, etc. to transfer data. The attacker’s goal is to masquerade its traffic
as benign. Generally, in IoT environments, there is a regular transfer of benign data
collected from devices to external servers using FTP or HTTP protocols. This allows
the attacker to hide the malicious transfers among these benign transfers and make
detection hard during the data transfer stage. So, it is more effective to detect such
attacks during the eavesdropping step.

IoT Attacks and Malware 7

F
ig
.1

Io
T

at
ta

ck
ta

xo
no

m
y

8 A. Mudgerikar and E. Bertino

Those attacks can be further categorized into two categories depending on
whether they are against unencrypted or encrypted traffic.

Unencrypted Traffic When no encryption mechanism is in place, it is trivial
for the attacker to eavesdrop on the communication in the network using basic
MITM attacks. These attacks are the hardest to detect as the attacker is using
only passive eavesdropping techniques that are hard to differentiate from benign
behavior. However, most of the IoT devices are switching to use encryption services
like TLS to prevent such attacks.

Encrypted Traffic Encryption protects message contents by attackers that pas-
sively sniff the communication in the network. IoT networks deploying encryption
are however still vulnerable to (1) encryption exploit attacks and (2) side-channel
attacks. In addition, in some cases, weak encryption schemes are adopted (see the
analysis on smart toys by Valente and Cardenas [60]). Encryption exploit attacks
exploit some vulnerabilities to obtain the secret keys used in the encryption process.
Some attacks exploit vulnerable communication protocols, like RFID, which lacks
proper authentication mechanisms [5]. Device tampering techniques allow attackers
to obtain the cryptographic keys stored on the devices and then sniff and decrypt
the communication on the network. Any host-based vulnerability, which can be
used to gain access to the IoT device, can result in the attacker obtaining the
cryptographic keys used by the devices. The analysis by Valente and Cardenas on
smart toys [60] has shown a case in which all the devices of the same type from a
certain manufacturer shared a fixed small pool of hard-coded keys. Therefore, by
just buying one such device, the attacker could easily gain access to these keys.

Side-channel attacks are possible even when the encryption system used by
the network cannot be exploited. The reason is that, even when the traffic is
encrypted, a lot of metadata is still exposed clearly on the network. The attacker
can use this metadata to obtain private information about the users on the network.
Common forms of such metadata are DNS requests, device fingerprints, traffic rates,
request/response timings, etc., which allow attackers to obtain information like user
behaviors, kind of IoT devices used, activity patterns, sensor classifications, etc.
The most recent such attack on IoT smart home devices is the “Traffic Rate Privacy
Attack” [3]. It involves identifying the devices from DNS queries, MAC addresses,
and traffic rates after which user activities on these identified devices are recorded.
For example, the attacker is able to infer when the user uses his/her microwave in
the day or when the user listens to music on his/her Amazon echo during the week.

Intelligent virtual assistants (IVAs), like Amazon Alexa, Apple Siri, and Google
home, have become very popular in recent years. Even though these devices use
encrypted communication channels, they are vulnerable to side-channel attacks and
vulnerable IVA-enabled devices. In addition, some parts of the communication are
unencrypted. As these devices are usually listening all the time, they provide the
perfect opportunity for attackers to eavesdrop on private communications. Another
way of exploiting such devices is by impersonating malicious voice commands. One
such example is attackers impersonating the user to gain access to a smart lock or

IoT Attacks and Malware 9

other smart devices. These IVA devices do not have the capability to effectively
differentiate between the user’s voice commands and the attacker’s impersonated
voice commands.

3.2 Service Degradation Attacks

The goal of such attacks is to either completely stop the service from working
properly (denial of service) or degrade the service performed by the device. These
attacks can be further classified into three categories, based on network layer of the
victim service or device, to which the attacker has access to, as follows: physical
layer, network layer, and application layer attacks.

Physical Layer Attacks The prominent forms of such attacks are as follows:

Jamming In these attacks, the attacker interferes with the frequencies of the
legitimate devices by introducing noisy traffic on these frequencies. Attacks have
been shown by which the attacker sends noisy signals that cause interference on
the RFID tags used by the sensors. The result is that the whole network becomes
unusable as the legitimate devices cannot distinguish between the legitimate traffic
and the injected noisy traffic.

Node Tampering In these attacks, the attacker is able to access and modify legiti-
mate devices on the network. The attacker can modify the code on the device, insert
malicious code onto the devices, or tamper with its circuitry. The compromised
device then either stops functioning properly (DoS) or might be used to introduce
noise in the network (jamming) which slows or brings the entire network down.
This kind of jamming is even more difficult to detect as the source of the noise is a
legitimate device.

RFID Tag Cloning RFID tags can be cloned by the attackers as most of the
embedded devices lack proper authentication mechanisms. The attacker is able to
inject a malicious clone into the network and, by using the clone, read, delete,
or modify the data on the network. This way the attacker can manipulate the
functionality of the network and cause the network to produce outputs as required
by the attacker.

Code Injection In these attacks, the attacker injects malicious code on the device by
physical means like plugging in an external device like a USB stick. This malicious
code could be any form of malware like worms, viruses, ransomware, etc.

Network-Level Attacks In the network-level attacks, the attacker has access to
the victim’s network or is able to introduce malicious traffic in the network. The
attacker does not have physical access to any of the devices but is able to inject and

10 A. Mudgerikar and E. Bertino

read traffic in the network. The prominent forms of such attacks are as follows:

Sleep Deprivation Attack The attacker tries to make the legitimate devices use more
power than usual by constantly sending requests to them. Most of the small IoT
devices have sleep cycles to save power. The end result is that the device consumes
all its power and shuts down causing a DoS.

Sinkhole Attack The attacker manipulates the devices into sending all the packets
into a sink device. Such a sink device is compromised by the attacker in most cases.
The result is that communication in the network is disrupted as the intended receiver
of the packets does not receive the packets.

Routing Attack The attacker spoofs or modifies the routing information communi-
cated in the network. This disrupts the network communication and can even cause
routing loops.

Network Flooding Attack The attacker sends a flood of request messages, like TCP
SYN, HELLO, ACK, UDP, and ICMP messages, from a compromised device on the
network or inserts messages with a spoofed source addresses in the network. The
device being flooded runs out of memory while responding or allocating memory
for these floods of requests.

Selective Forwarding Attack The malicious devices on the network drop certain
packets intentionally and not forward them to the base station. This disrupts the
network communications as the base station is not receiving packets from some
legitimate devices.

RFID Authentication Attacks RFID devices are usually resource-constrained
devices and do not have proper authentication mechanisms in place. Attackers
can then introduce malicious devices able to use this vulnerability to pose as
legitimate devices on the network and thus can read, delete, and modify the
communication in the network. There are numerous examples of attacks exploiting
RFID authentication mechanisms and manipulating the network [37].

Sybil Attacks The attacker forges identities of legitimate devices and introduces
malicious devices with these forged identities. This is usually seen in peer-to-peer
IoT networks. This allows the attacker to get a disproportionate control over the
network and can allow the attacker to manipulate outcomes such as voting results,
incorrect decisions, etc.

Code Injection This is similar to code injection attack in the physical layer, but
the attacker here exploits some network protocol vulnerabilities to inject malicious
code into the devices like Heartbleed [20] against SSL/TLS, Beast attack against
HTTPS [56], etc.

Insider Attack In such attack, the attacker has already compromised a device in the
network and then uses this device to perform attacks. Insider attacks have been a
topic of ongoing research in the area of IoT security [51].

IoT Attacks and Malware 11

Wormhole Attack The attacker receives a packet at one end point of the network
and then forwards or “tunnels” it to another point in the network using a powerful
antenna or a colluding attacker. This results in all devices sending their packets
through the attacker and not discovering any other legitimate but slower paths. The
attacker thus gains complete control of the network communications and can disrupt
communication by dropping all packets or dropping packets from certain devices.

Black Hole Attack It is also called packet drop attack. This kind of attack affects
routers and forces the router to drop all the incoming packets instead of forwarding
them.

Application-Level Attacks Application-level attacks focus on specific applica-
tions running on IoT devices. At the application level, sometimes, the goals of the
attacker may not be purely denial of service but some other functions like crypto-
mining, ransoms, etc. However, we categorize them here as they indirectly result in
degradation of the services performed by the device by either consuming too many
resources on the device like in crypto-mining or making the device unusable in the
case of ransomware. The prominent forms of such attacks are as follows:

Application Flood Attack We discussed network-level flooding attacks previously.
Similar flooding attacks are possible in the application layer, such as the Slowloris
attack, HTTP layer 7 flood attacks, etc. These attacks focus on specific applications
running on the IoT device and send a flood of requests to the application. These
kinds of attacks are much harder to detect as all the requests look legitimate and
firewalls cannot distinguish between legitimate requests and requests being sent by
the attacker especially if the source IP address is spoofed.

Malicious Scripts and Malware The IoT device landscape is highly heterogeneous
in terms of the device architectures, operating systems, applications, functionalities,
and protocols. Therefore, many IoT devices have vulnerabilities that can be
exploited by various malicious scripts, viruses, worms, spywares, etc. Various
malicious scripts that exploit services like Active-X, JavaScript, etc. have been
known to compromise IoT devices and manipulate their functions. These scripts are
harder to detect than malware because they do not employ spreading mechanisms
but just manipulate the data being sent or received by the IoT devices. Malware
specifically tailored for IoT devices is also growing at a rapid pace, and there is little
research in this field. The most recent examples being Reaper [31] and IoTroop [24].
These malware have recently been used for building botnets, which we discuss in
detail in the next subsection. The reason for the lack of research can be attributed
to the heterogeneous nature of IoT devices in terms of architectures, protocols, etc.;
thus, each malware has numerous versions, and it is difficult to keep track of them.
The trend in IoT malware is to stay dormant but keep spreading and compromising
all possible devices on the network [32].

Crypto-Mining Malware Malware, such as the Darlloz Linux worm [38], are
equipped with an open-source cryptocurrency mining tool called “cpuminer” and
are being used for mining Bitcoins, Dogecoins, and Mincoins. This is a growing

12 A. Mudgerikar and E. Bertino

trend in IoT malware and can be seen as an addition to the latest versions of the
popular IoT malware.

Ransomware This is the latest trend of malware that is emerging on IoT systems.
Ransomware [11] or jack-ware can be used to lock the IoT devices used in hospitals,
vehicles, etc. and demand ransoms to unlock them.

Bricking Attack As seen in the recent Brickerbot [9] malware, the attacker might
aim to factory reset the device or render it completely useless by overwriting the
operating system with random data. Brickerbot used Telnet, SSH, HTTP, HNAP,
and SOAP as its attack vectors, which included some known vulnerabilities and
simple password dictionary attacks [26]. The exploit code used to “brick” the device
with random code is highly device specific, and the malware contains such code for
a large number of device manufacturers including Ingenic devices, 3Com Access
Points, Aver DVR, etc.

3.3 DDoS Attacks

DDoS attacks are the most powerful form of attack that exploit IoT devices with
the latest attack reaching a peak of 1.35 Tbps [40]. The goal of the attacker is to
grow and maintain a botnet of attacker-controlled devices which can be later used
in launching massive-scale attacks. Since DDoS attacks have a unique kill chain
compared to traditional attacks, we analyze these attacks according to the following
three main stages:

1. Injection Stage. In this stage, the IoT devices are compromised typically using
either some vulnerability or brute forcing the passwords. The goal of the attacker
is to gain access to the device and install some malicious code on the device. The
end result is that the attacker is able to convert the IoT device into a bot which
is under the attacker’s control. This stage is identical to the infection step of the
previous attack categories and is similar in all IoT-based attacks.

2. Communication Stage. In this stage, the compromised bots communicate with
the bot master or agents controlled by the bot master. This communication gener-
ally uses Internet Relay Chat (IRC) channels, custom web-based applications that
use HTTPS encrypted communication, the XMPP open-source instant message
protocol, P2P network communication like Bittorrent, etc. Some botnets have
evolved to use standard social messaging websites, like Instagram, Facebook,
etc., and TOR hidden services for communication and thus avoid being stopped
by egress filtering on the network. The architecture of the communication system
is generally an agent-handler relationship [2], where each bot is under the control
of an agent and these agents are controlled by the bot master. The agent to
bot communication may consist of various commands sent by the agent to the
bot. These commands could be control messages to maintain the communication
channel, attack messages to start an attack according to the parameters in the

IoT Attacks and Malware 13

message (start time, target IP, attack rate, etc.), network scan reports of the bot
network which the attackers can use to find new vulnerable devices or potential
bots on the network, etc. Some malware intentionally disable other services on
the bot, so that the bot is not accessible by the user and other malware. This stage
involves components of the lateral movement and ex-filtration steps of the kill
chain.

3. Attack Stage. In this stage, a DDoS attack is performed by a number of bots.
Each such bot will usually be performing a simple UDP, ICMP, SYN, ACK, and
HTTP flood attack, or more complex application-level flood attacks. Different
malware use different rates of attack. Some might use the maximum available
bandwidth, while others are more conservative to avoid being detected. This
stage involves the final ex-filtration step of the kill chain.

The final ex-filtration step, carried out in the attack stage, can be classified into
the following three categories:

1. Direct. The bots directly send traffic to the victim. Most of the time, they spoof
the source IP address to make it difficult to identify the bots. However, even with
a spoofed IP address, it is relatively easy to find the bots by tracing the path taken
by the packets. Due to these reasons, current attacks rarely use this strategy. All
kinds of flood attacks, like TCP SYN, ACK, and Hello floods, are possible.

2. Reflection. The bots send spoofed requests to another host on the network. The
spoofed address is the address of the victim. This results in all these hosts to send
a flood of responses to the victim. Services that have been used for such attacks
include NTP [45], SSDP [21], IP fragmentation, DNS, SRCDS [4], Chargen, Call
of Duty, SNMP, CLDAP [8], Sunrpc [57], Netbios, HTTP, and RIP [41]. They
are used to “reflect” these responses onto the victim. All these services are either
misconfigured, vulnerable to exploits, or do not perform authentication properly,
which makes it possible to exploit them for reflection/amplification purposes.
Reflection-based attacks make it harder to find the compromised bots as the
responses received by the victims are from the reflecting machines. This makes
it difficult to detect the addresses of the bots especially if the reflector machines
do not track or monitor the received requests. Most of the current DDoS attacks
nowadays employ this strategy.

3. Amplification. This type of attack is very similar to reflection-based attack, but
the main difference is in the bandwidth of the attack. In a reflection-based attack,
the request to the response rate is one, meaning that there is generally one
response of similar size from the reflector machine for one request. But in an
amplification attack, the attacker tries to magnify the amount of traffic that is
sent to the victim. A carefully crafted packet sent to the exploitable services
used for reflection attacks can amplify a request bandwidth of 1 Gbps to 100
Gbps [40]. Popular examples of such attacks are DNS amplification attacks [1],
which exploits vulnerable open DNS servers, and the recent “memcrashed,”
which exploits the “memcached” service open on Linux machines.

14 A. Mudgerikar and E. Bertino

It is important to point out that those reflection and amplification attacks have
used popular standard network services like DNS and SSDP. These attacks are
easy to mitigate if the inbound traffic is filtered for these ports. But attackers have
recently started switching to using application-level services, like memcached and
Call of Duty servers [61], to perform these attacks. Application-level attacks are
much difficult to filter as it is difficult to distinguish between legitimate traffic and
malicious traffic. In the future, smart attackers will switch to more sophisticated
attacks that would employ specially crafted application-level requests to carry out
amplification and reflection attacks.

We now describe the main features of the most popular malware that has been
used to launch IoT-based DDoS attacks. We categorize different malware into
several families discussed in what follows. The main criterion for the classification
is the different behavior in any of the three stages of infection: injection, communi-
cation, and attack. We give a summary of the different behavior of the families in
Table 1.

Family 1 This family of malware started with the Linux.Hydra malware and
evolved into a few variants with different attack capabilities. Malware in this family
uses a basic IRC network for communication between the bots and injects malicious
code by exploiting a D-Link router authentication bug along with dictionary attacks.
It primarily focuses on routers running MIPS and MIPSEL architectures.

Linux.Hydra Hydra tries to compromise routers on the network using a basic
dictionary-based password attack with a constant list of passwords or using a D-
Link authentication bypass exploit [13]. The dictionary attack targets the web-based
login interface of D-Link routers on port 80 or SSH on port 22. Only routers using
the MIPS architecture are targeted. The communication of the bot with the botnet
is through agents using IRC communication channels. A C&C IRC server is set
up by the agent, and the bot communicates with it using the IRC channel. The bot
also uses wget to download the malicious binary from a link provided by the agent.
Communication on the IRC channel takes place using TCP on port 6667 or nearby
port numbers (6660–6669 and 7000). The agent sends commands on the channel
when an attack is to be launched and for other information. The communication
between the bot and the agent is, otherwise, limited. The agents can issue commands
to launch a UDP flood or a TCP SYN flood attack against a victim IP also specified
in the command.

PsyB0t It also uses a password dictionary attack like Linux.Hydra. The targeted
routers are the ones running the MIPS or MIPSEL architectures. The botnet uses
the IRC network for communication like Hydra. The difference is that the messages
are encrypted and authenticated using SSL. It also tries to brute force the router
password, executing shell commands, and access to other services, like MySQL,
PHP MyAdmin, FTP servers, SMB shares, on the network. The agents issue
commands to launch UDP or ICMP flood attacks.

T
ab

le
1

D
D

oS
fa

m
il

ie
s

Fa
m

il
y

In
je

ct
io

n
C

om
m

un
ic

at
io

n
A

tt
ac

k

1
–D

ic
ti

on
ar

y
at

ta
ck

(b
as

ic
de

fa
ul

tp
as

sw
or

ds
)

Si
m

pl
e

IR
C

ne
tw

or
k

–D
ir

ec
ta

tt
ac

ks

–D
-L

in
k

ro
ut

er
au

th
en

ti
ca

ti
on

bu
g

–B
as

ic
flo

od
in

g
at

ta
ck

s
(U

D
P,

T
C

P
SY

N
,

A
C

K
Fl

oo
ds

)

–T
ar

ge
ts

M
IP

S/
M

IP
SE

L
ar

ch
it

ec
tu

re

2
–D

ic
ti

on
ar

y
at

ta
ck

s
on

SS
H

/T
el

ne
t/

w
eb

in
te

rf
ac

es
Si

m
pl

e
IR

C
ne

tw
or

k
–D

ir
ec

ta
tt

ac
ks

–T
ar

ge
ts

ar
m

,p
pc

,x
86

ar
ch

it
ec

tu
re

s
al

so
–H

T
T

P
la

ye
r

7
at

ta
ck

s
an

d
T

C
P

X
m

as
at

ta
ck

s
al

so

3
–D

ic
ti

on
ar

y
br

ut
e

fo
rc

e
at

ta
ck

s
C

us
to

m
ag

en
t-

bo
t

ha
nd

le
r

–B
as

ic
di

re
ct

flo
od

at
ta

ck
s

–T
ar

ge
ts

W
in

do
w

s/
L

in
ux

sy
st

em
s

al
so

4
–D

ic
ti

on
ar

y
at

ta
ck

s
on

te
ln

et
/s

sh
H

ea
vi

ly
m

od
ifi

ed
IR

C
ne

tw
or

k
–B

as
ic

di
re

ct
flo

od
an

d
H

T
T

P
la

ye
r

7
at

ta
ck

s

5
–D

ic
ti

on
ar

y
at

ta
ck

s
on

te
ln

et
/s

sh
M

in
im

al
pe

er
-t

o-
pe

er
ne

tw
or

k
on

ly
IC

M
P

pi
ng

s
fo

r
en

um
er

at
io

n)
N

on
e

6
–p

hp
vu

ln
er

ab
il

it
y

(C
V

E
-2

01
2-

18
23

)
C

us
to

m
ch

an
ne

lu
si

ng
T

C
P

po
rt

58
45

5
C

ry
pt

o-
m

in
in

g

7
–S

he
ll

sh
oc

k
vu

ln
er

ab
il

it
y

C
us

to
m

ag
en

t-
bo

t
ha

nd
le

r
–D

N
S

am
pl

ifi
ca

ti
on

/r
efl

ec
ti

on
at

ta
ck

s

–V
ul

ne
ra

bl
e

SO
H

O
de

vi
ce

s

–D
ic

ti
on

ar
y

at
ta

ck
s

8
–D

ic
ti

on
ar

y
at

ta
ck

s,
D

ev
ic

e
Sp

ec
ifi

c
E

xp
lo

it
s

C
us

to
m

H
T

T
P-

ba
se

d
ag

en
t-

bo
th

an
dl

er
–B

as
ic

flo
od

in
g

at
ta

ck
s

–D
ri

ve
by

do
w

nl
oa

d
fr

om
ot

he
r

m
al

w
ar

e
–C

lo
ud

fla
re

/S
uc

ur
i

by
pa

ss
te

ch
ni

qu
es

us
in

g
Ja

va
sc

ri
pt

9
–D

ic
ti

on
ar

y
at

ta
ck

s
on

te
ln

et
/s

sh
C

us
to

m
ag

en
t-

bo
t

ha
nd

le
r/

m
od

ifi
ed

IR
C

ne
tw

or
k

–W
id

e
ra

ng
e

of
re

fle
ct

io
n/

am
pl

ifi
ca

ti
on

flo
od

s

–S
te

al
in

g
da

ta
fr

om
SQ

L
da

ta
ba

se
s

on
th

e
ne

tw
or

k

10
–D

ic
ti

on
ar

y
at

ta
ck

s
C

us
to

m
ag

en
t-

bo
t

ha
nd

le
r

So
ph

is
ti

ca
te

d
ap

pl
ic

at
io

n-
le

ve
l

am
pl

ifi
ca

ti
on

at
ta

ck
s

16 A. Mudgerikar and E. Bertino

Chuck Norris It targets routers running the MIPS and MIPSEL architectures. It
uses the same techniques of injection as the previous two malware. Again, an IRC-
based communication network is used. Additionally, the malware tries to download
a small SSH server/client that is compiled specifically for the MIPS architecture
and uses it for its agent to communicate. UDP, SYN, and ACK flood attacks are
deployed by the bots.

Family 2 This malware family is a more sophisticated version of Family 1, but it
targets different architectures, namely ARM, PPC, and x86.

Aidra, LightAidra, Zendran The injection method is primarily password dictio-
nary attacks on the router’s SSH port or targets the web interface of the device
running on port 8080/80. This malware targets more architectures including MIPS,
ARM, and PPC. The attacker uses an IRC-based communication network. It only
performs basic SYN and ACK flood attacks.

Tsunami/Kaiten This malware modifies the DNS settings of the host. It sets the
name servers to Open DNS addresses and then blocks a range of ports from 22 to 80.
It deploys traditional SYN, UDP, PUSH, and ACK flood attacks along with more
sophisticated ones like HTTP layer 7 flood and TCP XMAS attacks.

Family 3 This malware family is the first one to employ a custom agent-handler
botnet [13] rather than an IRC network.

Spike/Dofloo/MrBlack/Wrkatk/Sotdas/AES.DDoS It uses dictionary brute force
attacks and targets various architectures, like MIPS and ARM, and also attacks
Windows and Linux systems. It uses a custom agent-bot network architecture using
encrypted SSL connections. The bot also periodically sends information about its
computing power, so that the agent can throttle or increase the rate of attacks. This
makes the attacks less conspicuous. It can launch SYN, UDP, DNS query, and GET
flood attacks.

Family 4 This malware family uses a heavily modified IRC network for its botnet
communications. It does not use any known IRC servers. It is also the first malware
that targets devices with SPARK architectures. This family is also the first one to
use telnet and ssh password brute forcing for propagation in the network, paving the
way for more sophisticated malware like Mirai.

BashLite, Lizkebab, Torlus, Gafgyt It compromises devices by using dictionary
attack on various services, like telnet and ssh. It uses a heavily modified IRC
network architecture and is completely independent of the other IRC servers. It
deploys simple UDP, SYN and ACK flood attacks.

Remaiten, KTN-RM This malware is a more powerful version of BashLite and
employs a range of attacks including HTTP layer 7 floods. It is able to adapt to
different architectures and devices and accordingly chooses its attacks. It is the first
malware to be controlled using a custom IRC channel rather than using any existing
IRC channels.

IoT Attacks and Malware 17

Family 5 This was the first malware, which after the infection removes other
malware like Aidra and LightAidra from the device. It also blocks the usual
communication ports. The important characteristic of this family is that it contains
no code for the attack, but rather the goal is to spread as much as possible. The only
code present in the current version of such malware is code for subverting other
competing malware and maintaining communication with the bot master. In this
family, the ex-filtration step is missing or “yet to happen” due to which detection is
difficult.

Carna This botnet was created to build a “census” of the Internet in 2012 by using
a password dictionary comprising of default or no passwords. Its goal was to remove
other malware; it paved the way for the trend of other malware to remove existing
malware from the device in the lateral movement step.

Linux.Wifatch It works like Carna, but it also closes the telnet port along with
removing other existing malware on the infected devices. It shows a message “Telnet
has been closed to avoid further infection of the device, disable telnet, change the
passwords and /or update the firmware.”

Hajime This is the most recent and powerful malware of this family. It uses a
peer-to-peer network for its botnet communication and contains no code for the
attacks. However, the bots have constant communication with the bot master, and
any targeted attack code can be uploaded. Such dormant bots wait for the bot master
to upload some attack code as needed when an attack is planned.

Family 6 This family was the first to perform other malicious activities rather than
just flooding attacks using bots.

Linux.Darlloz This was the first malware to use bots to mine cryptocurrencies,
like Mincoin and Dogecoin [38]. It exploits a php vulnerability (CVE-2012-1823)
for infection and listens on TCP port 58455 for commands.

Family 7 The main targets of this malware are vulnerable SOHO (smart office and
home) devices. It uses the shellshock vulnerability [35]. This family was also the
first to use DNS reflection/amplification attacks [1].

Elknot, BillGates This malware uses the powerful ICMP, TCP, UDP, SYN, and
HTTP layer 7 floods along with DNS reflection/amplification attacks on Linux and
Windows platforms. The infection methods are the shellshock vulnerability and
open ssh ports with weak passwords.

Xor.DDoS It is variant of Elknot but only targets Linux systems running x86 or
ARM architectures with open ssh ports having weak passwords.

Family 8 This malware is the first that attempted to subvert DDoS prevention
techniques, like Cloudflare and Sucuri [46]. This malware also uses obfuscation
techniques to prevent reverse engineering of the malware.

Luabot It targets Linux systems and is written in the Lua programming language.
It uses a custom HTTP-based command and control network. It contains malicious

18 A. Mudgerikar and E. Bertino

JavaScript and also an integrated V7 embedded JavaScript engine. The goal of
the JavaScript is to find the actual IP address of the victim behind a Sucuri or a
Cloudflare proxy server.

Reaper Like Luabot, it contains a Lua execution environment and embeds nearly
100 open DNS resolvers that are later used to conduct DNS amplification attacks.
It uses a collection of nine vulnerabilities on the D-Link 1, D-Link 2, Netgear 1,
Netgear 2, Linksys, GoAhead, JAWS, Vacron, and AVTECH devices [10]. It has
not been used in an active attack till now, but an analysis has shown that it has
infected 2 million IoT devices.

IoTroop This is the latest variant of this family and is highly sophisticated. It has
a vulnerability scanning functionality and a Lua execution environment. There is
a high chance that this malware is state sponsored because of its sophistication
and extensive vulnerability scanning techniques. It has a HTTP-based agent-handler
architecture with the C&C server coded in php. Again, like in family 5, the malware
does not contain any flooding attack code, but such code can be uploaded easily by
the bot master when required.

Family 9 This is currently the most sophisticated and dangerous malware family in
that it makes possible to create massive botnets. It uses password dictionary attacks
for infection and borrows the spreading techniques used by family 4. It can perform
a variety of attacks including sophisticated HTTP layer 7 floods. It essentially
amalgamates all the useful techniques used by previous malware families.

Qbot This was the first proof-of-concept telnet-based botnet and first predecessor
to Mirai. It has a simple open-sourced design and requires only two Linux servers
for its implementation.

Mirai It uses the same injection techniques as BashLite. It has 60 hard-coded
passwords it uses as its dictionary. Mirai stops other users and malware from
accessing the device and drops communication from telnet (port 23), ssh (port 22),
and web interface (port 80, 8080). It also identifies and compromises database
services like MySQL and Microsoft SQL running in the network to create new
admin “phpminds” with the password “phpgodwith” allowing the hackers to steal
the database content. It is able to deploy a wide range of DDoS attacks, based on
different protocols (e.g., TCP, UDP, and HTTP).

IRCTelnet, NewAidra It combines the dictionary attacks of Mirai with the IRC
communication architecture of family 4. One unique characteristic of this malware
is that it gets removed if the device is rebooted, but it can infect the device again if
the injection vulnerability is not fixed.

Family 10 This is the latest variant of DDoS malware and uses sophisticated
application layer amplification attacks like exploitation of the “memcached” service.

IoT Attacks and Malware 19

Memcrashed Memcrashed was the most devastating DDoS attack at least in terms
of bandwidth with a peak of 1.35 Tbps. It used an amplification attack using
misconfigured “memcached” servers. The service uses the UDP protocol and is
accessible over the Internet. This resulted in an amplification factor of around 51000
in terms of bandwidth [40].

4 IoT Malware Analysis and Classification

In this section, we report our analysis on IoT malware. We collected different
variants of IoT malware and built a comprehensive dataset using 3973 malware
samples from the most popular malware families: Zorro, Gayfgt, Mirai, Hajime,
IoTReaper, Bashlite, nttpd, linux.wifatch, etc. The malware samples were collected
from IoTPOT [52], VirusTotal [63], and Open Malware [42]. These malware exe-
cutables are compiled for different CPU architectures and endianness. The collected
malware executables are classified according to different device architectures in
Table 2. 2572 of the samples are compiled for little endian processors, while 1421
of them are for big endian processors.

System Call Analysis For analyzing these malware samples, we executed them in
a safe environment according to their CPU architectures and observed the system
calls made by the malware. Specifically, we focused on 34 system calls as shown
in Table 3. The idea was to identify the goals of the malware by analyzing the
number and duration of system calls of each type made by the malware. In our
analysis, we focused on 4 parameters for each system call: number of calls made
(#.1), percentage of time taken (#.2), total time taken (#.3), and average time taken
per each call (#.4).

Malware Classification Using the system call analysis, we can then classify these
malware in the three categories defined before: passive attacks, service degradation
attacks, and DDoS attacks.

Table 2 Malware
executables’ breakdown
according to CPU
architecture

Architecture Number of Malware samples

Mips 935

Arm 912

x86 576

Sparc 299

Renesas/SuperH 310

x86_x64 294

MC68000 294

PowerPC 353

Other 26

20 A. Mudgerikar and E. Bertino

Table 3 Types of system calls

System call Description

connect Initiate a connection on a socket

_newselect Synchronous I/O multiplexing

close Close a file descriptor

nanosleep High-resolution sleep

fcntl64 Manipulate file descriptor

socket Create an end point socket for communication

rt_sigprocmask Examine and change blocked signals

getsockopt Get and set options on sockets

read Read from a file descriptor

open Open and possibly create a file

execve Execute program

chdir Change working directory

access Check user’s permissions for a file

brk Change data segment size

ioctl Manipulates the underlying device parameters of special files

setsid Creates a session and sets the process group ID

munmap Map or unmap files or devices into memory

wait64 Wait for process to change state

clone Create a child process

uname Get name and information about current kernel

mprotect Set protection on a region of memory

prctl Operations on a process

rt_sigaction Examine and change a signal action

ugetrlimit Get/set resource limits

mmap2 Map or unmap files or devices into memory

fstat64 Get file status

getuid32 Returns the real user ID of the calling process

getgid32 Returns the real group ID of the calling process

geteuid32 Returns the effective user ID of the calling process

getegid32 Returns the effective group ID of the calling process

madvise Give advice about use of memory

set_thread_area Set a GDT entry for thread-local storage

get_tid_address Set pointer to thread ID

prlimit64 Get/set resource limits

Category 1 For passive attacks, the attacker uses socket system calls to establish
a communication channel between the attacker and the victim to transfer data. The
connect system call is then issued to use the connection to send data. The socket and
connect system calls are common to all malware categories as the attacker needs to
communicate with the victim. However, the amount of connect system calls made
in passive data sniffing as compared to DDoS is much less. The most distinguishing
system calls made by category 1 attacks are file operations, that is, read, open, and

IoT Attacks and Malware 21

close, and information gathering operations, that is, uname, access, and chdir. It is
important to note that all these system calls are passive in nature and hard to detect
as they do not modify any data on the device.

Category 2 For service degradation attacks, generally, the attacker does not require
any communication channels with the victim. So, the connect and socket system
calls are not required as in the other categories. Here, the most significant system
calls are active system manipulation operations: nanosleep, fcntl64, rt_sigprocmask,
getsockopt, brk, ioctl, munmap, clone, mprotect, and set_thread_area. Most of these
malware use execve system to run malicious binaries like rootkits and prtcl to
change the name of the malicious process (using PR_SET_NAME request) to a
benign service name like notepad, sshd, telnet, etc. Most of these system calls are
active and can be detected more easily than in the attacks in category 1. However,
since these system calls are commonly used by benign applications, differentiating
between benign applications and malware is difficult and results in false positives
during detection.

Category 3 For DDoS attacks, once a communication channel is established
between the victim and the attacker using socket and connect system calls, the
malware generally stays dormant. Some of the obfuscation and lateral movement
techniques are common to previous categories in some malware as the goal of the
attacker is to stay as inconspicuous as possible until ex-filtration or launching the
attack.

5 AI-Based IDS Solutions

In this section, we survey AI-based IDSs developed for IoT networks. We analyze
how detection models are built and how they would benefit from our classification
scheme.

IDSs for IoT networks typically build detection models based on network flows,
device system data, or user/app access/usage patterns. A network flow is defined
for each (SourceIP:SourcePort:Destination IP:Destination Port) pair, and for every
such flow, the following parameters are used to build flow-based models: data sizes,
data rate, IP options, protocols (application/link/network layers), specific protocol
parameters for ICMP, UDP, TCP, HTTP, etc., and cloud service APIs (if used) [22,
44, 54]. Some IDSs focus on the system features of the IoT device through process
and system call information to build detection models [48, 64]. Recently, approaches
have been proposed that build static or dynamic smart app models [6, 7, 18, 25, 47,
59, 64]. The models are generated using a combination of device capabilities, user
prompts, app permissions, and event subscriptions.

Such IDS models can be categorized into three categories: signature based,
anomaly based, and state-full protocol analysis. Signature-based models are built
using supervised learning from predefined or known attacks from which classifiers
are trained to detect such attacks. Classical machine learning techniques like

22 A. Mudgerikar and E. Bertino

decision trees [33], SVMs [53], and random forests [16] have been used in
the past to build such classifiers. Recently, deep neural networks (DNNs)-based
models [15, 30, 66] have become very accurate and can deal with large datasets
of known attacks. By contrast, anomaly-based techniques observe benign behavior
to build baseline models and then detect anomalies against these baselines to detect
attacks. Classical machine learning techniques, such as clustering [27], are being
replaced by techniques, like DNNs [62], for building anomaly-based models. State-
full protocol analyses involve a dynamic temporal analysis of device behavior to
build time series data or graphs. In traditional machine learning settings, some form
of forward symbolic execution [28] is used to explore all feasible paths in the time
series data or built graphs. Then, either anomaly detection or known attack signature
matching is performed to detect attacks. With the growing size of data, classical
techniques are infeasible, and AI techniques like recurrent neural networks (RNNs)
and long short-term memory (LSTM) are used to build such state-full detection
models [17, 29]. Recently, deep reinforcement learning (DRL) techniques are being
used to explore the environment freely and learn better detection models from
known attacks [39].

The accuracy and efficiency of the AI-based detection models mentioned above
depend on the data collected from known attacks and benign IoT device behavior.
Most of these models, however, are built for traditional networks where the kill chain
of the attack is fairly well understood. In most cases, the detection models are built
to be deployed at the potential infection points or for detecting the initial steps of the
kill chain. However, for IoT networks, such a strategy for building models results in
inefficient models with low accuracy and higher false positives. Our classification
strategy attempts to address this issue by providing a clear classification of IoT
attacks and malware based on the “goals of the attacker.” The data collected can
thus be preprocessed and analyzed based on the last three steps of the kill chain and
result in more efficient and accurate models.

6 Conclusion

In this chapter, we have provided a comprehensive survey of IoT attacks and
classified them into three categories according to the goals of the attacker. We have
analyzed these attacks in terms of a kill chain and provided a means of building
more accurate AI-based models for detection. As part of our future work, we plan
to use this classification and analyze system call behavior of IoT malware further to
build efficient AI-based detection models.

IoT Attacks and Malware 23

References

1. Anagnostopoulos, M., Kambourakis, G., Kopanos, P., Louloudakis, G., Gritzalis, S.: DNS
amplification attack revisited. Comput. Secur. 39, 475–485 (2013)

2. Angrishi, K.: Turning internet of things (IoT) into internet of vulnerabilities (IoV): IoT botnets.
Preprint (2017). arXiv:1702.03681

3. Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., Feamster, N.: Spying on
the smart home: Privacy attacks and defenses on encrypted IoT traffic. Preprint (2017).
arXiv:1708.05044

4. Borella, M.S.: Source models of network game traffic. Computer Communications 23(4), 403–
410 (2000)

5. Cao, T., Shen, P., Bertino, E.: Cryptanalysis of some rfid authentication protocols. J. Commun.
3(7), 20–27 (2008)

6. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated IoT safety and security analysis. In:
2018 USENIX Annual Technical Conference, pp. 147–158 (2018)

7. Celik, Z.B., Tan, G., McDaniel, P.D.: IoTGuard: Dynamic enforcement of security and safety
policy in commodity IoT. In: NDSS (2019)

8. Choi, S.J., Kwak, J.: A study on reduction of DDoS amplification attacks in the UDP-
based CLDAP protocol. In: 2017 4th International Conference on Computer Applications and
Information Processing Technology (CAIPT), pp. 1–4. IEEE (2017)

9. Cimpanu, C.: Brickerbot author claims he bricked two million devices. Bleeping Computer,
April (2017)

10. Cimpanu, C.: A gigantic IoT botnet has grown in the shadows in the past month (Oct 2017).
https://www.bleepingcomputer.com/news/security/a-gigantic-iot-botnet-has-grown-in-the-
shadows-in-the-past-month/

11. Cobb, S.: Rot: Ransomware of things (2017)
12. Coleman, C.: Addressing the cyber kill chain: Full Gartner research report and looking glass

perspectives (2016)
13. De Donno, M., Dragoni, N., Giaretta, A., Spognardi, A.: DDoS-capable IoT malwares:

Comparative analysis and mirai investigation. Secur. Commun. Networks 2018 (2018). https://
doi.org/10.1155/2018/7178164

14. Devices, C., Health, R.: Safety communications - firmware update to address cybersecu-
rity vulnerabilities identified in Abbott’s (formerly St. Jude Medical’s) implantable car-
diac pacemakers: FDA safety communication. https://www.fda.gov/MedicalDevices/Safety/
AlertsandNotices/ucm573669.htm

15. Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach
for internet of things. Future Gener. Comput. Syst. 82, 761–768 (2018)

16. Farnaaz, N., Jabbar, M.: Random forest modeling for network intrusion detection system.
Procedia Comput. Sci. 89(1), 213–217 (2016)

17. Feng, C., Li, T., Chana, D.: Multi-level anomaly detection in industrial control systems
via package signatures and LSTM networks. In: 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 261–272. IEEE (2017)

18. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home applications.
In: Proceedings of the 2016 IEEE Symposium on Security and Privacy, pp. 636–654. IEEE
(2016)

19. Genge, B., Enăchescu, C.: Shovat: Shodan-based vulnerability assessment tool for internet-
facing services. Secur. Commun. Networks 9(15), 2696–2714 (2016)

20. Ghafoor, I., Jattala, I., Durrani, S., Tahir, C.M.: Analysis of OpenSSL Heartbleed vulnerability
for embedded systems. In: 17th IEEE International Multi Topic Conference 2014, pp. 314–319.
IEEE (2014)

21. Goland, Y.Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple service discovery protocol (1999)
22. Habibi, J., Midi, D., Mudgerikar, A., Bertino, E.: Heimdall: Mitigating the internet of insecure

things. IEEE Internet Things J. 4(4), 968–978 (2017)

https://www.bleepingcomputer.com/news/security/a-gigantic-iot-botnet-has-grown-in-the-shadows-in-the-past-month/
https://www.bleepingcomputer.com/news/security/a-gigantic-iot-botnet-has-grown-in-the-shadows-in-the-past-month/
https://doi.org/10.1155/2018/7178164
https://doi.org/10.1155/2018/7178164
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm573669.htm
https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm573669.htm

24 A. Mudgerikar and E. Bertino

23. Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., Wagner, D.: Smart locks: Lessons for
securing commodity internet of things devices. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, pp. 461–472. ACM (2016)

24. Iotroop botnet: The full investigation (Feb 2018), https://research.checkpoint.com/iotroop-
botnet-full-investigation/

25. Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash, A., Unviersity,
S.J.: Contexlot: Towards providing contextual integrity to amplified IoT platforms. In: NDSS
(2017)

26. Kenin, S.: Brickerbot analysis (Dec 2017). =https://www.trustwave.com/Resources/
SpiderLabs-Blog/BrickerBot-mod-plaintext-Analysis

27. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using support vector
machines and hierarchical clustering. VLDB J. 16(4), 507–521 (2007)

28. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for model checking
and testing. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 553–568. Springer (2003)

29. Kim, G., Yi, H., Lee, J., Paek, Y., Yoon, S.: LSTM-based system-call language modeling and
robust ensemble method for designing host-based intrusion detection systems. Preprint (2016).
arXiv:1611.01726

30. Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C.: Deep learning for classification of malware
system call sequences. In: Australasian Joint Conference on Artificial Intelligence, pp. 137–
149. Springer (2016)

31. Krebs, B.: Krebs on security. https://www.krebsonsecurity.com/2017/10/fear-the-reaper-or-
reaper-madness

32. Krebs, B.: Krebs on security. https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-
security-storm/

33. Kruegel, C., Toth, T.: Using decision trees to improve signature-based intrusion detection. In:
International Workshop on Recent Advances in Intrusion Detection, pp. 173–191. Springer
(2003)

34. Lee, J., Stanley, M., Spanias, A., Tepedelenlioglu, C.: Integrating machine learning in
embedded sensor systems for internet-of-things applications. In: 2016 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), pp. 290–294. IEEE
(2016)

35. Leyden, J.: Patch bash now: “shellshock” bug blasts OS X, Linux systems wide open (2014)
36. Li, H., Ota, K., Dong, M.: Learning IoT in edge: Deep learning for the internet of things with

edge computing. IEEE Network 32(1), 96–101 (2018)
37. Li, T., Wang, G.: Security analysis of two ultra-lightweight rfid authentication protocols. In:

IFIP International Information Security Conference, pp. 109–120. Springer (2007)
38. Linux.darlloz.: =https://www.symantec.com/security-response/writeup.jsp?docid=2013-

112710-1612-99&tabid=2
39. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A.: Application of deep reinforcement

learning to intrusion detection for supervised problems. Expert Syst. Appl. 141, 112963 (2020)
40. Majkowski, M.: Memcrashed - major amplification attacks from UDP port 11211.

blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211, accessed:
2018-03-07

41. Malkin, G., et al.: Rip version 2. Tech. rep., STD 56, RFC 2453, November (1998)
42. Malware, O.: https://openmalware.org
43. Martin, L.: Cyber kill chain®. URL: https://www.cyber.com. lockheedmartin.

com/hubfs/Gaining the Advantage Cyber Kill Chain. pdf (2014)
44. Midi, D., Rullo, A., Mudgerikar, A., Bertino, E.: Kalis–a system for knowledge-driven

adaptable intrusion detection for the internet of things. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pp. 656–666. IEEE (2017)

45. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans. Commun.
39(10), 1482–1493 (1991)

https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://research.checkpoint.com/iotroop-botnet-full-investigation/
https://www.trustwave.com/Resources/SpiderLabs-Blog/BrickerBot-mod-plaintext-Analysis
https://www.trustwave.com/Resources/SpiderLabs-Blog/BrickerBot-mod-plaintext-Analysis
https://www.krebsonsecurity.com/2017/10/fear-the-reaper-or-reaper-madness
https://www.krebsonsecurity.com/2017/10/fear-the-reaper-or-reaper-madness
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://www.symantec.com/security-response/writeup.jsp?docid=2013-112710-1612-99&tabid=2
https://www.symantec.com/security-response/writeup.jsp?docid=2013-112710-1612-99&tabid=2
https://www.blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211
https://openmalware.org
https://www.cyber.com

IoT Attacks and Malware 25

46. Mmd-0057-2016 - linux/luabot - iot botnet as service · malwaremustdie!: http://blog.
malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html

47. Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., Rahman, M.A.: IoTSAT: A formal framework
for security analysis of the internet of things (IoT). In: 2016 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 180–188. IEEE (2016)

48. Mudgerikar, A., Sharma, P., Bertino, E.: E-Spion: A system-level intrusion detection system
for IoT devices. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, pp. 493–500 (2019)

49. Muñoz, R., Vilalta, R., Yoshikane, N., Casellas, R., Martínez, R., Tsuritani, T., Morita, I.:
Integration of IoT, transport SDN, and edge/cloud computing for dynamic distribution of IoT
analytics and efficient use of network resources. J. Lightwave Technol. 36(7), 1420–1428
(2018)

50. News, C.: Car hacked on 60 minutes (Feb 2015). https://www.cbsnews.com/news/car-hacked-
on-60-minutes/

51. Nurse, J.R., Erola, A., Agrafiotis, I., Goldsmith, M., Creese, S.: Smart insiders: exploring the
threat from insiders using the internet-of-things. In: 2015 International Workshop on Secure
Internet of Things (SIoT), pp. 5–14. IEEE (2015)

52. Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T., Rossow, C.: IoTPOT:
analysing the rise of IoT compromises. EMU 9, 1 (2015)

53. Rao, X., Dong, C.X., Yang, S.Q.: An intrusion detection system based on support vector
machine. J. Software 14(4), 798–803 (2003)

54. Raza, S., Wallgren, L., Voigt, T.: Svelte: Real-time intrusion detection in the internet of things.
Adhoc Networks 11(8), 2661–2674 (2013)

55. Rouse, M.: What is IoT (internet of things) and how does it work? (Feb 2020). https://
internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

56. Sarkar, P.G., Fitzgerald, S.: Attacks on SSL a comprehensive study of beast, crime, time,
breach, lucky 13 & rc4 biases. Internet: https://www.isecpartners.com/media/106031/ssl_
attacks_survey. pdf [June, 2014] (2013)

57. Srinivasan, R.: RPC: Remote procedure call protocol specification version 2 (1995)
58. Strom, B.E., Applebaum, A., Miller, D.P., Nickels, K.C., Pennington, A.G., Thomas, C.B.:

Mitre att&ck: Design and philosophy. Technical report (2018)
59. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smartauth: User-

centered authorization for the internet of things. In: Proceedings of the 26th USENIX Security
Symposium, pp. 361–378 (2017)

60. Valente, J., Cardenas, A.: Security and privacy in smart toys. In: Proceedings of the 2017
Workshop on Internet of Things Security and Privacy, IoT S&P@CCS, Dallas, TX, USA,
November 03, 2017, pp. 19–24 (2017)

61. Valeriano, B., Habel, P.: Who are the enemies? the visual framing of enemies in digital games.
Int. Stud. Rev. 18(3), 462–486 (2016)

62. Van, N.T., Thinh, T.N., et al.: An anomaly-based network intrusion detection system using deep
learning. In: 2017 International Conference on System Science and Engineering (ICSSE), pp.
210–214. IEEE (2017)

63. VirusTotal: https://www.virustotal.com
64. Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and logging in the internet of things. In:

Network and Distributed Systems Symposium (2018)
65. Ward, M.: Smart meters can be hacked to cut power bills (Oct 2014). http://www.bbc.com/

news/technology-29643276
66. Xiao, L., Wan, X., Lu, X., Zhang, Y., Wu, D.: IoT security techniques based on machine

learning: How do IoT devices use AI to enhance security? IEEE Signal Process. Mag. 35(5),
41–49 (2018)

67. Zeifman, I., Bekerman, D., Herzberg, B.: Breaking down mirai: An IoT DDoS botnet
analysis (2016). Imperva. Source: https://www.incapsula.com/blog/malware-analysis-mirai-
ddos-botnet.html

http://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
http://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://www.cbsnews.com/news/car-hacked-on-60-minutes/
https://www.cbsnews.com/news/car-hacked-on-60-minutes/
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://www.isecpartners.com/media/106031/ssl_attacks_survey
https://www.isecpartners.com/media/106031/ssl_attacks_survey
https://www.virustotal.com
http://www.bbc.com/news/technology-29643276
http://www.bbc.com/news/technology-29643276
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

Machine Learning-Based Online Source
Identification for Image Forensics

Yonggang Huang, Lei Pan, Wei Luo, Yahui Han, and Jun Zhang

1 Introduction

Nowadays, digital images provide key information of cyber crimes in digital foren-
sics. Image source identification is an important branch of image forensics because
it is used to associate an image with the acquisition device [34]. Representative
examples include the identification of source device of a specific evidence image
at a court of law and the verification of the real owner of images during copyright
disputes.

Presently, three categories of approaches are commonly employed to identify
image source. These methods are image metadata based, watermark based, or
feature based. The image metadata based approach directly investigates the image
source information embedding in the EXIF (Exchangeable Image File) header [4],
which is apparent and simple. However, the EXIF header can be easily modified
in real life, making this approach unreliable. The watermark based approach
[12, 39] relies on the watermarks injected into the images with the source related
information. The watermark is difficult to be tampered with, so that this approach
is robust. Unfortunately, camera producers and vendors are reluctant to apply
watermarks in the large scale due to the huge costs by introducing the additional

Y. Huang (�) · Y. Han
School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
e-mail: 3220190803@bit.edu.cn

L. Pan · W. Luo
School of Information Technology, Deakin University, Geelong, VIC, Australia
e-mail: l.pan@deakin.edu.au; wei.luo@deakin.edu.au

J. Zhang
School of Software and Electrical Engineering, Swinburne University of Technology, Hawthorn,
VIC, Australia
e-mail: junzhang@swin.edu.au

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_2&domain=pdf
mailto:3220190803@bit.edu.cn
mailto:l.pan@deakin.edu.au
mailto:wei.luo@deakin.edu.au
mailto:junzhang@swin.edu.au
https://doi.org/10.1007/978-981-33-6726-5_2

28 Y. Huang et al.

watermark injection module. Recently, the feature based approach has thrived
[1, 5, 6, 26, 33] because it is relatively easy to operate during the image acquisition
process. And the intrinsic features are extracted from hardware artifacts or from
software-related fingerprints. Hence, the device identification process becomes a
machine learning-based classification problem that can be solved with the statistical
learning tools. This paper focuses on the feature based approach.

Existing statistical learning solutions for the feature based image source identi-
fication consist of two categories—closed set oriented and open set oriented. The
closed set oriented solutions assume that the identification task is performed on a
closed dataset. That is, we collect and categorize the images from many known
camera models before assigning the target images to any given camera models.
Therefore, image source identification becomes a K-class classification problem,
where K denotes the number of known models. Such classification problems can
be solved with multi-class classifiers, such as multi-class Support Vector Machine
(SVM) [10]. Many existing solutions [1, 5, 6, 26, 33] belong to the closed set
oriented category. However, the open set oriented methods aim to deal with a
challenging but realistic situation. That is, the identification process is carried
out on open dataset, and the target images may be taken by multiple unknown
camera models. In this scenario, the challenge is how to identify images of the
unknown models while correctly sorting the images shot by the known camera
models [11, 18, 21, 22, 40]. A few publications [11, 18, 21, 22, 40] have attempted
to address this issue with limited success, and this paper belongs to this category
with better outcomes.

The related work assumes that the identification process is conducted in an
offline manner. That is, all the testing images are given at once, and the unknown is
constant in the open set scenario. In this paper, we consider the online image source
identification. That is, the image source identification is deployed as an online
service, and the testing images are arriving continuously as an image stream. In
such an online identification situation, the images shot by unknown camera models
are emerging dynamically alongside with the image stream. For example, during
a given time duration t , the image stream contains the images shot by K known
camera models and by N unknown camera models. In the time duration (t + 1), the
images from another unknown camera model become present in the stream. In fact,
new models of digital cameras and new lenses are continuously introduced to the
market.

This work investigates the online issue for open set oriented image source
identification. This paper aims to develop a new online image source identification
scheme capable of effectively detecting dynamically emerging unknown models.
The main contributions of this paper are manifold and summarized as follows:

– To the best of our knowledge, this paper pioneers in the identification and
solution of unknown camera models for the online image source identification
task.

– A novel scheme, namely, Online image Source Identification with Unknown
camera model (OSIU), is proposed in this paper. OSIU can effectively identify

Machine Learning-Based Online Source Identification for Image Forensics 29

the images shot by unknown camera models via a 3-step process including
unknown sample triage, unknown image discovery, and (K + 1)-class classi-
fication.

– A novel unknown sample triage method is developed to detect the presence of
any image shot by any camera models previously unknown.

– A new unknown image discovery algorithm is introduced to verify the source
of the samples shot by unknown camera models. Moreover, a novel parameter
optimization method is also developed to improve the accuracy of the procedure
of unknown image discovery.

Due to the complexity of the underlying algorithms, our unknown image discov-
ery spends significantly longer time than our unknown sample triage. However, the
former procedure is more accurate than the latter. In order to balance the accuracy
and computation cost, our scheme OSIU executes the unknown sample triage to
identify the unknown images in an image cache before executing the unknown
image discovery.

The rest of the paper is organized as follows: Sect. 2 reviews the related work.
Section 3 presents OSIU as a new image source identification scheme. Section 4
reports our experiments and results. Section 5 concludes this paper.

2 Related Work

Recent research attention has been increasingly paid to the feature based image
source identification solutions [1, 5, 6, 26, 33]. Most of the existing research focus on
feature engineering, and others rely on statistics based detection methods. However,
to the best of our knowledge, the problem of identifying images shot by unknown
camera models as part of online image source identification has not been well
addressed in previous work.

2.1 Features Engineering for Image Source Identification

Research efforts in this category commit capturing the key features as the represen-
tation of the intrinsic fingerprints generated during the image acquisition process,
such as hand-crafted features and deep learning features.

In general, two sets of hand-crafted features are available for image source
identification depending on the sources of the features, including hardware- and
software-related fingerprints. Regarding the hardware fingerprints, there are four
categories, that is, pattern noise [24, 25, 28–30, 35, 36], lens radial distortion
[8, 9, 32], chromatic aberration [38], and sensor dust [13, 14]; and regarding
the software-related fingerprints, there are two categories, that is, image-related
features [26] and artifacts introduced by color filter array [1]. According to Kharrazi

30 Y. Huang et al.

et al. [26], the color filter array configuration/demosaicing algorithm and the color
processing/transformation significantly alter the output image. This theory is proven
by the 34 purposely designed features to capture the underlying color characteristics
of different cameras. In [17], camera models were reliably identified by investigating
the patterns of the perfect pixels or defective pixels. In [14], the sensor dust traces
formed by the location and shape of dust specks in front of the imaging sensor
and their persistence were used to identify digital single lens reflex cameras. In
[9], the intrinsic lens radial distortion was used for image source identification
because of the ubiquitous existence of radial distortions of the spherical surfaced
lenses used in almost all digital cameras. Recently, photo-response nonuniformity
noise (PRNU) has become a new type of fingerprint for camera identification. In
[30], original images were denoised through a wavelet denoising filter to obtain the
PRNU; subsequently, the reference PRNU of the camera was obtained by averaging
the PRNU of multiple reference images; lastly, the image source identification
was measured according to the correction between PRNU of an image and the
camera reference PRNU. Some variants of this procedure can be found in literatures
[25, 29, 35]. For example, Li et al. [29] found that the extracted PRNU can be
affected by the color filter array. To mitigate the effects of the color filter array,
each color channel can be further decomposed into four sub-images each of which
can be used to extract a sub-PRNU. At last, the four sub-PRNU components are
aggregated into the final PRNU that is significantly more robust than the single
PRNU extracted from the original image. Last but not the least, Pan and Trepanic
[31] successfully applied PRNU signatures to recognize the Facebook images shot
by the iPhone models.

Instead of imposing a predetermined analytical model, the deep learning features
are data-driven and learned directly from the data itself. In [37], a 7-layered Con-
volutional Neural Networks (CNNs) framework was proposed for source camera
identification with the following configuration—the first layer is a filter layer; the
second, third, and fourth layers are three convolutional layers; the last three layers
are three fully connected layers. In [2, 3], the CNN network structure was modified
with four convolutional layers and two subsequent inner product layers. In [15], a
6-layered CNN architecture was proposed for camera model identification where
there are two convolutional layers, a max pooling layer, and three fully connected
layers.

2.2 Statistical Learning-Based Image Source Identification

Upon the completion of extracting the features from the images, image source iden-
tification can be regarded as a machine learning problem. The existing publications
using machine learning for image source identification can be summarized in two
groups, that is, closed set oriented and open set oriented.

The closed set oriented solutions assume that the identification task operates on
a closed dataset. In this scenario, the target images are assumed to be shot by a

Machine Learning-Based Online Source Identification for Image Forensics 31

known camera model. More concretely, the identification problem on a closed set
can be defined as a K-class classification problem where K stands for the number
of known camera models. Such classification tasks can be easily solved by training
multi-class classifiers. Hence, most of the existing works [1, 5, 6, 26, 33] belong to
this category.

On the contrary, the open set oriented methods admit the fact that target images
may be taken by the camera whose models are previously unknown to us. In this
situation, all images need to be correctly identified no matter whether by unknown
camera models or by known camera models. Due to the difficulty of the open
set oriented approach, there are only a few publications attempting to solve the
problem. In [18] two SVM-based approaches were proposed, namely, one-class
SVM (OSVM) and binary SVM (BSVM). In OSVM, a one-class SVM was trained
to separate the images from the known models. OSVM is relatively simple so
that it can be used to sort the target images quickly. The BSVM approach was
developed by adopting the one-against-one [21] multi-class SVM implementation.
In BSVM, all known models are regarded as K-classes, and the unknown models are
treated as an additional class; therefore, the image identification problem is solved
by using a (K + 1)-class classifier. In [40], a combined classification framework
(CCF) was proposed. In CCF, a one-class SVM is trained to determine whether an
image is from the known model. The one-class SVM classifier will produce binary
outputs—if the given image is not known to the classifier, then it is regarded as
an unknown sample; otherwise, the image is fed to a multi-class SVM classifier
to determine which known model it belongs to. Furthermore, in [11], a decision
boundary carving based approach (DBC) was proposed. In DBC, a binary SVM is
trained with the data samples including positive samples and negative samples—the
positive samples are the images taken by any known camera model, and the negative
samples are the images taken by any unknown camera model. By considering the
unknown camera models, the decision boundary of the SVM is gradually adjusted
toward the positive class and away from the negative class to minimize the errors.
More importantly, a novel scheme, namely, Source Camera Identification with
Unknown model (SCIU), was proposed to address the problem of unknown camera
models in [22]. SCIU explores the information of unknown camera models through
two stages—unknown detection and unknown expansion before incorporating the
information of the unknown camera models into the (K + 1)-class classification.

3 Proposed Scheme: OSIU

This section presents the details of our proposed scheme OSIU. Figure 1 depicts the
system model of our scheme. Our new solution consists of three key components—
unknown sample triage, unknown image discovery, and (K +1)-class classification.
To speed up the process, we set up an image cache to temporarily store a small
number of new images to be processed; but we discard all the cached images once
the cache is full.

32 Y. Huang et al.

Fig. 1 The system model of OSIU (the blue line, red line, and green line indicate the data flow of
unknown sample triage, unknown image discovery, and (K + 1)-class classification, respectively)

3.1 Unknown Sample Triage

The existing works solved the problem of detecting the images with unknown
samples in an offline manner. However, such solutions do not meet the requirement
of real-world image detection problems without covering the online learning
scenario. Furthermore, although the information embedded in the images shot
by unknown camera models can be extracted via machine learning methods as
presented in Sect. 3.2, the discovery process is often computationally expensive.
Thus, it is computationally infeasible to execute such resource intensive process
across many image caches in real time. To reduce the overall computational cost, we
propose to triage the images in the image cache. During the triage step, the images
shot by any unknown model will be identified and immediately redirected to the
unknown image discovery process. Our aim is to reduce the overall processing time
by increasing the throughput of the entire process to meet the real-time requirement.

The basic idea of unknown sample triage is to measure the divergence between
the underlying distribution of training dataset and that of the image cache. Two
statistics are used to capture properties of the underlying distributions: The first
statistic is derived from the class frequency distribution of camera models; the
second statistic is derived based on confusion relationships of different camera
models.

Statistic I: Kullback–Leibler Distance of Class Frequency Distribution of
Camera Models Given the training dataset T, which consists of images shot by
K camera models denoted as {C1, · · · , CK }. And we use M to denote the SVM
model trained on the training set T. Any image can be represented as a probability
vector with the probability values predicted by the trained SVM. In this paper, we
use LIBSVM [7] to implement our SVM models with the support of probability

Machine Learning-Based Online Source Identification for Image Forensics 33

estimation via pairwise coupling [41]. Each image I can be represented as follows:

e(I) = [e1(I), · · · , eK(I)] ← SVMPredict(M, I), (1)

where ei(I) indicates image I ’s predicted probability with respect to Ci .

The class frequency distribution of the training dataset T can be estimated via
combing the probability representation of all samples, such that

P (T) = [P1(T), · · · , PK(T)] =
[∑

I∈T e1(I)

|T| , · · · ,

∑
I∈T eK(I)

|T|
]

, (2)

where Pi(T) is the class frequency of model Ci within T.
Within any time duration t , the image cache temporarily contains a set of images

denoted as Φt . The class frequency distribution of Φt can be calculated as follows:

Q(Φt) = [Q1(Φt), · · · ,QK(Φt)] =
[∑

I∈Φt
e1(I)

|Φt | , · · · ,

∑
I∈Φt

eK(I)

|Φt |
]

,

(3)

where Qi(Φt) is Φt ’s class frequency of model Ci .
For an image cache without images shot by any unknown camera models, its

class frequency distribution should be similar to that of the training dataset. That
is, P (T) ≈ Q(Φt). Conversely, if an image cache contains many images from
unknown models, its class frequency distribution will be quite different to that
of the training dataset. This distribution divergence is caused by misclassification
of images from unknown models as known models. This hypothesis is validated
through the empirical studies as shown in Fig. 2. We use the following parameters
in the experiments in Sect. 4—the image cache size s = 4000 and the unknown
information increment u = 3.

Figure 2 depicts the class frequency distributions of the training dataset and the
image cache. The class frequency distribution of training dataset is similar to that of
the image cache without images shot by unknown camera models but quite different
to that of the image cache containing images shot by the 9 unknown models.

To measure the divergence between the class frequency distributions of different
dataset, we use the Kullback–Leibler distance [27] as following:

DKL(Q(Φt)||P (T)) =
∑

i

Qi(Φt) log
Qi(Φt)

Pi(T)
. (4)

Statistic II: Pearson’s CorrelationCoefficient of ConfusionMatrices of Camera
Models According to Eq. 1, each candidate image I can be represented as a
probability vector e(I) = [e1(I), · · · , eK(I)]. The autocorrelation matrix of E(I)

34 Y. Huang et al.

RO1 N3 C2 P1 K1 O1 A3 C3 C1

Camera ID

0

0.1

0.2

0.3

0.4

D
is

tr
ib

ut
io

n

(a)

RO1 N3 C2 P1 K1 O1 A3 C3 C1

Camera ID

0

0.1

0.2

0.3

0.4

D
is

tr
ib

ut
io

n

(b)

RO1 N3 C2 P1 K1 O1 A3 C3 C1

Camera ID

0

0.1

0.2

0.3

0.4

D
is

tr
ib

ut
io

n

(c)

Fig. 2 Class frequency distributions of training dataset and image cache. (a) Training dataset
without images shot by unknown camera models. (b) Image cache without images shot by
unknown camera models. (c) Image cache with images shot by 9 unknown camera models

Machine Learning-Based Online Source Identification for Image Forensics 35

can be calculated by multiplying e(I)T and e(I)

E(I) = e(I)T · e(I) =

⎛
⎜⎜⎜⎝

e1(I)e1(I) e1(I)e2(I) · · · e1(I)eK(I)

e2(I)e1(I) e2(I)e2(I) · · · e2(I)eK(I)
...

...
. . .

...

eK(I)e1(I) eK(I)e2(I) · · · eK(I)eK(I)

⎞
⎟⎟⎟⎠ . (5)

The autocorrelation matrix of the training dataset can be obtained by combining the
autocorrelation matrices of all the samples contained in T as follows:

Λ(T) =
∑

I∈T e(I)T · e(I)

|T| =

1

|T|

⎛
⎜⎜⎜⎝

∑
I∈T e1(I)e1(I)

∑
I∈T e1(I)e2(I) · · · ∑I∈T e1(I)eK(I)∑

I∈T e2(I)e1(I)
∑

I∈T e2(I)e2(I) · · · ∑I∈T e2(I)eK(I)
...

...
. . .

...∑
I∈T eK(I)e1(I)

∑
I∈T eK(I)e2(I) · · · ∑I∈T eK(I)eK(I)

⎞
⎟⎟⎟⎠ . (6)

Similarly, the autocorrelation matrix of the image cache can be obtained by
combining the autocorrelation matrices of all the samples contained in Φt during
the time duration t as follows:

Γ (Φt) =
∑

I∈Φt
e(I)T · e(I)

|Φt | =

1

|Φt |

⎛
⎜⎜⎜⎜⎝

∑
I∈Φt

e1(I)e1(I)
∑

I∈Φt
e1(I)e2(I) · · · ∑I∈Φt

e1(I)eK(I)∑
I∈Φt

e2(I)e1(I)
∑

I∈Φt
e2(I)e2(I) · · · ∑I∈Φt

e2(I)eK(I)
...

...
. . .

...∑
I∈Φt

eK(I)e1(I)
∑

I∈Φt
eK(I)e2(I) · · · ∑I∈Φt

eK(I)eK(I)

⎞
⎟⎟⎟⎟⎠ . (7)

The elements in the above autocorrelation matrices reflect the occurrence frequency
of classes. In particular, the off-diagonal elements correspond to the co-activation
of different classes. Ideally, there is only one active class at each time instance.
From this viewpoint, the off-diagonal elements reflect confusions among the classes.
For an image cache without any images taken by unknown camera models, the
autocorrelation matrix should be similar to that of the training dataset. In contrast,
for an image cache containing images shot by the unknown camera models,
more non-zero off-diagonal elements would appear in the autocorrelation matrix,
compared to that of the training dataset. The reason is that the images shot by the
unknown camera models distort the occurrence frequency of classes.

The autocorrelation matrices of training dataset and image caches are presented
in Fig. 3 in color maps. It is shown that the autocorrelation matrix of the image

36 Y. Huang et al.

Fig. 3 Autocorrelation
matrix of training dataset and
image cache. (a) Training
dataset without images shot
by unknown camera models.
(b) Image cache without
images shot by unknown
camera models. (c) Image
cache with images shot by 9
unknown models

R
O
1

N
3

C
2

P
1

K
1

O
1

A
3

C
3

C
1

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
10 -3

(a)

R
O
1

N
3

C
2

P
1

K
1

O
1

A
3

C
3

C
1

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
10 -3

(b)

RO1 N3 C2 P1 K1 O1 A3 C3 C1

RO1 N3 C2 P1 K1 O1 A3 C3 C1

RO1 N3 C2 P1 K1 O1 A3 C3 C1

R
O
1

N
3

C
2

P
1

K
1

O
1

A
3

C
3

C
1

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
10 -3

(c)

Machine Learning-Based Online Source Identification for Image Forensics 37

cache without unknown is similar to that of the training dataset. Comparatively, the
autocorrelation matrix of the image cache with 9 unknown models has more non-
zero off-diagonal elements.

To measure the similarities between the autocorrelation matrices, we use the
Pearson’s correlation coefficient [16] as follows:

Cor(Λ(T), Γ (Φt)) =∑
i,j (Λi,j (T) − Λ̄(T)(Γi,jΦt) − Γ̄ (Φt))√∑

i,j (Λi,j (T) − Λ̄(T))2
√∑

i,j (Γi,j (Φt)) − Γ̄ (Φt)))2
, (8)

where Λi,j (T) is the i-th row, j -th column element in matrix Λ(T), and Λ̄(T)

represents the arithmetic mean value of Λ(T).
To measure the divergence of the training dataset and the image cache, we

subtract the Pearson’s correlation coefficient Cor(Λ(T), Γ (Φt)) with the Kullback–
Leibler distance DKL(Q(Φt)||P (T)). Hence, the divergence S(T,Φt) is derived by

S(T,Φt) = −DKL(Q(Φt)||P (T)) + Cor(Λ(T), Γ (Φt)). (9)

The divergence increment with respect to the training set and the image cache can
be calculated as follows:

ΔS(T,Φt) = |S(T,Φt) − S(T,Φd)|, (10)

where d is the last time duration when any new sample shot by unknown camera
models is detected. The default value of d is the duration of the service startup.

To flag an image cache with suspicious samples shot by unknown camera models,
we compare the divergence increment ΔS(T,Φt) with a preset threshold value. If
the divergence is larger than the threshold, then the image cache Φt will be flagged
such that

ΔS(T,Φt) > T, (11)

where T is the threshold. In this paper the threshold T is set to 0.01.

3.2 Unknown Image Discovery

The closed set oriented solutions [1, 5, 6, 26, 33] fail to address the problem of
unknown image discovery because of an insufficient number of the samples shot
by unknown camera models in the identification classifier training stage. In order
to address this issue, this paper develops a new process named unknown image
discovery. The unknown image discovery is clustering ensemble based so that it

38 Y. Huang et al.

recognizes the image samples shot by unknown camera models from the image
cache. Moreover, a novel parameter-based optimization algorithm is proposed to
guarantee the performance of unknown image discovery.

Clustering Ensemble Based Unknown Image Discovery The basic idea of
unknown image discovery is merging the images from training dataset and image
cache for clustering. In the clustering solution, if a cluster does not contain any
images shot by the known camera models, the images in this cluster are likely
to be unknown images. This observation motivates the following unknown image
discovery.

Given the training dataset T, which consists of images from K models,
{C1, · · · , CK }. Suppose that Φt images in the image cache detected at time
duration t were new unknown images. Firstly, T and Φt are merged together as
V for clustering. The clustering solution includes k clusters: {c1, · · · , ck}. Then, for
a cluster ci , if it does not contain any images from T, then the images in the cluster
ci are labeled as unknown images. To further increase the purity of the discovered
unknown samples, the strategy of clustering ensemble is adopted. An ensemble of
clusters is constructed with different clustering numbers: (k−1), k and (k+1). Only
the images identified as unknown samples in all the clustering solutions are finally
recognized as unknown images. Algorithm 1 presents the procedure of unknown
image discovery.

Algorithm 1: Clustering ensemble based unknown image discovery
Input : Training dataset : T.

Image cache : Φt .
Optimization parameter : k.

Output: The newly discoveried unknown samples : ΔU.

1 ΔU ← Ø;
// Combine the training dataset and image cache.

2 V ← T
⋃

Φt ;.
3 for j = (k − 1) to (k + 1) do
4 Perform clustering on V to obtain clusters

{
c1, · · · , cj

}
;

5 Zj ← Ø;
6 for i = 1 to j do
7 if ci does not contain any images from T then
8 Zj ← (Zj

⋃
ci);

9 end
10 end
11 end

// Only the images identified as samples shot by unknown
camera models in all the clustering solutions are finally
labeled as unknown images.

12 ΔU ←⋂(k+1)
j=(k−1)

Zj ;

13 return ΔU.

Machine Learning-Based Online Source Identification for Image Forensics 39

More specifically, we adopt the k-means [23] algorithm for the clustering
process. That is, the k-means algorithm helps us partition the set V into k clusters
with respect to minimizing the within-cluster sum of squares. Our algorithm
progresses on a set of randomly selected k centroids by switching between the two
following modes: In the assignment step, our algorithm assigns each image to the
cluster with the closest mean value; and in the update step, our algorithm calculates
the new means of the centroid of the images in the cluster. Our algorithm will be
terminated when the assignments stabilize.

Optimization of Parameter k Finding the optimal value for the key parameter is a
significant challenge for statistical learning-based image source identification. In our
proposed scheme, we need to optimize the parameter k that is the number of clusters
used in the unknown image discovery in Algorithm 1. To find the optimal k value,
we investigate the effects of changing k values. And based on the investigation, we
develop an automated method to find the optimal k for unknown image discovery.

The unknown image discovery process recognizes the images that were shot by
the unknown camera models. We measure its performance with True Positive Rate
(TPR) and False Positive Rate (FPR). TPR is defined as the rate of the number
of correctly detected unknown images over the total of images from the unknown
camera models; FPR is the ratio of the number of images from the known camera
models erroneously detected as unknown images to the total of images from known
camera models.

Figure 4a shows the TPR and FPR of unknown image discovery with different
k values. We set s = 4000 and u = 3 according to Sect. 4. To reveal the
impact of different number of clusters as k values, we feed the images of three
unknown camera models to the image cache. Figure 4a shows that TPR and FPR
are significantly affected by different values of the parameter k. In general, both
TRP and FPR increase when k increases. For example, when k increases from 100
to 1500, TPR increases from 16% to 78%; and FPR also increases from 0% to nearly
19%.

A high TPR of unknown image discovery can boost the final identification
performance, but a high FPR can cause negative impact. Therefore, a good choice of
k should be selected to balance TPR and FPR to achieve high identification accuracy.
As shown in Fig. 4a, both TPR and FPR monotonically increase as k increases.
Therefore, an optimal k is the maximum k when FPR is approximately zero.

However, FPR on Φt cannot be measured because the images in the cache are
out of our control in practice. In this paper, we use a heuristic solution to estimate
the approximate FPR. That is, we copy a small number of labeled images from the
training set T to the image cache Φt and then calculate the FPR for these labeled
images. We calculate the FPR in the following steps: 1) a small portion (20%) of
labeled images are randomly selected from T as ΔT; 2) Φt and ΔT are combined
as Φ ′

t = Φt

⋃
ΔT; 3) we perform the unknown image discovery on Φ ′

t and use the
FPR on ΔT to approximate the FPR of Φt .

Figure 4b shows the FPR of Φt (denoted as FPR) and of ΔT (denoted as pFPR)
with different k values. The plot shows that pFPR is very close to FPR. Despite the

40 Y. Huang et al.

Fig. 4 Optimizing parameter
k for unknown image
discovery on the image cache
with 3 unknown models. (a)
Impact of parameter k. (b)
The FPR and pFPR. (c) The
optimal k

Number of Cluster: k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

TPR
FPR

(a)

Number of Cluster: k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

FPR
pFPR

(b)

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400

Number of Cluster: k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

e

TPR
FPR
pFPR

k=353
pFPR=0.0185

(c)

Machine Learning-Based Online Source Identification for Image Forensics 41

Algorithm 2: Optimizing the number of clusters k for unknown image
discovery

Input : Training dataset : T.
Image Cache : Φt .
The maximum number of clusters : kmax .
The pFPR threshold : Tfpr (default 2%).

Output: The optimal k.

1 ΔT ← randomly selected 20% of images from T ;
2 T

′ ← T − ΔT;
3 Φ ′

t ← Φt + ΔT;
4 kmin ← 1;
5 while kmin �= kmax do
6 k ← (kmin + kmax)/2;

// Perform unknown image discovery using Algorithm 1 with
training dataset T

′, image cache Φ ′
t, and parameter k.

7 ΔU
′ ← UknownDiscovery(T′, Φ ′

t , k);
8 ΔX

′ ← ΔU
′⋂ΔT;

9 pFPR(k) ← |ΔX
′ |

|ΔT| ;

10 if pFPR(k) < Tfpr then
11 kmin ← k + 1;
12 else if pFPR(k) > Tfpr then
13 kmax ← k − 1;
14 else
15 break;
16
17 end
18 kopt ← k;
19 return kopt.

fact that the actual FPR cannot be measured, pFPR can be calculated as follows:

pFPR = # images in �T detected as unknown
|�T| . (12)

Considering that pFPR is slightly larger than FPR and the singular points exist in
the image set, we set a threshold for pFPR, denoted by Tfpr. The pFPR threshold
Tfpr is slightly larger than 0. Based on our empirical results, we find that 2% is a
suitable value for Tfpr.

Solving an optimization problem can be time-consuming. In our case, the k

value varies between 100 and 1,500. To find the optimal k quickly, we use a binary
search technique that takes logarithmic time. Algorithm 2 describes the procedure
of automatic parameter selection. Figure 4c shows that the optimal kopt = 353 is
automatically selected by following Algorithm 2. With this kopt value, we can detect
as many as unknown images while keeping the pFPR rate lower than the threshold
Tfpr.

42 Y. Huang et al.

3.3 (K + 1)-class Classification

The existing solutions [11, 18, 21, 22, 40] detect images shot by unknown camera
models in the offline scenario. For the online image source identification, the images
appear continuously as an image stream with unknown images, which is not well
studied in the previous work.

Different to existing solutions, OISU can detect the new unknown images via
unknown sample triage and recognize the images shot by unknown camera models
through the unknown image discovery process. The set of unknown images can be
combined as follows:

U =
⋃
d

ΔUd, (13)

where ΔUd is the unknown images discovered within time duration d .
The unknown image discovery process is subsequently incorporated in the image

identification procedure by customizing a (K + 1)-class classification. That is, the
images of the K known camera models are treated as K-class correspondingly, and
the discovered unknown images are regarded as the extra 1-class. All of the testing
images shot by any unknown camera models will be classified into the specific
unknown class by the (K+1)-class classifier. Therefore, OISU identifies the images
of the unknown camera models and distinguishes the images of the known camera
models. In this paper, we implement the multi-class classifier by using the multi-
class SVM algorithm [10, 21] because the multi-class SVM classifiers achieved
good results in many existing studies [1, 5, 6, 26, 33].

4 Experiments and Results

To evaluate the performance of the proposed scheme, we carried out a large number
of tests on a real-world image collection named “Dresden” [19]. This section reports
our empirical studies and the results.

4.1 Dataset and Experiment Settings

The Dresden image collection [19] was used for the empirical study. We chose to
use the Dresden dataset that was built for developers and researchers to benchmark
camera-based digital forensic solutions. More specifically, the total 16,961 images
were shot by using different brands and models of cameras in the various scenes
including natural, urban, indoor, and outdoor environments. Table 1 summarizes
the 27 camera models, the number of images of each model, and the aliases of the
camera models.

Machine Learning-Based Online Source Identification for Image Forensics 43

T
ab

le
1

T
he

D
re

sd
en

im
ag

e
co

ll
ec

ti
on

N
o.

M
od

el
Si

ze
A

li
as

N
o.

M
od

el
Si

ze
A

li
as

N
o.

M
od

el
Si

ze
A

li
as

1
A
gf
a_

D
C

−
50

4
16

9
A

1
10

F
uj
iF
ilm

_F
in
eP

ix
J5

0
63

0
F1

19
P
en

ta
x_

O
pt
io
W
60

19
2

P3

2
A
gf
a_

D
C

−
73

3s
28

1
A

2
11

K
od

ak
_M

10
63

23
91

K
1

20
P
ra
kt
ic
a_

D
C
Z
5.
9

10
19

PR
1

3
A
gf
a_

D
C

−
83

0i
36

3
A

3
12

N
ik
on

_C
oo

lP
ix
S
71

0
92

5
N

1
21

R
ic
oh

_G
X
10

0
85

4
R

1

4
A
gf
a_

S
en

so
r5
05

−
x

17
2

A
4

13
N
ik
on

_D
20

0
75

2
N

2
22

R
ol
le
i_
R
C
P

−
73

25
X
S

58
9

R
O

1

5
A
gf
a_

S
en

so
r5
30

s
37

2
A

5
14

N
ik
on

_D
70

36
9

N
3

23
S
am

su
ng

_L
74

w
id
e

68
6

S1

6
C
an

on
_I
xu

s5
5

22
4

C
1

15
N
ik
on

_D
70

s
36

7
N

4
24

S
am

su
ng

_N
V
15

64
5

S2

7
C
an

on
_I
xu

s7
0

56
7

C
2

16
O
ly
m
pu

s_
m
ju

_1
05

0S
W

10
40

O
1

25
S
on

y_
D
S
C

−
H
50

54
1

SO
1

8
C
an

on
_P

ow
er
S
ho

tA
64

0
18

8
C

3
17

P
an

as
on

ic
_D

M
C

−
F
Z
50

93
1

P1
26

S
on

y_
D
S
C

−
T
77

72
5

SO
2

9
C
as

io
_E

X
−

Z
15

0
92

5
C

4
18

P
en

ta
x_

O
pt
io
A
40

63
8

P2
27

S
on

y_
D
S
C

−
W
17

0
40

5
SO

3

44 Y. Huang et al.

We randomly selected 20% of all the 16,961 images as the training dataset, and
the rest were treated as the testing dataset. To simulate the problem of unknown
cameras, 9 models were randomly selected as the known models, that is, RO1, N3,
C2, P1, K1, O1, A3, C3, and C1. Thus, the remaining 18 camera models were treated
as the unknown camera models.

To simulate the scenario of online image source identification, we need to create
a stream of images selected from image pools shot by both known and unknown
models. We mix the images by iterating through the following steps:

– Round 0: testing images shot by the 9 known camera models were mixed
randomly;

– Round 1: testing images shot by the 9 known camera models and by the 1 ∗ u

unknown camera models were mixed randomly;
– · · · ;
– Round i: testing images shot by the 9 known camera models and by the i ∗ u

unknown camera models were mixed randomly;
– · · · ;
– Last Round: stop when the images shot by all unknown camera models were

mixed,

where u is a control parameter, namely, unknown camera model increment size. We
used the parameter u to control the number of newly added unknown camera models
in each round. In our experiment, u varies between 2 and 4. The unknown camera
models were introduced according to the following order—A5, R1, SO1, SO3, SO2,
P3, N4, A1, S1, A2, A4, P2, S2, N2, C4, PR1, F1, and N1.

4.2 Features

We extracted 34 features by using the method of Kharrazi et al. [26]. The 34 features
are classified into six categories—3 features in average pixel values, 3 features in
RGB pair correlations, 3 features in neighbor distribution center of mass, 3 features
in energy ratios of RGB pairs, 9 features in the wavelet domain statistics, and 13
features in the image quality metrics. Upon completion of the feature extraction,
each image was represented by a feature vector of 34 dimensions.

Thereafter, we used the LIBSVM [7] to train SVMs with linear kernels in our
experiments.

Machine Learning-Based Online Source Identification for Image Forensics 45

4.3 Evaluation Metrics

To measure the performance of online scenario, we used the accuracy and F-
measure. Accuracy is the ratio of the number of all correctly identified images to
the number of all identified images of the image cache.

Accuracy = # correctly identified images
image cache size

. (14)

F-measure [20] was used to measure the identification performance for each camera
model Ci , which is a combination of precision and recall,

F − measurei = 2 · precisioni · recalli
precisioni + recalli

. (15)

More specifically, precisioni is the ratio of the number of correctly identified images
from Ci to the number of the images identified from Ci ,

precisioni = # correctly identified images from Ci

images identified from Ci
. (16)

And recalli is defined as the ratio of the number of correctly identified images from
Ci over the total of images shot by camera model Ci ,

recalli = # correctly identified images from Ci

images from Ci
. (17)

4.4 Performance of Triaging Unknown Samples

We evaluated the performance of our scheme proposed in Sect. 3.1. It aims to
validate the feasibility of triaging the unknown samples in the image cache in real
time. To answer this, we need to consider both detection accuracy and computation
cost.

Detection Accuracy Figures 5 and 6 present the experimental results with respect
to different values of unknown camera model increment size u and image cache
size s. We also examined the accuracy of conventional multi-class SVM (MSVM)
approach [1, 5, 6, 26, 33], the divergence of training dataset, and the image cache
calculated according to Eq. 9.

46 Y. Huang et al.

Fig. 5 Unknown sample
triage with a fixed image
cache size s and varied
unknown camera model
increment size u. (a)
s = 4000, u = 2. (b)
s = 4000, u = 3. (c)
s = 4000, u = 4

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 4000, Unknown Increment Size: 2
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(a)

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 4000, Unknown Increment Size: 3
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(b)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 4000, Unknown Increment Size: 4
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(c)

Machine Learning-Based Online Source Identification for Image Forensics 47

Fig. 6 Unknown sample
triage with varied image
cache size s and a fixed
unknown camera model
increment size u. (a)
s = 2000, u = 3. (b)
s = 3000, u = 3. (c)
s = 4000, u = 3

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 2000, Unknown Increment Size: 3
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(a)

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 3000, Unknown Increment Size: 3
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(b)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y/
D

iv
er

ge
nc

e

Image Cache Size: 4000, Unknown Increment Size: 3
Accuracy of MSVM
Distribution Divergence
Unknown Injection Points
Detected Points

(c)

48 Y. Huang et al.

The empirical results show that the identification accuracy of MSVM and the
divergence have the similar trend. That is, they both decline with the increasing
number of images. The proposed divergence measurement can capture the per-
formance degeneration of MSVM caused by the existence of images shot by any
unknown camera models. At a high level of confidence, we can also detect the
existence of unknown images in the image dataset. For instance, when s = 3000
and u = 3, the process of unknown sample triage can detect all the images shot by
the unknown camera models.

Let us further investigate the effects of parameters s and u on the performance
of unknown sample triage. As shown in Fig. 5, the parameter u, the unknown
camera model increment size, has insignificant impact on the performance of
unknown sample triage. When u gradually increases from 2 to 4, the process of
unknown sample triage can detect all the images shot by the unknown camera
models correctly. Conversely, the parameter s, the image cache size, can influence
the performance of unknown sample triage. As shown in Fig. 6, when s =
2000, unknown sample triage returns many false positives. The reason is that the
distribution statistics on small image cache have big variance and therefore cannot
reflect the underline distribution sufficiently. While the size of image cache is large
enough, the distribution statistics become stable.

Computational Cost The experiments were carried out on a Thinkpad T440s
machine with Intel i5-4200 CPU (1.60 GHz) and 12.0 GB RAM. We used Matlab
R2016b (64-bit version) as the experimental environment and Ubuntu 16.04 LTS as
the operation system.

Figure 7 shows the average computational cost of unknown sample triage and
unknown image discovery with different experimental parameter settings. The
computational cost of unknown sample triage is significantly less than that of
unknown image discovery. For example, when s = 4000 and u = 3, the average
computational cost of unknown sample triage is 0.2498 s, but the computation cost
of unknown image discovery is 20.2972 s. This meets the requirement of unknown
sample triage and unknown image discovery: Unknown sample triage is designed to
be executed in real time for every image cache, while the unknown image discovery
is only required when unknown sample triage detects the new unknown samples.

The influence of parameters on the computational cost is reported in Fig. 7.
In Fig. 7a, the parameter u, the unknown increment size, has little impact on the
computational cost; but, as shown in Fig. 7b, the parameter s, the image cache
size, has significant influence on the computational cost. As a general trend, both
the computational costs of unknown sample triage and unknown image discovery
increase with the large image cache sizes. For example, when s = 2000, the
computational costs of unknown sample triage and unknown image discovery are
0.1333 s and 12.9 s, respectively; when s = 4000, the computational costs of

Machine Learning-Based Online Source Identification for Image Forensics 49

0.2415 0.2498 0.2348

21.5219

20.2972 20.2985

21.5219

20.2972 20.2985

432

Unknown Increment Size

0

5

10

15

20

25

C
om

pu
ta

tio
n

C
os

t (
Se

co
nd

s)

Unknown Evaluation
Unknown Discovery

(a)

0.1333 0.1834 0.2498

12.9000

17.9378

20.2972

2000 3000 4000

Image Cache Size

0

5

10

15

20

25

C
om

pu
ta

tio
n

C
os

t (
Se

co
nd

s)

Unknown Evaluation
Unknown Discovery

(b)

Fig. 7 Computational cost of unknown sample triage and unknown image discovery. (a) Varied
unknown camera model increment size u and fixed image cache size s = 4000. (b) Fixed unknown
camera model increment size u = 3 and varied image cache size s

50 Y. Huang et al.

unknown sample triage and unknown image discovery increase to 0.2498 s and
20.2972 s, respectively. The reason of the increased computation is that more images
are involved in both unknown sample triage and unknown image discovery with the
increase of the image cache size.

4.5 Performance of OSIU

We also compared our proposed OSIU scheme with the state-of-art image source
identification solutions in the online scenario with unknown camera models.
Traditional schemes including multi-class SVM method (MSVM) [1, 5, 6, 26, 33],
binary SVMs method (BSVM) [18], combined classification framework method
(CCF) [40], and decision boundary carving method (DBC) [11] are implemented
as references. The Source Camera Identification with Unknown model (SCIU)
[22] method needs an unlabeled image dataset for unknown mining, which is not
available in the online scenario. Therefore, SCIU does not work well in the online
situation.

Figures 8 and 9 report the accuracy of the five comparative methods with
different parameter settings. Figures 10, 11, and 12 report the F-measures of the
five comparative methods with 3, 6, and 12 unknown camera models, when we set
s = 4000 and u = 3.

Based on the experimental results, our proposed OSIU scheme is significantly
superior to the other four methods. The second best is the CCF method. And the
MSVM, BSVM, and DBC are the bottom three methods. Their low performance
was mainly caused by the inadequate consideration of the unknown class. The
CCF, DBC, and BSVM methods do not make use of the dynamically emerging
unknown images in the online scenario; thus, the performance improvement is
limited. The proposed OSIU can detect the new unknown images dynamically via
unknown sample triage and recognize some samples of unknown camera models
through unknown image discovery. The unknown images are then incorporated in
the identification procedure by employing a special (K + 1)-class classification,
resulting in a significant improvement of the identification accuracy.

Furthermore, we investigate the impact of the two parameters s and u on the
identification performance of OSIU. As shown in Fig. 8, when s is fixed, the
influence of u on identification accuracy is negligible. Comparatively, when u is
fixed, the parameter s has a big impact on the identification performance. As shown
in Fig. 9, the performance improvement of OSIU with s = 4000 is larger than that
with s = 2000. The reason is that when the image cache size s is larger, unknown
sample triage can recognize more samples of unknown camera models from the
image cache; therefore, the performance improvement is more significant.

Machine Learning-Based Online Source Identification for Image Forensics 51

Fig. 8 Accuracy of
compared methods with a
fixed image cache size s and
varied unknown increment
size u. (a) s = 4000, u = 2.
(b) s = 4000, u = 3. (c)
s = 4000, u = 4

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 4000, Unknown Increment Size: 2
MSVM
BSVM
CCF
DBC
OISU

(a)

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 4000, Unknown Increment Size: 3
MSVM
BSVM
CCF
DBC
OISU

(b)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 4000, Unknown Increment Size: 4
MSVM
BSVM
CCF
DBC
OISU

(c)

52 Y. Huang et al.

Fig. 9 Accuracy of
compared methods with
varied image cache size s and
a fixed unknown camera
model increment size u. (a)
s = 2000, u = 3. (b)
s = 3000, u = 3. (c)
s = 4000, u = 3

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 2000, Unknown Increment Size: 3
MSVM
BSVM
CCF
DBC
OISU

(a)

Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 3000, Unknown Incremen Size: 3
MSVM
BSVM
CCF
DBC
OISU

(b)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
Image Sequence Number 10 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Image Cache Size: 4000, Unknown Increment Size: 3
MSVM
BSVM
CCF
DBC
OISU

(c)

Machine Learning-Based Online Source Identification for Image Forensics 53

RO1 N3 C2 P1 K1 O1 A3 C3 C1 Unknown

Camera ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
M

ea
su

re
The F-Measures of the comparatives with 3 unknown models.

MSVM BSVM CCF DBC OSIU

Fig. 10 The F-measure of the compared solutions with 3 unknown camera models

RO1 N3 C2 P1 K1 O1 A3 C3 C1 Unknown

Camera ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
M

ea
su

re

The F-Measures of the comparatives with 6 unknown models.

MSVM BSVM CCF DBC OSIU

Fig. 11 The F-measure of the compared solutions with 6 unknown camera models

RO1 N3 C2 P1 K1 O1 A3 C3 C1 Unknown

Camera ID

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
M

ea
su

re

The F-Measures of the comparatives with 12 unknown models.

MSVM BSVM CCF DBC OSIU

Fig. 12 The F-measure of the compared solutions with 12 unknown camera models

54 Y. Huang et al.

5 Conclusion

This paper investigates the problem of detecting images shot by unknown camera
models for the online image source identification task. To the best of our knowledge,
we are the first to identify and solve this issue. Existing works on the problem of
unknown image detection assume that the identification is performed offline. When
the image source identification is deployed as an online service, the information
of unknown camera models is emerging dynamically along the image stream. To
address this problem, a new scheme, namely, Online image Source Identification
with Unknown camera model (OSIU), is proposed in this paper. The proposed
OSIU scheme consists of three stages—unknown sample triage, unknown image
discovery, and (K + 1)-class classification. Unknown sample triage can effectively
detect whether there is new unknown samples in the image stream in real time.
When any new unknown sample is detected, unknown image discovery can
recognize some samples from unknown camera models with a high precision. The
discovered unknown images are finally incorporated in the identification procedure
by addressing a special (K + 1)-class classification. To evaluate the effectiveness
of OSIU, we carried out a large number of experiments on a real-world image
collection. Our empirical results demonstrate that the proposed OSIU scheme
significantly outperforms the four state-of-the-art methods.

References

1. Bayram, S., Sencar, H.T., Memon, N., Avcibas, I.: Source camera identification based on CFA
interpolation. In: Proceedings of the 12th IEEE International Conference on Image Processing,
vol. 3, pp. 69–72. Genoa, Italy (2005)

2. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward
camera model identification with convolutional neural networks. IEEE Signal Process. Lett.
24(3), 259–263 (2017)

3. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E.J., Tubaro, S.: A preliminary study on
convolutional neural networks for camera model identification. Electronic Imaging 2017(7),
67–76 (2017)

4. Camera and Imaging Products Association Standardization Committee and Others (CIPA):
Exchangeable image file format for digital still cameras: EXIF Version 2.3, Tech. Rep, 2010

5. Castiglione, A., Cattaneo, G., Cembalo, M., Petrillo, U.F.: Experimentations with source
camera identification and online social networks. J. Ambient Intell. Humaniz. Comput. 4(2),
265–274 (2013)

6. Çeliktutan, O., Sankur, B., Avcibaş, I.: Blind identification of source cell-phone model. IEEE
Trans. Inf. Forensics Secur. 3(3), 553–566 (2008)

7. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines, National Taiwan
University, http://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed May 15, 2018

8. Choi, K.S., Lam, E.Y.: Source camera identification using footprints from lens aberration. In:
Proceedings of the SPIE, pp. 60690J1–60690J8 (2006)

9. Choi, K.S., Lam, E.Y., Wong, K.K.Y.: Automatic source camera identification using the
intrinsic lens radial distortion. Optics Express 14(24), 11551–11565 (2006)

10. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Machine Learning-Based Online Source Identification for Image Forensics 55

11. Costa, F.D., Silva, E., Eckmann, M., Scheirer, W.J., Rocha, A.: Open set source camera
attribution and device linking. Pattern Recogn. Lett. 39, 92–101 (2014)

12. Cox, J.I., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2002)

13. Dirik, A.E., Sencar, H.T.: Source camera identification based on sensor dust characteristics. In:
Proceedings of the IEEE Workshop on Signal Processing Applications for Public Security and
Forensics, pp. 1–6. Washington, DC, USA (2007)

14. Dirik, A.E., Sencar, H.T., Memon, N.: Digital single lens reflex camera identification from
traces of sensor dust. IEEE Trans. Inf. Forensics Secur. 3(3), 539–552 (2008)

15. Freire-Obregón, D., Narducci, F., Barra, S., Castrillón-Santana, M.: Deep learning for source
camera identification on mobile devices. Preprint (2017). arXiv:1710.01257

16. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM (2007)
17. Geradts, Z.J., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for

identification of images acquired with digital cameras. In: Proceedings of the Enabling
Technologies for Law Enforcement, pp. 505–512 (2001)

18. Gloe, T.: Feature-based forensic camera model identification. In: Transactions on Data Hiding
and Multimedia Security, vol. VIII, pp. 42–62. Springer, Berlin, Heidelberg (2012)

19. Gloe, T., Böhme, R.: The Dresden image database for benchmarking digital image forensics.
J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

20. Hripcsak, G., Rothschild, A.S.: Agreement, the F-measure, and reliability in information
retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005)

21. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE
Trans. Neural Netw. 13(2), 415–425 (2002)

22. Huang, Y., Zhang, J., Huang, H.: Camera model identification with unknown models. IEEE
Trans. Inf. Forensics Secur. 10(12), 2692–2704 (2015)

23. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666
(2010)

24. Kang, X., Chen, J., Lin, K., Peng, A.: A context-adaptive SPN predictor for trustworthy source
camera identification. EURASIP J. Image Video Process. 2014(1), 1–11 (2014)

25. Kang, X., Li, Y., Qu, Z., Huang, J.: Enhancing source camera identification performance with
a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 7(2), 393–402
(2012)

26. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: Proceedings of
the 11th IEEE International Conference on Image Processing, pp. 709–712. Singapore (2004)

27. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86
(1951)

28. Li, C.T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf.
Forensics Secur. 5(2), 280–287 (2010)

29. Li, C.T., Li, Y.: Color-decoupled photo response non-uniformity for digital image forensics.
IEEE Trans. Circuits Syst. Video Technol. 22(2), 260–271 (2012)

30. Lukás̆, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE
Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

31. Pan, L., Trepanic, N.: Image source detection: A case study on Facebook images taken by
iPhones. In: Proceedings of the Second Applications and Techniques in Information Security
Workshop (ATIS’11), pp. 39–46

32. Park, M.G.H.H.J., Har, D.H.: Source camera identification based on interpolation via lens
distortion correction. Aust. J. Forensic Sci. 46(1), 98–110 (2014)

33. Peng, F., Shi, J., Long, M.: Comparison and analysis of the performance of PRNU extraction
methods in source camera identification. J. Comput. Inf. Syst. 9(14), 5585–5592 (2013)

34. Stamm, M.C., Liu, K.J.R.: Forensic detection of image manipulation using statistical intrinsic
fingerprints. IEEE Trans. Inf. Forensics Secur. 5(3), 492–506 (2010)

35. Sutcu, Y., Bayram, S., Sencar, H.T., Memon, N.: Improvements on sensor noise based source
camera identification. In: Proceedings of the IEEE International Conference on Multimedia
and Expo, pp. 24–27. Beijing, China (2007)

56 Y. Huang et al.

36. Tsai, M.J., Wang, C.S., Liu, J., Yin, J.S.: Using decision fusion of feature selection in digital
forensics for camera source model identification. Comput. Stand. Interfaces 34(3), 292–304
(2012)

37. Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep
convolutional neural networks. In: Proceedings of the 2016 IEEE International Workshop on
Information Forensics and Security, pp. 1–6. Abu Dhabi, United Arab Emirates (2016)

38. Van, L.T., Emmanuel, S., Kankanhalli, N.S.: Identifying source cell phone using chromatic
aberration. In: The IEEE International Conference on Multimedia and Expo, pp. 883–886.
Beijing, China (2007)

39. van Schyndel, R.G., Tirkel, A.Z., Osborne, C.F.: A digital watermark. In: Proceedings of the
1st IEEE International Conference Image Processing, vol. 2, pp. 86–90. Austin, Texas, USA
(1994)

40. Wang, B., Kong, X., You, X.: Source camera identification using support vector machines. In:
Advances in Digital Forensics, vol. V, pp. 107–118. Springer, Berlin, Heidelberg (2009)

41. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise
coupling. J. Mach. Learn. Res. 5(Aug), 975–1005 (2004)

Reinforcement Learning Based
Communication Security for Unmanned
Aerial Vehicles

Liang Xiao, Donghua Jiang, and Sicong Liu

1 Introduction

With the rapid development of unmanned aerial vehicles (UAVs) in commu-
nications, networking, and sensing applications, UAVs have gained considerable
research interest in the last decade. Although UAV applications have been widely
applied in many different fields, especially the military surveillance and envi-
ronment monitoring, UAV communication process is not sufficiently safe due
to jamming attacks. By imposing jamming signals on the controller during the
communication process of the drones, a jammer can interfere with the sensing
data reception of the controller, exhaust the drone battery, or keep the drone from
following the specified sensing mission waypoint [18].

The state-of-the-art technologies such as frequency hopping [22] and smart
antenna [2] have been employed to resist jamming attacks. For example, in a zero-
sum game of drone pursuit and escaping, the Isaacs’ method is utilized to determine
the drone trajectory against jamming attacks as proposed in [1]. The anti-jamming
scheme of drone power control in [32] formulates a Bayesian Stackelberg game
and uses a sub-gradient method to develop an iterative algorithm and determine the
drone transmit power. Nevertheless, these drone anti-jamming schemes require to
be aware of the jamming and channel models, and the performance is affected by
the versatility and accuracy of the knowledge of these models on the drones.

In order to cope with the fact that the drone has little knowledge about the channel
model, some experts use reinforcement learning (RL) to optimize the anti-jamming

Part of this work was supported by NSFC No. 61971366 and 61901403.

L. Xiao (�) · D. Jiang · S. Liu
Department of Communication Engineering, Xiamen University, Xiamen, Fujian, China
e-mail: lxiao@xmu.edu.cn; liusc@xmu.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_3&domain=pdf
mailto:lxiao@xmu.edu.cn
mailto:liusc@xmu.edu.cn
https://doi.org/10.1007/978-981-33-6726-5_3

58 L. Xiao et al.

strategy through repeated anti-jamming tests in the drone communication process.
For example, the UAV anti-jamming scheme named QPC in [12] uses the Q-learning
algorithm to determine the drone transmit power and resist jamming attacks. This
proposed scheme can improve the quality of the received signals and meanwhile
reduce the energy consumption of the drone in the presence of reactive jamming
attacks. Nevertheless, this solution does not consider the situation where the drone
sensing mission requires a waypoint, nor does it optimize the drone trajectory in the
transmission for drone sensing applications.

One part of this chapter is focused on applying the deep RL algorithms to address
the issue of jamming attacks, and an RL-based drone trajectory and power control
(RLTPC) scheme is proposed for the drone to jointly choose its trajectory and
transmit power, optimize the system performance, and meet the requirements of the
sensing mission waypoint. In this scheme, the drone determines the transmit strategy
(including the trajectory and transmit power) in the sensing mission according to its
current position, the next position in the waypoint, and the communication feedback
from the controller. In the case when the channel between the jammer and the
controller and the jamming model are unknown at the drone, a multilayer perceptron
(MLP) is applied to obtain an action-value function that approximates the system
state. This scheme evaluates the quality of satisfaction (QoS) of the UAV sensing
mission based on the signal-to-interference-plus-noise ratio (SINR) sent back by
the receiver. Moreover, the drone utilizes the evaluated utility to determine the next
communication strategy against jamming attacks. The drone sensing mission for a
given waypoint and channel model according to [24] are investigated by simulations.
Compared with the benchmark of QPC in [12], the proposed trajectory and power
control scheme can save the drone energy consumption and significantly improve
the QoS of the drone communication against intelligent jamming attacks.

Another part of this book is focused on applying the prospect theory (PT) to study
smart attacks on drone transmission initiated by selfish and subjective attackers.
In order to reveal the mechanism of how the utility of the drone is related with
the subjectivity of Eve, we have derived the Nash equilibria (NE) of the PT-based
game of smart attacks and the conditions for the existence of the NE. Moreover,
because the repeated game can be expressed as a Markov decision process (MDP),
RL algorithms can be used to derive the optimal strategy to resist smart attacks
without being aware of the network model. More specifically, we utilize the Q-
learning algorithm in the power allocation strategy, in which the reward of each
state-action pair in the learning process is evaluated by the Q-function. At the same
time, the power allocation scheme based on the algorithm of Win or Learn Faster-
Policy Hill Climbing (WoLF-PHC) is proposed to evaluate the uncertainty of drone
transmission against smart attacks and improve the safety of the drones. There are
a lot of attack states, feasible transmit power levels, and channel conditions in the
system of drone transmission in the presence of jamming attacks, which requires a
faster learning speed compared with the Q-leaning or WoLF-PHC-based solutions.
A power allocation scheme based on the deep Q-network (DQN) as investigated
in [15] accelerates the learning rate of the WoLF-PHC-based solution. Moreover,
deep learning and Q-learning algorithms are combined to compress the state space
to cope with high dimensional issues in the learning process. The simulation results

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 59

show that the proposed anti-jamming scheme using the DQN algorithm improves
the SINR of the received signal, secrecy capacity, and utility of the drone.

2 Communication Security for Unmanned Aerial Vehicles

2.1 UAV Communication Model

Case 1 There is a drone communication network in a three-dimensional space
that consists of a legitimate drone, a controller, and a smart jammer. The drone
in the network has access to M waypoints denoted by {Wm}1≤m≤M , which is
devised for performing some tasks like point checking. The waypoints perform
tasks sequentially at the scheduled times denoted by {nT } with 1 ≤ n ≤ M and
T is a fixed time interval between two tasks. The target waypoints of the drone
are the same as the flight between two adjacent waypoints. During the flight, the
drone tends to arrange its trajectory closer to the controller located at G to improve
the communication quality and reach the next waypoint on time. In a time slot, the
maximum velocity of the drone in the x, y, and z dimensions is represented by v.
When the drone arrives at the waypoint as planned, it detects the situation of the
environment and transmits the sensing data to the controller [9, 18].

Case 2 In the UAV communication network, a transmission model between the
legal drone and the mobile ground unit (MGU) against smart attacks is constructed.
The drone is intended to transmit monitoring data and messages to the MGU. The
distance between the MGU and the UAV is dt . The number of the radio frequency
channels occupied is B. Meanwhile, the smart attacker equipped with a radio device
is able to perform smart attacks and selects an attack pattern.

The power gain of the i-th transmission channel between the drone and the MGU
at time k is h

(k)
T ,i , the power gain of the i-th wiretap channel is h

(k)
E,i , and the power

gain of the i-th jamming channel is h
(k)
J,i . Thus the channel power gain between the

drone and the MGU at time k is formulated as H(k)
T = [h(k)

T ,i]1≤i≤B , and the wiretap

channel gain from the drone to the target drone is H(k)
E = [h(k)

E,i]1≤i≤B . Similarly,

the jamming channel gain from the jammer to the MGU is H(k)
J = [h(k)

J,i]1≤i≤B .
According to [17], the reference distance of the drone transmission is denoted by

d0 with ξ being a reference path loss at d0, and the path loss exponent of the channel
model is denoted by ρ. The path loss of the transmission channel denoted by PL

with the transmitter–receiver distance d can be given by

PL(dB) = ξ(dB) + 10ρ lg

(
d

d0

)
, d > d0. (1)

60 L. Xiao et al.

2.2 Attack Model

Smart jammer observes the ongoing UAV communication to estimate the current
UAV transmission states and decides whether to send faked signals with power p

(k)
J

to the target ground node at time k or not. The channel gain from the smart jammer
to the ground node is h

(k)
J , and the maximum jamming power is PJ .

A smart attacker with programmable radio devices selects the attack mode y(k)

including eavesdropping, spoofing, and jamming attacks, etc. The attacker cannot
launch eavesdropping and jamming attacks at the same time because jamming
signals are sent with the same frequency with the target UAV, which prevents the
attacker from eavesdropping the ongoing transmit information. Smart attackers can
compromise MGUs to jam or spoof downlink UAV communication, or launch
jamming attacks to interrupt the uplink UAV communication. For example, the
compromised UAV can move close to the target UAV before sending faked signals
to decrease the detection accuracy. The compromised MGU can move close to
the target UAV to improve the jamming performance. The downlink UAV sensing
information transmission is proposed as an example, while this scheme can be
applied to other UAV communication schemes as well.

The attack mode over B frequency channels is y(k) = [y(k)
i]1≤i≤B . More

specifically, the compromised MGU transmits faked signals with the transmit power
y

(k)
i ∈ [0, · · · , PJ] on frequency channel i, if y(k) > 0; a smart attacker eavesdrops

the target UAV if y(k) = −1; the smart attacker conducts spoofing attack to Bob
if y(k) = −2; otherwise, the smart attacker does not apply attacks on the ongoing
transmission.

3 Reinforcement Learning Based UAV Communication
Security

3.1 Reinforcement Learning Based Anti-Jamming
Communications

As an MDP, the UAV anti-jamming communication process in terms of the
trajectory control and power control can apply reinforcement learning to improve
its utility based on the energy consumption and communication quality. In the RL-
based UAV anti-jamming communication scheme, the action policy of the UAV is
determined according to the state at each time slot, which consists of the position,
target waypoint, and previous transmission quality of the UAV obtained from the
SINR in the feedback information. The state is then input to a deep Q-network
to infer the long-term discounted reward, which is called Q-value, of all feasible
UAV polices in this state. The UAV will then select a transmit policy based on the
Q-values, update the weights of the deep Q-network according to the utility, and
observe the next state.

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 61

At each time slot k, the current target waypoint of the UAV is denoted by w(k) ∈
W . The UAV obtains its current position information l(k), which is denoted by a
three-dimensional coordinate, according to the Global Position System. From the
feedback of the ground node, the UAV can obtain the SINR of the last received sig-
nal, which is denoted by ρ(k−1). The state of the UAV includes its position, the target

waypoint, and the SINR of last received signal, i.e., s(k) =
{
l(k),w(k), ρ(k−1)

}
. Let

S denote the state space that consists of all the possible states.
As illustrated in Fig. 1, at each time slot k, the UAV inputs the state to a

convolutional neural network (CNN) known as a deep Q-network [15], which is
parameterized by θ , to estimate the Q-value of any legal action x at the current
state. The action includes the movement vector and the transmit power, i.e., xk =[(

v(k)
)T

, p
(k)
U

]T
. As the deep Q-network cannot handle continuous actions, the

three dimensions of the position and the transmit power are quantized into Nx,Ny ,
Nz, and Np levels, respectively. Let X denote the action space that consists of all
the feasible actions.

The action with the maximum Q-value is the optimal choice at the current state.
However, with such a greedy strategy of action selection, the UAV is much likely
to fall into local minima due to the lack of exploration of the global state space
and action space. Thus, in practical implementation, the UAV usually applies the ε-

greedy scheme for action selection based on the Q-values Q
(
x|s(k), θ (k)

)
,∀x ∈ X

at current states s(k). Specifically, the UAV chooses the action with the maximum
Q-value with a large probability 1 − ε and keeps a small probability ε to randomly
select another action in the action space to guarantee a thorough exploration.

Algorithm 1: RL-based anti-jamming trajectory and power control scheme

1: Initialize s(0) γ , α, C1, C2, θ , θ̂ = θ , ρ(0) and R = ∅
2: for k = 1, 2, · · · do
3: Obtain position of the UAV
4: Obtain the SINR of the last received signal

5: Formulate the current state s(k) =
{
l(k), w(k), ρ(k−1)

}
6: Input current state to the Q-network to estimate Q

(
s(k), x; θ

)
,∀x ∈ X

7: Determine the trajectory and power via the ε-greedy policy
8: Conduct a flight according to v(k) and sense the environment data
9: Send the environment data to the ground node at p

(k)
U

10: Calculate utility via Eq. (2)
11: Append the experience to memory pool
12: Sample experiences at random from the memory pool
13: Update the network weights via Eq. (3)
14: end for

The UAV flies toward the next position according to v(k) and sends the
environment data to the receiver at the power p

(k)
U during the flight. Then the UAV

evaluates QoS by comparing the SINR with a predefined threshold σ and calculates

62 L. Xiao et al.

F
ig
.1

R
LT

PC
sc

he
m

e
fo

r
th

e
U

A
V

ag
ai

ns
ts

m
ar

tj
am

m
in

g
at

ta
ck

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 63

the energy consumption for the flight and transmission. The UAV can also measure
the distance to w(k) with the equipped position sensors. Then, the UAV can calculate
the utility as

u(k) = I
(
ρ(k−1) − σ

)
− δ

(∥∥∥l(k) − w(k)
∥∥∥)− C1

∥∥∥v(k)
∥∥∥− C2p

(k)
U , (2)

where δ, C1, and C2 are the positive coefficients used for balancing the cost
of energy consumption and punishment for the distance. The function I (·) is an
indicator function that equals to 1 if the condition therein is true and 0 otherwise.

The state, action, utility, and the next state can be summarized as a piece of
experience at each time slot, which is e(k) = {

sk, x(k), u(k), sk+1
}
. The UAV

stores the experience in a memory pool denoted by R. At each time slot, the UAV
randomly samples N experiences from the memory pool to update the current
network weights θ (k). Specifically, the UAV first estimates the target Q-values
according to the Bellman equation based on the utilities and the Q-values of the next

time slot from a target Q-network, whose weight is denoted by θ̂
(k)

, and calculates
the loss function according to the mean square error between the Q-values and the
target Q-values. Then it updates θ (k) using the gradient descent algorithm with the
loss function, which can be given by

θ (k) ←θ (k) + α∇θE

[(
u(i) + γ max

x∈X
Q
(
s(i+1), x; θ̂

(k)
)

− Q
(
s(i), x(i); θ (k)

))2]
, (3)

where α ∈ (0, 1) controls the learning speed of the Q-network and γ ∈ (0, 1) is
the discount factor. Every τ steps, the UAV copies the weights of the Q-network
and updates the target network [15]. The proposed RLTPC scheme is summarized
in Algorithm 1.

The performance of the proposed RLTPC scheme is assessed via simulations in
a specific UAV communication network against a smart jammer as shown in Fig. 2.
For simplicity, a concrete wireless channel model is adopted to evaluate the channel
gain and a classic jamming policy is conducted. Besides, RLTPC can be applied to
other environments with different channels and jammers as well.

As illustrated in Fig. 2, the initial position of the UAV is (0, 50, 30) m in a cuboid
space whose length, width, and height are 200 m, 100 m, and 50 m, respectively.
The UAV uses sensors including a thermometer and a camera, etc. to collect the
environment data. There are four waypoints for the UAV to inspect located in
(40, 50, 30) m, (80, 50, 30) m, (120, 50, 30) m, and (160, 50, 30) m in sequence.
The UAV must transmit the sensing data to the ground node located at the origin
and move from one waypoint to the next in 4 seconds. The available transmit power
ranges from 0 to 4 W. The UAV determines its trajectory and transmit power in the
fight every 1 second according to the RLTPC scheme. The UAV can fly along the

64 L. Xiao et al.

Fig. 2 Illustration of the simulation settings of the anti-jamming UAV communication network

three directions or the opposite directions for 0, 10, or 20 m at each time slot. In
the utility function, the coefficients C1 and C2 are 0.25 and 0.1, respectively. The
threshold σ is set as 15 dB to evaluate the QoS. In the RLTPC scheme, the learning
rate is 10−4 and the discounted factor is 0.99. The UAV samples 32 experiences
from the memory pool, whose size is 10000, at each time slot.

Assuming that the UAV works in a hilly environment, the channel model is
formulated according to [24]. The carrier frequency of the transmission signal is
5.06 GHz, and thus the path loss exponent is 1.7 in the channel model. Besides,
since the distance between the ground node and the UAV is less than the reference
distance of 3.4 km, the channel has a path loss of 119.7 dB with a large-scale fading
X, which follows a Gaussian distribution whose variance is 2.4 dB. Thus, the instant
channel gain can be written as

hL = 10− 119.7+X
10

(‖l‖2

3400

)−1.7

. (4)

Ricean fading channel is applied to model the small-scale fading, which is denoted
by hS whose K-factor is calculated according to [24]. The channel gain includes
both hL and hS .

In the simulations, the jammer is located at (160, 0, 0) m, and it can sense the
ongoing signals and transmit noisy signals immediately. The jamming power pJ is
chosen from 5 levels including 20, 40, 60, 80, and 100 mW. The jammer calculates
its utility with respect to each available jamming power according to the QoS of the
signal from the UAV to the ground node and its energy consumption, which can be
written as

ua = −I
(
ρ(k) > σ

)
− 10pJ . (5)

Then the jammer chooses the jamming power that maximizes its utility.

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 65

Reinforcement learning has been applied to a similar environment in [12] using
a QPC scheme. In the QPC scheme, the state includes the jamming power and
channel gain, and the action to be determined is the transmit power of the UAV.
The trajectory of the UAV is predetermined and will not change dynamically with
the jammer. It is obvious that the UAV can further improve the transmission quality
and reduce the energy consumption by jointly adjusting the flight direction and the
transmit power in real time.

As illustrated in Fig. 3, the RLTPC scheme can improve the QoS and reduce the
energy consumption. As shown in Fig. 3a and b, the UAV using the RLTPC scheme
increases the QoS by 9.5% and reduces the energy consumption by 42.3% compared
with the benchmark of QPC in [12] at the 30000-th time slot. As shown in Fig. 3c,
the utility of the UAV with the proposed scheme finally converges to 0.663, while
that with the QPC scheme is 0.328, which is about 50.5% lower. Owing to the deep
Q-network and the experience replay technique, the convergence time of the RLTPC
scheme is 16.7% less than that of QPC, even though both the state space and action
space of the RLTPC scheme are more complex.

3.2 Reinforcement Learning Based UAV Communications
Against Smart Attacks

In this section, in order to obtain a user-centric view of smart attacks, we formulate a
dynamic smart attack game based on the PT for UAV communications. Meanwhile,
the drone needs to determine the power distribution strategy to resist the smart
attacks, so it adopts RL techniques to choose the optimal strategy to maximize the
system reward. By using RL techniques, the drone with the identification Alice can
make her decision without being aware of the communication channel model. In
the following three sections, we will introduce three different RL-based methods to
determine the power allocation strategies, i.e., Q-learning, WoLF-PHC, and DQN
algorithms.

Q-Learning Based Power Allocation In this part, Alice uses the Q-learning
algorithm to determine the power allocation strategies. Alice selects the transmit
power denoted by x according to the network state denoted by s and the transmission
history in each time slot and then sends signals to the MGU called Bob. For
simplicity, the transmit power value is quantified into 10PT + 1 levels, where PT is
the total power constraint of Alice. At time slot k, Alice observes the system state
s(k) composed of the previous attack mode and then chooses the optimal action x(k)

according to the Q-function Q
(
s(k), x(k)

)
. Alice chooses the action according to the

ε-greedy strategy, where ε is a very small value between 0 and 1 to balance the
exploration and the exploitation. More specifically, Alice chooses the power value
to maximize its Q

(
s(k), x(k)

)
with the high probability 1 − ε. Meanwhile, Alice

determines the power value at random with ε.

66 L. Xiao et al.

Fig. 3 Performance of the
UAV with the RLTPC scheme
compared with the
benchmark. (a) Quality of
satisfaction. (b) Energy
consumption for flight and
data transmission. (c) Utility
of the UAV

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 67

After transmitting the signal to Bob, Alice gets feedback from the environment
and needs to update the Q-function. As a typical model-free RL algorithm, the Q-
learning algorithm regards the Q-function as the expected long-term discount utility
in terms of the transmit power x and the state s. Based on the iterative Bellman
equation, Alice updates Q

(
s(k), x(k)

)
as given by

Q
(
s(k), x(k)

)←(1 − τ)Q
(
s(k), x(k)

)

+ τ

(
u
(
s(k), x(k)

)
+ γ max

x(k)∈X
Q
(
s(k+1), x(k+1)

))
, (6)

where τ is the learning factor between 0 and 1 representing the efficiency of the
learning, and γ is the discount factor between 0 and 1 measuring the importance of
the future rewards.

WoLF-PHC-Based Power Allocation In this part, Alice uses the WoLF-PHC-
based power allocation strategy to determine the transmit power allocation that
confuses Eve at random. Different from the Q-learning, this algorithm extends to
a hybrid strategy game and utilizes fast win or learning principles and learning
parameters to achieve better convergence [3]. More specifically, Alice uses a mixed-
strategy table π(s(k), x) to determine the transmit strategy. The sum of the elements
in the table is 1.

In order to update the table, Alice uses two learning parameters denoted by
δw and δl ∈ (0, 1] for different cases. If Alice loses, she must learn faster and
understand Eve’s policy more quickly. That is, the speed of learning δl must be
faster than the speed of winning δw. The number of state is C(s(k)). Then the average
hybrid strategy table π̄ is given by

π̄
(
s(k), x

)← π̄
(
s(k), x

)+ 1

C(s(k))

(
π
(
s(k), x

)− π̄
(
s(k), x

))
,∀x ∈ X. (7)

If Alice obtains a higher value than that of the average hybrid strategy, she will
win and update the table with the rate δw; otherwise, Alice will lose and update the
blending strategy table with the other rate δl . Thus we have

δ(k) =
{

δw,
∑

x∈X π
(
s(k), x

)
Q
(
s(k), x

)
>
∑

x∈X π̄
(
s(k), x

)
Q
(
s(k), x

)
δl, o.w..

(8)

68 L. Xiao et al.

Then the system needs to update the hybrid strategy table π

π
(
s(k), x

) ← π
(
s(k), x

)+⎧⎪⎪⎨
⎪⎪⎩

− min
(
π
(
s(k), x

)
, δ(k)

|X|−1

)
, if x �= arg max

x̂∈X
Q
(
s(k), x̂

)
∑
x �=x̂

min
(
π
(
s(k), x

)
, δ(k)

|X|−1

)
, o.w.,

(9)

where δ(k) represents the learning parameter.
Based on the above hybrid strategy table, Alice chooses x(k) according to

Pr
(
x(k) = x̂

) = π
(
s(k), x̂

)
, ∀x̂ ∈ X. (10)

After transmitting with the chosen power, Alice can receive Eve’s response consist-
ing of the BER or packet loss rate measured by Bob and then infer both the SINR
value and the attack mode. Thus Alice uses the obtained data to calculate its utility
and update the Q-function via (6).

DQN-Based Power Allocation The above strategies need to evaluate the Q-
function, and the required learning time will increase rapidly as the state space
increases. The size of the state space depends on B, PT , and PJ , which will all
increase with the increase of the quantization precision requirement. To accelerate
the learning process, we propose a DQN-based power allocation scheme using
CNNs.

As shown in Fig. 4, the CNN of the DQN-based strategy is composed of two
convolutional layers with rectified linear units, followed by two fully connected

Fig. 4 DQN-based drone power allocation scheme

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 69

layers. We set W as the time window. More specifically, in the first W − 1 time
slots, Alice chooses the strategy among the action space at random. Afterwards, the
drone chooses the power allocation strategy based on the ε-greedy policy. Thus, the
drone chooses the optimal action based on a DQN to estimate the Q-function of
each policy.

After transmitting the signals with the selected strategy, Alice observes the attack
mode and obtains the system utility. Then, Alice needs to update the DQN with the
experience pool named replay memory. A state sequence is composed of the current
system state and the previous W state-action pairs at time k, denoted by ϕ(k). Then
the experience composed of the state sequence ϕ(k), the chosen action x(k), the utility
u(k), and the next state sequence ϕ(k+1) is formulated as e(k), which is put into a
reply buffer D = {

e(j)
}

1≤j≤k
. Instead of using the most recent experiences, Alice

uses random minibatches in the data set to update the network. More specifically, an
experience denoted by e(d) is randomly chosen from the reply buffer D for T times
to update the network weights. According to the stochastic gradient descent (SGD)
algorithm, the network weights denoted by θ(k) can be updated by minimizing the
loss function as

θ(k) = arg min
θ

Eϕ,x,u,ϕ′
[(

u(k) + γ max
x′ Q

(
ϕ′, x′; θ(k−1)

)− Q
(
ϕ, x; θ

))2]
.

(11)

Simulation Results To verify the performance of the power allocation strategy
proposed above, several groups of practical simulation experiments are carried out.
In the simulation experiments, Eve uses a Q-learning based strategy to conduct
attack, such as spoofing, launch jamming, and eavesdropping attacks. For typical
cases, the system parameters are configured according to [5], and thus, we set
PT = PJ = 0.4, σ = 1, Cm = −0.5, [βl]0≤l≤5 = [0.1, 0.8, 0.05, 0.03, 0.02, 0],
[ηl]0≤l≤5 = [0.1 0.6 0.1 0.05 0.05 0.1], αE = 0.8, αA = 1, τ = 0.95, γ = 0.7,
d0 = 10 m, and ε = 0.9. As for the transmission parameters, we select de = 30
m, dt = dj = 50 m, ξ = 0.02, 0.075, and 0.0032 for the Alice–Bob, Eve–Bob,
and Alice–Eve transmission links, respectively. Due to the approximate free-space
propagation, both the Alice–Bob and Alice–Eve links have ρ = 2. According to a
two-ray model, the Eve–Bob channel has ρ = 4.

As shown in Fig. 5, the channel gains randomly change every 300 time slots in
the first experiment. The safe rate of the system, which is the possibility of being free
from attacks, increases over time, which means that the system is becoming safer
if the proposed strategies are performed. For instance, after 1500 time slots, the
safe rates of the three strategies are increased by about 25%. Obviously, compared
with the WoLF-PHC and Q-learning based strategies, the DQN-based one has the
highest safe rate. More specifically, the safe rate of the DQN-based one is 93%, 7%
and 11% higher than those based on the WoLF-PHC and Q-learning, respectively.
Meanwhile, the secrecy capacity of the DQN-based one is higher than that of
the WoLF-PHC and Q-learning strategies. Furthermore, the SINR of the DQN-
based strategy is higher than the SINR of the WoLF-PHC and Q-learning based

70 L. Xiao et al.

Fig. 5 Performance of the proposed strategies with PT = PJ = 0.4, L = 5, σ = 1, Cm = −0.5,
αE = 0.8, and αA = 1. (a) Safe rate. (b) Secrecy capacity. (c) SINR. (d) Utility

strategies. If the channel gain changes over time, the utility will first decrease and
then increase rapidly. The utility of the DQN-based one increases by 0.84 compared
to the beginning value, which is about 22% and 13% higher than that of Q-learning
and WoLF-PHC. Overall, as shown in Fig. 6, the DQN-based algorithm reduces the
impact of the spoofing attack to the best extent over time compared to Q-learning
and WoLF-PHC strategies.

In the second experiment as shown in Fig. 7, we try to verify from Eve’s
subjective perspective of view that the proposed scheme can improve the UAV
communication quality. As shown by the results, the average safe rate over many
times of experiments is reduced by 16.3% compared with the Q-learning algorithm
if αE changes from 0.6 to 1. The DQN-based one outperforms the WoLF-PHC
and Q-learning strategies with a higher safe rate. For example, the average safe
rate of the DQN-based one is 11% and 18% higher than the WoLF-PHC and Q-
learning based strategies if αE = 0.9. Meanwhile, the average secrecy capacity
decreases with αE . For instance, as for the DQN-based one, the average secrecy
capacity decreases by 5.3% as αE changes from 0.9 to 1. Moreover, the average

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 71

Fig. 6 The impact of the smart attack in the drone system with PT = PJ = 0.4, L = 5, σ = 1,
Cm = −0.5, αE = 0.8, and αA = 1

SINR decreases with αE . For example, if we set αE = 0.9, the DQN-based strategy
can increase the value by 10.3% compared to the Q-learning one.

We perform the third experiment to show the impact of the total power constraint
of Eve as shown in Fig. 8 with PT = 0.4. The average safe rate decreases with the
attacker’s total power. For example, the average safe rate of the Q-learning based
strategy is reduced by 20.5% if PJ changes from 0.3 to 0.7 because there is more
power for the attacker to deteriorate the legitimate drone communications. The
DQN-based strategy has the highest average SINR, which is because the average
SINR of the DQN-based strategy are 22.3% and 29.3% higher than the WoLF-PHC
and Q-learning based ones, respectively, if PJ = 0.7.

4 UAV Secure Communication Game

4.1 Game Model

The interaction between the target UAV and the smart attacker can be formulated as
a UAV transmission game G, in which the smart attacker selects an attack mode and
the target UAV chooses the transmit power xi . The UAV controller implemented
with physical layer security mechanisms [14] can detect spoofing attacks conducted
by the smart attacker, and the miss detection rate is β. The jamming detection
method based on the packet delivery ratio and the received signal strength has a
miss detection rate η for the jamming attacks [13]. In addition, the target UAV can
hardly detect eavesdropping attacks.

72 L. Xiao et al.

(a)

0.6 0.7 0.8 0.9 1
0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

αE

Av
er

ag
e

se
cr

ec
y

ca
pa

ci
ty

Q−learning
WoLF−PHC
DQN

(b)

0.6 0.7 0.8 0.9 1
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

αE

Av
er

ag
e

SI
N

R
 o

f t
he

 U
AV

 s
ys

te
m

Q−learning
WoLF−PHC
DQN

(c)

Fig. 7 Average performance of the learning based power allocation strategy against smart attacks
with PT = PJ = 0.4, L = 5, σ = 1, Cm = 1.5, and αA = 1. (a) Average safe rate. (b) Average
secrecy capacity. (c) Average SINR of the UAV system

The importance of the UAV transmission energy in this UAV communication
scheme is reflected by the energy consumption factor μ. The UAV energy consump-
tion Cm is based on the miss detection rate of spoofing attacks. The noise power is
σ . The target UAV aims to improve the ongoing transmission quality, such as the
SINR of the UAV signals, and increase its utility u

(k)
A . More specifically, if y = −1,

we have

u
(k)
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − h

(k)
E,i − μ

)
xi, (12)

where the first right term is the UAV communication secrecy capacity. If y = −2,

u
(k)
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − μ

)
xi − βCm. (13)

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 73

0.3 0.4 0.5 0.6 0.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 PJ

Av
er

ag
e

sa
fe

 ra
te

Q−learning
WoLF−PHC
DQN

(a)

0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

 PJ

Av
er

ag
e

se
cr

ec
y

ca
pa

ci
ty

Q−learning
WoLF−PHC
DQN

(b)

0.3 0.4 0.5 0.6 0.7
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

 PJ

Av
er

ag
e

SI
N

R
 o

f t
he

 U
AV

 s
ys

te
m Q−learning

WoLF−PHC
DQN

(c)

Fig. 8 Average performance of the learning based power allocation strategy against smart attacks
with PT = 0.4, L = 5, σ = 1, Cm = −0.5, αE = 0.8, and αA = 1. (a) Average safe rate. (b)
Average secrecy capacity. (c) Average SINR of the UAV system

Otherwise,

u
(k)
A (x, y) =

B∑
i=1

(
(1 − η)h

(k)
T ,i + ηh

(k)
T ,i

σ + h
(k)
J,iyi

− μ

)
xi. (14)

More specifically, the UAV detection accuracy is quantized into L + 1 levels. The
UAV has the detection accuracy p = l/L with the probability βl = Pr(β = p) for
spoofing attacks and ηl = Pr(η = p) for jamming attacks. In addition, βl(ηl) > 0
and

∑L
l=0 βl(ηl) = 1. If y = −1, the EUT-based UAV utility is given by

UEUT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − h

(k)
E,i − μ

)
xi. (15)

74 L. Xiao et al.

If y = −2,

UEUT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − μ

)
xi − Cm

L

L∑
l=1

lβl . (16)

Otherwise,

UEUT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − 1

L

L∑
l=1

lηlh
(k)
T ,ih

(k)
J,iyi

σ + h
(k)
J,iyi

− μ

)
xi. (17)

The expected utility of the smart attacker UEUT
E is the opposite of the UAV utility,

i.e., UEUT
E = −UEUT

A .
PT is applied to consider the subjectivity of the smart attacker and the target

UAV in making decisions. The objective weight of the smart attacker is denoted as
α ∈ (0, 1], and the objective probability is denoted as p. The probability weighting
function shows that the subjective UAV or the attacker underestimates the events
with high probability and overstates the events with low probability. Based on the
Prelec’s probability weighting function [16], the subjective probability of the smart
attacker w is

w(p) = e−(− ln p)α . (18)

Smart attackers tend to use a subjective perspective of view to choose the attack
mode in uncertain security transmission games, and the PT-based UAV utility UPT

A

replaces the objective probability in the EUT-based utility UEUT
A with the subjective

probability given by

UPT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − h

(k)
E,i − μ

)
xi, (19)

if y = −1.

UPT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − μ

)
xi − Cm

L

L∑
l=1

lwA(βl), (20)

if y = −2. Otherwise,

UPT
A (x, y) =

B∑
i=1

(
h

(k)
T ,i − 1

L

L∑
l=1

lwA(ηl)
h

(k)
T ,ih

(k)
J,iyi

σ + h
(k)
J,iyi

− μ

)
xi. (21)

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 75

The PT-based utility of the smart attacker UPT
E is given by

UPT
E (x, y) =

B∑
i=1

(
h

(k)
E,i − h

(k)
T ,i + μ

)
xi, (22)

if y = −1.

UPT
E (x, y) =

B∑
i=1

(
μ − h

(k)
T ,i

)
xi + Cm

L

L∑
l=1

lwE(βl), (23)

if y = −2. Otherwise,

UPT
E (x, y) =

B∑
i=1

(
1

L

L∑
l=1

lwE(ηl)
h

(k)
T ,ih

(k)
J,iyi

σ + h
(k)
J,iyi

+ μ − h
(k)
T ,i

)
xi. (24)

The index k is omitted in the rest of book for simplicity without ambiguity.

4.2 Nash Equilibrium of the Game

The smart attacker with a subjective decision strategy chooses the transmission
strategy to make a trade-off between the risk of being detected and the damage to
the UAV system. Therefore, the smart attacker is aimed at maximizing the PT-based
utility instead of the EUT-based one. Let I(a,b) denote an a-dimensional all-zero
vector except being one at the b-th element.

Theorem 1 The PT-based UAV communication game G has an NE (PT I(B,j∗),−1)
if

max
1≤i≤B

{hT,i − hE,i} > μ, (25)

LhE,j∗PT > max

{
Cm

L∑
l=0

lwE(βl),
hT ,j∗hJ,j∗PT PJ

σ + hJ,j∗PJ

L∑
l=0

lwE(ηl)

}
, (26)

where

j∗ = arg max
1≤v≤B

(hT ,v − hE,v). (27)

76 L. Xiao et al.

Proof By (19), if (25) holds, we have

UPT
A (PT I(B,j∗),−1) = PT max

1≤i≤B
{hT,i − hE,i − μ}

≥
B∑

i=1

(hT ,i − hE,i − μ)xi = UPT
A (x,−1). (28)

If (26) holds, we have

UPT
E (PT I(B,j∗),−1) = −PT

(
hT,j∗ − hE,j∗ − μ

)

> max

{
(μ − hT,j∗)PT + Cm

L

L∑
l=0

lwE(βl),

(μ − hT,j∗)PT + 1

L

hT,j∗hJ,j∗PT PJ

σ + hJ,j∗PJ

L∑
l=0

lwE(ηl)

}

= max
{
UPT

E (PT I(B,j∗),−2), UPT
E (PT I(B,j∗), y � 0

}
. (29)

Therefore, (PT I(B,j∗),−1) is an NE of the PT-based UAV communication game G.

Corollary 1 If (25) and (26) hold, the utility of the UAV in the PT-based UAV
communication game G is

UEUT
A = PT max

1≤i≤B
{hT,i − hE,i} − μPT . (30)

Remark The smart attacker eavesdrops the ongoing communications and avoids
being detected if the wiretap channel has a good condition. If another channel has a
better condition than the wiretap one, i.e., maxi{hT,i−hE,i} > μ, the UAV transmits
the sensing information with the maximum transmit power on the channel, which
has the maximum gap of channel gain between the transmission and the wiretap
channels, to improve the UAV communication secrecy capacity.

Theorem 2 The PT-based UAV communication game G has an NE (PT I(B,q∗),−2)
if

max
1≤i≤B

{hT,i} > μ, (31)

Cm

L∑
l=0

lwE(βl) > max

{
LhE,q∗PT ,

hT ,q∗hJ,q∗PT PJ

σ + hJ,q∗PJ

L∑
l=0

lwE(ηl)

}
, (32)

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 77

where

q∗ = arg max
1≤v≤B

hT,v. (33)

Proof By (20), if (31) holds, we have

UPT
A (PT I(B,q∗),−2) = PT (hT ,q∗ − μ) − Cm

L

L∑
l=0

lwA(βl)

≥
B∑

i=1

(hT ,i − μ)xi − Cm

L

L∑
l=0

lwA(βl) = UPT
A (x,−2). (34)

If (32) holds, we have

UPT
E (PT I(B,q∗),−2) = (μ − hT,q∗)PT + Cm

L

L∑
l=0

lwE(βl)

> max

{
(μ − hT,q∗)PT + 1

L

hT,q∗hJ,q∗PT PJ

σ + hJ,q∗PJ

L∑
l=0

lwE(ηl),

(μ + hE,q∗ − hT,q∗)PT

}

= max
{
UPT

E (PT I(B,q∗), y � 0, UPT
E (PT I(B,q∗),−1)

}
. (35)

Therefore, (PT I(B,q∗),−2) is an NE of the PT-based UAV communication game G.

Corollary 2 If (31) and (32) hold, the utility of the UAV in the PT-based UAV
communication game G is

UEUT
A = PT max

1≤i≤B
{hT,i} − μPT − Cm

L

L∑
l=0

lβl . (36)

Remark If the spoofing cost is exaggerated and the miss detection rate is large,
smart attacker spoofs UAVs. The UAV allocates all the transmit power on the
frequency channel with best condition to transmit sensing information.

78 L. Xiao et al.

Theorem 3 The PT-based UAV communication game G with one frequency channel
has an NE (PT , PJ), if

hT hJ PJ

σ + hJ PJ

L∑
l=0

lwE(ηl) > max

{
LhE,

Cm

PT

L∑
l=0

lwE(βl)

}
, (37)

hT hJ PJ

σ + hJ PJ

L∑
l=0

lwA(ηl) < L(hT − μ). (38)

Proof By (22) to (24) and (37), as B = 1, we have

UPT
E (PT , PJ) = (μ − hT)PT + 1

L

hT hJ PT PJ

σ + hJ PJ

L∑
l=0

lwE(ηl)

> max

{
(μ + hE − hT)PT , (μ − hT)PT + Cm

L

L∑
l=0

lwE(βl)

}

= max
{
UPT

E (PT ,−1), UPT
E (PT ,−2)

}
. (39)

If (38) holds, we have

∂UPT
A (x, y)

∂x
= hT − μ − 1

L

hT hJ y

σ + hJ y

L∑
l=0

lwA(ηl) > 0. (40)

Therefore, (PT , PJ) is an NE of the PT-based UAV communication game G.

Corollary 3 IfB = 1, and (37) and (38) hold, the utility of the UAV in the PT-based
UAV communication game G is

UEUT
A = (hT − μ) PT − 1

L

hT hJ PT PJ

σ + hJ PJ

L∑
l=0

lηl . (41)

Remark The smart attacker is likely to attack the UAV transmission with a high
probability if the miss detection rate is high. The UAV transmits signals with the
maximum transmit power if the detection accuracy is considered to be high.

As shown in Fig. 9, the expected utility of the UAV increases with PT and
decreases at αE = 0.792 sharply with PT = 0.5, since the smart attacker chooses
eavesdropping rather than spoofing. If the transmit power is high, the smart attacker
decides to spoof UAV.

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 79

Fig. 9 Performance of the
PT-based UAV
communication game G with
3 frequency channels, energy
consumption 1.5, energy
consumption factor 0.2, noise
power 1, miss detection rate
of spoofing attack
[0.1, 0.8, 0.05, 0.03, 0.02, 0],
miss detection rate of
jamming attack
[0.1, 0.6, 0.1, 0.05, 0.05, 0.1],
and objective weight α = 1

0.6 0.7 0.8 0.9 1
0.95

1

1.05

1.1

1.15

αE

 U
til

ity
 o

f A
lic

e

PT=0.48
PT=0.5
PT=0.52

Eavesdropping

Eavesdropping

Eavesdropping

Spoofing

Spoofing

Spoofing

Utility of the target UAV

5 Related Work

5.1 General Anti-jamming Policies in UAV-Aided
Communication

Power control is a traditional method for anti-jamming communication in wireless
communication networks. The UAV power control algorithm as proposed in [32]
chooses the optimal transmit power based on the sub-gradient based Bayesian
Stackelberg iterative algorithm at each fixed location to address the issue of
jamming attacks. Besides, due to the high mobility, the UAV can take advantage
of the spatial diversity to escape from the jamming attack. The trajectory planning
algorithm as designed in [1] formulates the UAV motion model against the jammer
and obtains the saddle point scheme based on the Isaacs’ approach. The UAVs
equipped with smart antennas can further mitigate the jamming attack through
specific communication methods. For example, the UAV can use the adaptive beam
nulling scheme to eliminate jamming attacks, apply the Kalman filter to estimate
the location of the jammer, and keep the noise signals in the null region according
to [2].

5.2 Reinforcement Learning in Anti-jamming Communication

Reinforcement learning has been widely used in wireless communication networks
to resist jamming attacks because of its capability to converge to the optimal policy
including power control, radio frequency selection, and trajectory planning without
accurate channel models or jamming models that are difficult to estimate in a highly

80 L. Xiao et al.

dynamic environment. For example, Q-learning as a widely used RL algorithm is
applied in [7] to jointly optimize the frequency channels for the transmitter in a
competing mobile network. The power control and location selection based anti-
jamming scheme as proposed in [12] applies RL to decide the transmit power and
location of the transmitter to mitigate the jamming attack. A framework of secure
UAV control based on RL is proposed in [21], which is able to prevent unauthorized
UAVs from entering a target area. A UAV relay method for VANETs is proposed
in [31] to combat against smart jamming with the help of the RL techniques. A
two-dimensional anti-jamming communication system proposed in [8] applies the
DQN algorithm, one of the most famous deep RL algorithms, to determine the
frequency channel and moving direction to improve the communication quality
against the jamming attack. A deep RL-based approach is proposed in [28] to avoid
eavesdropping attacks in the multi-source visible light communications system,
which is able to obtain an optimal beamforming policy through learning. Some
specific techniques can be used in RL to accelerate the learning process. The Dyna-
Q and Hotbooting-Q algorithms are used in [26] to determine the power for multiple
antennas in a NOMA communication system and achieve a faster convergence rate
and better performance compared with traditional Q-learning schemes. RL can also
be applied in agents with limited computation resources such as UAVs. A deep RL-
based anti-jamming method for UAV-aided cellular communications is proposed
in [11] to help cellular systems resist smart jamming without being aware of the
jamming model and the network model.

Multiple nodes need to take actions cooperatively to better mitigate the jamming
attack in the wireless communication networks, where the multi-agent RL algo-
rithms can be utilized. For example, the cognitive femtocell system in [19] uses
a multi-agent Q-learning algorithm to determine the transmit power of each node,
which achieves a faster convergence speed and a larger aggregated capacity than the
system with traditional independent learning algorithm. Another femtocell network
system as presented in [20] applies Q-learning to jointly determine the resource
allocation and power control strategies, taking advantage of the current strategy of
the neighboring nodes to improve the learning speed and system capacity. The Q-
learning based power control scheme in [34] reaches a balance between the energy
consumption and system performance in a multicore processor by dynamically
adjusting the idle period of each core.

5.3 Game Theory in Anti-jamming Communication

The interaction among the legitimate transmitter, the receiver, and the illegal jammer
is usually formulated as a game and analyzed via the game theory. For example,
game theory has been used to optimize the distributed radio resource allocation
in full-duplex communication systems [23] and cognitive radio networks [4, 25].
The mobile offloading game among a mobile transmitter, a security agent, and a
smart attacker based on the expected utility theory is formulated in [29], in which

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 81

the transmitter needs to determine its offloading rate, the security agent needs to
determine its security mechanism, and meanwhile the attacker can launch jamming
attacks or spoofing attacks. The interaction between a mobile user and an attacker
that will launch eavesdropping or jamming attacks is formulated as a noncooperative
game in [36]. The NE of the game is also analyzed via a fictitious play-based
algorithm. A Bayesian game is modeled with unknown eavesdropping capacity in
[6], in which the adversary has to choose which user to eavesdrop upon due to its
restricted eavesdropping capacity, and a base station allocates power to users to
maximize the total secrecy capacity.

The cognitive radio networks as presented in [33] utilize the prospect theory to
derive the subjective price and channel partition of each user. The prospect theory
is also used in [27] and [30] to analyze the influence of the subjectivity of the
jammer and the end users in the cognitive radio networks with uncertain channel
gains and UAV transmission, respectively. The prospect theory is used for data
pricing in [10] and discloses the fact that the end-user deviation from the expected
utility theory will reduce the throughput of the network. A spectrum investment
game is analyzed in [35] via the prospect theory, and a conclusion is drawn that the
subjective secondary operator is more likely to obtain a smaller gain with a smaller
risk in the game.

6 Conclusion

In this chapter, we have investigated an RL-based power allocation and trajectory
scheme for UAV transmission against jamming attacks. More specifically, the UAV
applies the RL-based scheme to determine the next trajectory and select the transmit
power of the sensing information without being aware of the channel and the
smart jamming attack models. Simulation results show that the proposed UAV
transmission scheme is able to improve the QoS of the sensing information and
reduce the UAV energy consumption. For example, the proposed scheme improves
the QoS in the UAV transmission by 9.5% and reduces the energy consumption by
42.3% compared with the benchmark.

The PT-based UAV transmission game considering the subjectivity of the smart
attacker has been investigated in this chapter. The NE of the static game has
revealed the influence of the subjectivity on the anti-jamming transmission. We
have developed a deep RL-based power control scheme for the target UAV to resist
smart attacks and further reduce the learning time. Simulation results show that the
proposed scheme improves the secrecy capacity of the UAV system against smart
attackers. For instance, the proposed scheme increases the secrecy capacity by 16%
compared with the benchmark.

82 L. Xiao et al.

References

1. Bhattacharya, S., Başar, T.: Game-theoretic analysis of an aerial jamming attack on a UAV
communication network. In: Proc. Amer. Control Conf., pp. 818–823. Baltimore, MD (June
2010)

2. Bhunia, S., Sengupta, S.: Distributed adaptive beam nulling to mitigate jamming in 3D UAV
mesh networks. In: Proc. IEEE Int. Conf. Computing Networking Commun. (ICNC), pp. 120–
125. Santa Clara, CA (January 2017)

3. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artificial
Intelligence 136(2), 215–250 (April 2002)

4. El-Bardan, R., Sharma, V., Varshney, P.K.: Game theoretic learning for optimal power
allocation in the presence of a jammer. In: IEEE Global Conf. Signal and Info. Processing.
Washington, DC (December 2016)

5. Garnaev, A., Trappe, W.: The eavesdropping and jamming dilemma in multi-channel commu-
nications. In: Proc. IEEE Int’l Conf. Commun. (ICC), pp. 2160–2164. Budapest (Jun 2013)

6. Garnaev, A., Trappe, W.: Secret communication when the eavesdropper might be an active
adversary. In: Int’l Workshop on Multiple Access Commun., pp. 121–136. Springer (Aug 2014)

7. Gwon, Y., Dastangoo, S., Fossa, C., Kung, H.: Competing mobile network game: Embracing
antijamming and jamming strategies with reinforcement learning. In: Proc. IEEE Conf.
Commun. Network Security (CNS), pp. 28–36. National Harbor, MD (October 2013)

8. Han, G., Xiao, L., Poor, H.V.: Two-dimensional anti-jamming communication based on deep
reinforcement learning. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP).
New Orleans, LA (March 2017)

9. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and surveillance.
In: IEEE Conf. Control Appl. (CCA), pp. 1–8. Buenos Aires, Argentina (September 2016)

10. Li, T., Mandayam, N.B.: When users interfere with protocols: Prospect theory in wireless
networks using random access and data pricing as an example. IEEE Trans. Wireless Commun.
13(4), 1888–1907 (April 2014)

11. Lu, X., Xiao, L., Dai, C., Dai, H.: UAV-aided cellular communications with deep reinforcement
learning against jamming. IEEE Wireless Commun. Mag. 27(4), 48–53 (August 2020)

12. Lv, S., Xiao, L., Hu, Q., Wang, X., Hu, C., Sun, L.: Anti-jamming power control game in
unmanned aerial vehicle networks. In: Proc. IEEE Global Commun. Conf. (GLOBECOM),
pp. 1–6. Singapore (December 2017)

13. Marttinen, A., Wyglinski, A.M., Jantti, R.: Statistics-based jamming detection algorithm for
jamming attacks against tactical MANETs. In: IEEE Military Commun. Conf., pp. 501–506.
Baltimore, MD (Oct 2014)

14. Mathur, S., Reznik, A., Ye, C., Mukherjee, R., Rahman, A., et al.: Exploiting the physical layer
for enhanced security. IEEE Wireless Commun. 17(5), 63–70 (Oct 2010)

15. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (February 2015)

16. Prelec, D.: The probability weighting function. Econometrica 66(3), 497–527 (May 1998)
17. Rappaport, T.S., et al.: Wireless communications: Principles and practice, vol. 2. Prentice Hall

PTR, NJ (1996)
18. Roldán, J.J., del Cerro, J., Barrientos, A.: A proposal of methodology for multi-UAV mission

modeling. In: Proc. IEEE Mediterranean Conf. Control Autom. (MED), pp. 1–7. Torremolinos,
Spain (June 2015)

19. Saad, H., Mohamed, A., ElBatt, T.: Cooperative q-learning techniques for distributed online
power allocation in femtocell networks. Wireless Commun. Mobile Comput. 15(15), 1929–
1944 (September 2015)

20. Shahid, A., Aslam, S., Kim, H.S., Lee, K.G.: A docitive Q-learning approach towards joint
resource allocation and power control in self-organised femtocell networks. Trans. Emerg.
Telecommun. Technol. 26(2), 216–230 (February 2015)

Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles 83

21. Sheng, G., Min, M., Xiao, L., Liu, S.: Reinforcement learning-based control for unmanned
aerial vehicles. J. Commun. Inf. Networks 3(3), 39–48 (October 2018)

22. Shin, H., Choi, K., Park, Y., Choi, J., Kim, Y.: Security analysis of FHSS-type drone controller.
In: Proc. Int. Workshop on Inform. Security Appl., pp. 240–253. Jeju Island, Korea (August
2015)

23. Song, L., Li, Y., Han, Z.: Game-theoretic resource allocation for full-duplex communications.
IEEE Wireless Commun. 23(3), 50–56 (Jun 2016)

24. Sun, R., Matolak, D.W.: Air–ground channel characterization for unmanned aircraft systems
part II: Hilly and mountainous settings. IEEE Trans. Veh. Technol. 66(3), 1913–1925 (March
2017)

25. Xiao, L.: Anti-jamming transmissions in cognitive radio networks (2015). ISBN:978-3-319-
24290-3

26. Xiao, L., Li, Y., Dai, C., Dai, H., Poor, H.V.: Reinforcement learning-based NOMA power
allocation in the presence of smart jamming. IEEE Trans. Veh. Technol. 67(4), 3377–3389
(April 2018)

27. Xiao, L., Liu, J., Li, Q., Mandayam, N.B., Poor, H.V.: User-centric view of jamming games in
cognitive radio networks. IEEE Trans. Info. Forensics Secur. 10(12), 2578–2590 (December
2015)

28. Xiao, L., Sheng, G., Liu, S., Dai, H., Peng, M., Song, J.: Deep reinforcement learning-enabled
secure visible light communication against eavesdropping. IEEE Trans. Commun. 67(10),
6994–7005 (October 2019)

29. Xiao, L., Xie, C., Chen, T., Dai, H., Poor, H.V.: A mobile offloading game against smart attacks.
IEEE Access 4, 2281–2291 (May 2016)

30. Xiao, L., Xie, C., Min, M., Zhuang, W.: User-centric view of unmanned aerial vehicle
transmission against smart attacks. IEEE Trans. Veh. Technol. 67(4), 3420–3430 (April 2018)

31. Xiao, L., Zhuang, W., Zhou, S., Chen, C.: Learning-based VANET communication and security
techniques. Springer (2019). ISBN: 978-3-030-01731-6

32. Xu, Y., et. al.: A one-leader multi-follower Bayesian-Stackelberg game for anti-jamming
transmission in UAV communication networks. IEEE Access 6, 21697–21709 (April 2018)

33. Yang, Y., Park, L.T., Mandayam, N.B., Seskar, I., Glass, A.L., Sinha, N.: Prospect pricing in
cognitive radio networks. IEEE Trans. Cogn. Commun. Networking 1(1), 56–70 (Mar 2015)

34. Ye, R., Xu, Q.: Learning-based power management for multicore processors via idle period
manipulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(7), 1043–1055 (Jul
2014)

35. Yu, J., Cheung, M.H., Huang, J.: Spectrum investment with uncertainty based on prospect
theory. In: Proc. IEEE Int. Conf. Commun. (ICC), pp. 1620–1625. Sydney, NSW, Australia
(Jun 2014)

36. Zhu, Q., Saad, W., Han, Z., Poor, H.V., Basar, T.: Eavesdropping and jamming in next-
generation wireless networks: A game-theoretic approach. In: IEEE Military Commun. Conf.
(MILCOM), pp. 119–124. Baltimore, MD (Nov 2011)

Visual Analysis of Adversarial Examples
in Machine Learning

Wei Zong, Yang-Wai Chow, and Willy Susilo

1 Introduction

Nowadays, it is widely accepted that machine learning (ML) has demonstrated
supreme capabilities in handling various practical tasks. In particular, deep neural
networks (DNNs) have achieved the best results in many application domains, such
as face recognition [13], automatic speech recognition (ASR) [51], and so on. ML
models can be trained to learn the complicated mapping from the input domain to
the output domain using massive training data. During the training process, ML
models can automatically learn features of the training data, where some of these
features may or may not be interpretable by humans [30]. This is a highly desirable
property, as it circumvents the necessity of requiring experts to manually construct
features based on their domain expertise.

However, the security of ML techniques can be compromised using adversarial
attacks. The first study in this area dates back to 2004 [2], where it was shown
that carefully modified spam emails could successfully fool classifiers. Years later,
adversarial examples (AEs), which can fool deep learning models, were defined in
the context of image recognition by Szegedy et al. [56] in 2014. The AEs were
generated by adding small perturbations to the original images. From the human
visual perspective, the generated AEs look indistinguishable from the original
images but are misclassified by ML models. Within a short period of time following
this seminal work, the study of AEs was extended to other areas of interest in ML,
such as ASR [9, 67] and natural language processing (NLP) [73]. Different ML
fields face different challenges when it comes to generating AEs. For example,
while humans cannot perceive small perturbations in images, humans are sensitive

W. Zong · Y.-W. Chow · W. Susilo (�)
Institute of Cybersecurity and Cryptology, School of Computing and Information Technology,
University of Wollongong, Wollongong, NSW, Australia
e-mail: wsusilo@uow.edu.au

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_4&domain=pdf
mailto:wsusilo@uow.edu.au
https://doi.org/10.1007/978-981-33-6726-5_4

86 W. Zong et al.

to small perturbations in audio. Thus, the generation of audio AEs may require
the incorporation of psychoacoustic techniques to make perturbations imperceptible
[48].

In addition to the work on generating AEs, there have also been research
efforts that have focused on defending against AEs [7, 25]. In general, defending
against AEs can be seen as being more difficult than generating AEs, because
failing to defend against one particular AE indicates a failure in the method of
defense. One defense strategy is to reduce the effectiveness of adversarial samples
by smoothening the amplitude of gradients in ML models [46]. Another strategy
uses JPEG compression to destroy adversarial perturbations in the images before
inputting them into ML models [12]. Other successful defense strategies against
AEs rely on the detection of AEs by identifying the unique characteristics of AEs
as compared to benign samples [18, 38].

Despite the powerful capabilities of ML models, it is difficult to explain the
internal working of these models. Thus, a number of studies in the research
community have utilized visualization as a tool for understanding ML models
[27]. For example, a seminal piece of work involving ML in the image domain
was done by Zeiler et al. [70], in which they projected learned features into pixel
space. Their work facilitated an understanding of what was learned by each layer
of a convolutional neural network (CNN). In another example, Karpathy et al.
[30] visualized the activations of cells in a recurrent neural network (RNN) for
NLP, where they discovered that some cells were only activated when they were
processing text with specific characteristics.

Nevertheless, there is limited research that has focused on visual analysis in
the context of AEs in ML. Due to the importance of visualization techniques in
understanding the internal workings of ML, it would be beneficial for the research
community to be aware of current progress in the visual analysis of AEs. This is
the motivation behind this chapter, which presents the current state of research in
this area. A summary of the research work reviewed in this chapter is presented in
Table 1.

The contents of this chapter are organized as follows: Sect. 2 provides back-
ground knowledge on AEs; techniques on visualizing the generation of AEs and the
properties of AEs are reviewed in Sects. 3 and 4, respectively; Sect. 5 presents work
on visually distinguishing AEs; the research on visualizing the robustness of ML
models against AEs is described in Sect. 6; challenges and future research directions
are discussed in Sect. 7; and finally, Sect. 8 concludes the chapter.

Table 1 A summary of
research efforts and their
different objectives in the
visual analysis of AEs

Visualization objectives Research work

Generation of AEs [35, 36, 45, 61, 62]

Properties of AEs [37, 42, 53, 71]

Distinguishing AEs [11, 15, 39, 65, 68]

Robustness against AEs [6, 17, 32, 60, 72]

Visual Analysis of Adversarial Examples in Machine Learning 87

2 Adversarial Examples

This section presents background knowledge on AEs. AEs are generated by adding
small perturbations to the original data in a way where classifiers are misled
into producing erroneous results. Although AEs were first defined in the field of
computer vision [56], interest in AEs quickly spreads to other fields, including ASR
[48, 63, 67] and NLP [74].

To make AEs difficult, or even impossible, to be distinguished from original
data, constraints must be imposed on the perturbations. Image AEs are usu-
ally constrained by p-norm, which is generally sufficient to make perturbations
imperceptible. However, this constraint does not work for audio AEs, because
humans can perceive small perturbations in audio. It is therefore deemed necessary
to incorporate psychoacoustic techniques in constraining perturbations that are
added to audio [48, 50]. In the NLP domain, defining appropriate constraints
on perturbations is even more challenging. This is because features in NLP are
discrete, so adversaries cannot apply slight imperceptible modifications as in the
case of generating image or audio AEs [35]. Thus, AEs in NLP are generated
through the introduction of spelling errors or replacing original words with different
words. Although words can be represented by vectors in continuous space, slight
modification of these vectors will produce a string of text that is not necessarily an
actual word [75].

AEs can be categorized into white-box or black-box methods. White-box AEs
are generated with complete knowledge of the target ML model, including its
architecture, weights, and so on [4, 14, 34]. Therefore, the generation process is
normally formulated as solving an optimization problem because the loss gradients
are known [5, 69]. In contrast, black-box AEs are generated without knowledge of
the target ML model. The only information available is input and resulting output
pairs when passed to the ML model [8, 44]. The generation of black-box AEs can
make use of genetic algorithms to search a large state space [1, 31, 57]. Alternatively,
adversaries can train a surrogate model to generate white-box AEs. These white-
box AEs can subsequently be used as black-box AEs to fool the target ML model
[37, 78].

The process of generating AEs can be represented as modifying a data point until
it crosses the ML decision boundaries. For example, a polyhedron can be used to
approximate the decision boundaries of a classifier, and an AE is generated when the
data point is moved outside of these boundaries [43]. In this manner, the generation
of AEs can be defined as an iterative process. At iteration i, the polyhedron P̃i

is formulated using Eq. 1 [43], where x0 is the original image, f : R
n → R

c

is a classifier, the kth output of f (x) is fk(x), and k̂ = arg maxx fk(x). At each
iteration, a greedy update is applied that calculates the perturbation vector to reach
the boundary of P̃i and to update xi accordingly.

P̃i =
c⋂

k=1

{x : fk(xi) − f
k̂(x0)

(xi) + ∇fk(xi)
ᵀx − ∇f

k̂(x0)
(xi)

ᵀx ≤ 0}. (1)

88 W. Zong et al.

3 Generation of Adversarial Examples

In this section, research studies that visualize the generation of AEs are presented.
To date, there is limited research in this area, despite the fact that the visualization
of how AEs fool ML models can potentially be a vital tool for researchers to
understand the underlying mechanisms of AEs.

The first work in this area was conducted by Norton et al. [45]. In their work, they
introduced a visualization tool called Adversarial Playground. This tool provides a
web-based interface that users can use to experiment with effects of different AEs.
Parameters to generate AEs are sent to a server where the intensive calculation
is performed. Then, the generated AEs along with other information, such as
classification likelihoods, are rendered on the client side. Adversarial Playground
provides three benefits, namely, educational, interactivity, and modularity. The
educational benefit is obvious, since users can gain a clear understanding of
how AEs can fool ML models. The interactivity and modularity benefits refer to
Adversarial Playground’s quick response to users, and the fact that other researchers
can easily plug Adversarial Playground into their own framework.

Other than Adversarial Playground, other works on visualizing the generation of
AEs are primarily concentrated in the NLP domain. AllenNLP Interpret, proposed
by Wallace et al. [62], is built on top of AllenNLP [22], which is a platform for
NLP research. AllenNLP Interpret can visualize two AEs: Hotflip [16] and Input
Reduction [21]. Hotflip changes the prediction of ML models by changing words
from the input based on gradient information. In contrast, Input Reduction removes
as many words from the input as possible, while keeping the prediction unchanged.

Alongside AllenNLP Interpret, concurrent work was conducted by Laughlin
et al. [35], which also visualizes how AEs can fool NLP models. The difference
is that the visualization framework in Laughlin et al. [35] is based on existing
evolutionary attack strategies, rather than on Hotflip or Input Reduction. Thus, the
framework is a black-box system, and it can work with any classifier as long as
it outputs classification scores. In addition, the dashboard provides an interface
for manually correcting the generated AEs. This functionality is useful since
automatically generated AEs usually suffer from poor semantics. To help manual
correction, scatterplots are provided to explore the word replacement space. Another
contribution of this framework is that it can be used for testing the robustness of ML
models. The robustness of different classifiers can be compared using information
such as, the difference between generated AEs and the original text, the percentage
of words replaced and the difference in classifier output scores.

Question answering (QA) is an important discipline within the NLP domain [64],
and AEs also present security challenges in this field [29]. Wallace et al. [61] and
Lee et al. [36] proposed two tools to visualize AEs in QA. Both tools support manual
modification of the questions, and users can see the changed scores produced by the
underlying models. The end goal is to generate questions that can fool QA models
but can still be correctly answered by humans. Other than manual modification, the
visualization tool proposed by Lee et al. [36] also supports automatic generation of
AEs via reusable adversarial rules.

Visual Analysis of Adversarial Examples in Machine Learning 89

In summary, much of current research effort on visualizing the generation of AEs
is mainly focused in the NLP domain. A common feature of these visualization tools
is that they all support manual modification of input text for users to view changes in
the resulting scores. It would be ideal for a tool to be able to automatically suggest
word replacements, as done in [35]. This would significantly make the modification
process easier for users. The design of these tools can also be applied to other fields,
such as computer vision and ASR. For example, Adversarial Playground can be
updated to support manual modification of input images and then present users with
the resulting image recognition scores.

4 Properties of Adversarial Examples

In the literature, several researchers have focused on studying properties of AEs,
such as universality [42] and transferability [37]. The universality property means
that there exist adversarial perturbations that can be applied to any data point, while
transferability of AEs refers to AEs generated using one model that can be used to
fool other models. This section describes research efforts that attempt to visually
explain properties of AEs.

Moosavi-Dezfooli et al. [42] present an interesting observation that there exist
Universal Adversarial Perturbations (UAPs). Image AEs can be generated by
directly adding these perturbations to original images. The generation of UAPs
only requires a small subset of the training data. UAPs are generated by iteratively
accumulating perturbations that send images to the ML decision boundaries. In their
work, they provided a visual explanation as to why such universal perturbations exist
[42]. Specifically, they plotted singular values of a matrix N , which is composed
of normal vectors to the decision boundaries for a set of images, against a matrix
with random columns. They observed that the quick decrease in singular values of
N suggests that there exists a subspace that contains most of the normal vectors
to decision boundaries. To verify the existence of this subspace, Moosavi-Dezfooli
et al. [42] demonstrate that a random vector sampled using the first 100 singular
vectors can fool nearly 38% of images. It should be noted that although UAPs were
not generated directly from this subspace, the purpose of discussing and visualizing
this subspace is to explain why such UAPs exist.

Another study on UAPs was recently conducted by Zhang et al. [71]. In addition
to non-targeted UAPs in [42], Zhang et al. [71] proposed targeted UAPs, where
perturbed images are misclassified to predetermined labels. The targeted UAPs are
generated by iteratively using perturbed images to fool an ML model. To visually
analyze targeted UAPs, they used a clean image, a targeted UAP, and a generated
AE as separate input into an ML model. Then, pairs of corresponding elements from
logit vectors were plotted. From the plots, it was clear that the Pearson correlation
coefficient (PCC) between the logits of the targeted UAP and the generated AE
were significantly larger than the PCC between the logits of the clean image and
the generated AE. This implied that the UAP dominated the classification process,

90 W. Zong et al.

while the clean image acted like noise [71]. Based on this observation, the authors in
[71] were successful in generating targeted UAPs without using the original training
sets.

There has also been much research into the transferability of AEs by a number of
researchers [28, 37, 59, 78]. Transferability of AEs poses a particularly severe threat
to ML models since it enables black-box attacks [47]. Specifically, adversaries can
train a surrogate model to generate AEs and then use these AEs to fool the target
model. Seminal work visually explaining the transferability of AEs was conducted
by Liu et al. [37]. In their study, five state-of-the-art models were investigated,
namely, ResNet-50, ResNet-101, ResNet-152 [26], GoogLeNet [55], and VGG-
16 [52]. An interesting observation from their results was that both non-targeted
and targeted AEs generated using an ensemble of models, transferred well to a new
model. Their results also showed that given a correctly classified image, the decision
boundaries of different models were similar to each other, and as such, a generated
AE could be transferred to other models.

Another property of AEs as examined by Stutz et al. [53] is whether or not AEs
are on the low-dimensional data manifold. In that respect, AEs can be classified as
regular or on-manifold, respectively. Regular AEs usually leave the data manifold,
while on-manifold AEs are constrained to be on the data manifold. By providing
a visual comparison, they showed that it was clear that perturbations of the on-
manifold AE were interpretable by humans, while perturbations of the regular AE
appeared to be noise-like. This result is intuitive since regular AEs are off the
data manifold, while on-manifold AEs are within the data distribution. Further
experiments in [53] showed that robustness of on-manifold AEs is strongly related to
generalization, while robustness of regular AEs is not. Therefore, the authors argued
that it is potentially possible to train models to be highly accurate and also possess
an adversarial robustness property. This appears to contradict to the argument that
there is a trade-off between adversarial robustness and generalization [54, 60].

To sum up, the work described in this section visually explains properties of AEs,
in terms of their universality, transferability, and whether AEs are constrained on
the data manifold. Visualization plays an important role in intuitively understanding
these properties. Universality means there exist adversarial perturbations that can be
applied to any data point, while transferability of AEs refers to AEs generated using
one model that can be used to fool other models, and AEs constrained on the data
manifold contain interpretable perturbations.

5 Distinguishing Adversarial Examples

This section describes research efforts that seek to visually distinguish AEs from
benign samples.

Recent work conducted by Cohen et al. [11] was inspired from the fact that
AEs can be visually separated from benign samples based on the correspondence
of k-nearest neighbors (kNNs) and helpful samples. This correspondence can be

Visual Analysis of Adversarial Examples in Machine Learning 91

exploited to train a simple logistic regression (LR) model for automatic detection of
AEs. Specifically, a new adversarial set is generated by attacking the validation set.

For each data point in the adversarial and validation sets, the most M helpful and
harmful samples from the training set are calculated by employing the influence
functions proposed by Koh et al. [33], where M is a hyper-parameter. Helpful
samples are those that help models to make accurate predictions, while harmful
samples prevent a model from making such predictions. The nearest neighbors’
ranks and distances of these samples are calculated and used to train a simple LR
model. A nearest neighbors’ rank of a data point is the value k that results in the
data point being within the kNN range of the target. The distance of a data point
is measured by the L2 distance between the activations of this data point and the
target. When a new data point is received as input, the nearest neighbors’ ranks and
L2 distances of its M most helpful and harmful training data are fed into the LR
to detect whether it is an AE. Their experimental results showed high accuracy in
detecting six popular AEs.

Another visual method for explaining the difference between AEs and normal
data is via attention heatmaps generated by class activation mapping (CAM) [77].
Attention heatmaps provide a visualization of the implicit discriminative regions
of a model. This technique can intuitively explain how AEs can mislead DNNs.
Recent work that compared AEs with normal examples based on attention heatmaps
was conducted by Xiao et al. [65]. They proposed a novel AE, which is generated
by moving pixels in the original image to new positions. Since the generation
process does not modify pixel values, these AEs introduce less artifacts compared
to AEs that do modify pixel values [3, 24]. As an example, they provided attention
heatmaps of a normal example and its corresponding AEs. For the normal example,
the attention heatmap showed that the model focused on correct regions in the
image. However, for the corresponding AEs, the attention heatmaps highlighted
different regions. This showed that the generated AEs misled the ML model’s focus
of attention. Similar results can also be found in other research, in which attention
heatmaps were used to visually distinguish normal data from AEs [39, 68].

Similar to CAM, discrepancy maps (DMs) can also be used to interpret AEs
[15]. A DM is generated by recording patches, which occlude parts of an image,
that result in a large change in activations [76]. In other words, DMs can identify
which regions of an image a neuron is looking for. Dong et al. [15] utilized DMs to
interpret how AEs fool a neuron. Their experiments showed that the DMs of original
images preserve semantic meanings, while DMs of AEs do not.

Overall, AEs can be visually distinguished from benign samples, even though
AEs are generated by adding imperceptible perturbations. CAM and DMs are two
techniques that can visually interpret which parts of images are important for
classification. Benign samples usually highlight semantically meaningful regions,
while AEs do not. This abnormal behavior can potentially be used to detect AEs.

92 W. Zong et al.

6 Robustness of Models

Improving the robustness of ML models against AEs is an important topic in the
literature [41, 49, 58]. This section presents a discussion on research aimed at
visually explaining the robustness of models.

There have been a number of studies aimed at developing models that are robust
against AEs [20, 54, 66]. Among the proposed methods, adversarial training has
been shown to achieve state-of-the-art results [40]. In adversarial training, ML
models are deliberately trained using AEs. However, there is a trade-off between
accuracy and robustness [19]. Tsipras et al. [60] assert that this is because robust
models are intrinsically different from non-robust models. They contend that non-
robust models achieve high performance by relying on weakly correlated features,
while features learned by robust models align well with human perception. This
interesting observation has also been confirmed by other researchers [32].

Inspired by the work of Tsipras et al. [60], Chan et al. [6] proposed Jacobian
adversarially regularized networks (JARNs), which improve the robustness of a
neural network against AEs. The main question that it attempts to address is: due to
the fact that loss gradients with respect to input images are interpretable for robust
models, can we achieve robust models if we make interpretable loss gradients as
a training objective? To achieve this objective, the architecture of JARN follows
the same pattern as generative adversarial networks (GANs) [23]. Specifically, a
generator network is trained to make the loss gradients of a classifier resemble input
images by minimizing the adversarial loss. Meanwhile, a discriminator network is
trained to distinguish the produced loss gradients from input images by maximizing
the adversarial loss.

In their experimental results, they showed that JARN improved the robustness
of the classifier. If JARN were to be trained using one-step adversarial training, the
robustness could further improve. Besides visualizing the loss gradients, robustness
was also explained by plotting loss surfaces of models. The visualization of loss
surfaces has also been used in other studies to explain the robustness of models
[17, 72].

In summary, robust ML models learn a different feature representation as
compared with non-robust models [60]. This characteristic can be directly exploited
to improve the robustness of models [6].

7 Challenges and Research Directions

In this section, current challenges in the field of visual analysis of AEs as well as
future research directions are described.

• It is challenging to detect image AEs based on attention heatmaps. Attention
heatmaps can explain which part of an image an ML model focuses on. Image
AEs usually mislead a model into focusing on unimportant or even peculiar parts

Visual Analysis of Adversarial Examples in Machine Learning 93

of an image [39]. Thus, a future direction in AEs might involve determining
which parts of an image an ML model should focus its attention on and use this
information to detect images that attempt to divert a model’s focus of attention.

• Another challenge is in visualizing the robustness of models that handle sequence
data, such as models in ASR or NLP. In the domain of image recognition, loss
gradients of robust models with respect to input images are interpretable and
resemble the input [60]. This may not be true for models that handle sequence
data, because sequence data are fundamentally different from data in the form
of static images. Although there is existing research investigating the robustness
of sequence models [10], how to understand and explain the robustness of such
models in a visual manner is still an open question.

• Even though much research attention has focused on analyzing image and text
AEs, there is currently limited work on visually analyzing audio AEs. A potential
research direction is to visualize the generation of audio AEs in a manner similar
to the visualization of text AEs [62]. Research outcomes in this area may help
explain which parts of audio signals are important for ML models.

8 Conclusion

The field of ML has seen rapid advancements in recent decades. Meanwhile,
security threats to ML models, such as AEs, have attracted the interest of a number
of researchers, as these can pose serious threats to ML models. AEs are generated
by modifying original data in an imperceptible manner. This chapter has presented a
review of methods that attempt to visually analyze AEs. This has included methods
for visualizing the generation of AEs, the properties of AEs, how to distinguish
AEs, and the robustness of ML models against AEs. Along with existing research,
the current challenges and interesting future research directions in this field were
also described. As such, the content in this chapter serves as a valuable reference
for researchers who are interested in visually analyzing AEs.

References

1. Alzantot, M., Balaji, B., Srivastava, M.B.: Did you hear that? adversarial examples against
automatic speech recognition. CoRR (2018). arXiv:abs/1801.00554

2. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine learning.
Pattern Recognition 84, 317–331 (2018)

3. Carlini, N., Wagner, D.: Adversarial examples are not easily detected: Bypassing ten detection
methods. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pp. 3–14 (2017)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

5. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted attacks on speech-to-text. In:
2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7. IEEE (2018)

94 W. Zong et al.

6. Chan, A., Tay, Y., Ong, Y., Fu, J.: Jacobian adversarially regularized networks for robustness.
In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26–30, 2020. https://OpenReview.net

7. Chen, H., Zhang, H., Boning, D., Hsieh, C.-J.: Robust decision trees against adversarial
examples. Preprint (2019). arXiv:1902.10660

8. Chen, P., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.: ZOO: zeroth order optimization based black-
box attacks to deep neural networks without training substitute models. In: Thuraisingham,
B.M., Biggio, B., Freeman, D.M., Miller, B., Sinha, A. (eds.) Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA,
November 3, 2017, pp. 15–26. ACM (2017)

9. Chen, Y., Yuan, X., Zhang, J., Zhao, Y., Zhang, S., Chen, K., Wang, X.: Devil’s whisper:
A general approach for physical adversarial attacks against commercial black-box speech
recognition devices. In: 29th USENIX Security Symposium (USENIX Security 20) (2020)

10. Cheng, M., Yi, J., Chen, P.-Y., Zhang, H., Hsieh, C.-J.: Seq2sick: Evaluating the robustness of
sequence-to-sequence models with adversarial examples. In: AAAI, pp. 3601–3608 (2020)

11. Cohen, G., Sapiro, G., Giryes, R.: Detecting adversarial samples using influence functions and
nearest neighbors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14,453–14,462 (2020)

12. Das, N., Shanbhogue, M., Chen, S., Hohman, F., Chen, L., Kounavis, M.E., Chau, D.H.:
Keeping the bad guys out: Protecting and vaccinating deep learning with JPEG compression.
CoRR (2017). arXiv:abs/1705.02900

13. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: Additive angular margin loss for deep
face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4690–4699 (2019)

14. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial attacks with
momentum. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18–22, pp. 9185–9193, 2018. IEEE Computer Society
(2018)

15. Dong, Y., Su, H., Zhu, J., Bao, F.: Towards interpretable deep neural networks by leveraging
adversarial examples. Preprint (2017). arXiv:1708.05493

16. Ebrahimi, J., Rao, A., Lowd, D., Dou, D.: Hotflip: White-box adversarial examples for text
classification. Preprint (2017). arXiv:1712.06751

17. Engstrom, L., Ilyas, A., Athalye, A.: Evaluating and understanding the robustness of adversar-
ial logit pairing. Preprint (2018). arXiv:1807.10272

18. Esmaeilpour, M., Cardinal, P., Koerich, A.L.: Detection of adversarial attacks and character-
ization of adversarial subspace. In: ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3097–3101. IEEE (2020)

19. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturba-
tions. Machine Learning 107(3), 481–508 (2018)

20. Fawzi, A., Moosavi-Dezfooli, S.M., Frossard, P.: Robustness of classifiers: from adversarial to
random noise. In: Advances in Neural Information Processing Systems, pp. 1632–1640 (2016)

21. Feng, S., Wallace, E., Grissom II, A., Iyyer, M., Rodriguez, P., Boyd-Graber, J.: Pathologies of
neural models make interpretations difficult. Preprint (2018). arXiv:1804.07781

22. Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M.,
Zettlemoyer, L.: AllenNLP: A deep semantic natural language processing platform. Preprint
(2018). arXiv:1803.07640

23. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, pp. 2672–2680 (2014)

24. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:
Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015)

25. Guo, M., Yang, Y., Xu, R., Liu, Z., Lin, D.: When NAS meets robustness: In search of robust
architectures against adversarial attacks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 631–640 (2020)

https://OpenReview.net

Visual Analysis of Adversarial Examples in Machine Learning 95

26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27–30, pp. 770–778, 2016. IEEE Computer Society (2016)

27. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: An
interrogative survey for the next frontiers. IEEE Trans. Visual. Comput. Graph. 25(8), 2674–
2693 (2018)

28. Inkawhich, N., Wen, W., Li, H.H., Chen, Y.: Feature space perturbations yield more transfer-
able adversarial examples. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7066–7074 (2019)

29. Jia, R., Liang, P.: Adversarial examples for evaluating reading comprehension systems. In:
Palmer, M., Hwa, R., Riedel, S. (eds.) Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September
9–11, pp. 2021–2031, 2017. Association for Computational Linguistics (2017)

30. Karpathy, A., Johnson, J., Li, F.: Visualizing and understanding recurrent networks. CoRR
(2015). arXiv:abs/1506.02078

31. Khare, S., Aralikatte, R., Mani, S.: Adversarial black-box attacks on automatic speech
recognition systems using multi-objective evolutionary optimization. In: Kubin, G., Kacic, Z.
(eds.) Interspeech 2019, 20th Annual Conference of the International Speech Communication
Association, Graz, Austria, 15–19 September 2019, pp. 3208–3212. ISCA (2019)

32. Kim, B., Seo, J., Jeon, T.: Bridging adversarial robustness and gradient interpretability. Preprint
(2019). arXiv:1903.11626

33. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Precup,
D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Machine Learning
Research, vol. 70, pp. 1885–1894. PMLR (2017)

34. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24–26, 2017, Workshop Track Proceedings. https://OpenReview.net (2017)

35. Laughlin, B., Collins, C., Sankaranarayanan, K., El-Khatib, K.: A visual analytics framework
for adversarial text generation. Preprint (2019). arXiv:1909.11202

36. Lee, G., Kim, S., Hwang, S.w.: QADiver: Interactive framework for diagnosing QA models.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9861–9862
(2019)

37. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-
box attacks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24–26, 2017, Conference Track Proceedings (2017)

38. Ma, X., Li, B., Wang, Y., Erfani, S.M., Wijewickrema, S., Schoenebeck, G., Song, D., Houle,
M.E., Bailey, J.: Characterizing adversarial subspaces using local intrinsic dimensionality.
Preprint (2018). arXiv:1801.02613

39. Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., Lu, F.: Understanding adversarial attacks
on deep learning based medical image analysis systems. Pattern Recognition, 107332 (2020)

40. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models
resistant to adversarial attacks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings.
https://OpenReview.net (2018)

41. Mao, C., Zhong, Z., Yang, J., Vondrick, C., Ray, B.: Metric learning for adversarial robustness.
In: Advances in Neural Information Processing Systems, pp. 480–491 (2019)

42. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturba-
tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1765–1773 (2017)

43. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to
fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2574–2582 (2016)

https://OpenReview.net
https://OpenReview.net

96 W. Zong et al.

44. Nayebi, A., Ganguli, S.: Biologically inspired protection of deep networks from adversarial
attacks. CoRR (2017). arXiv:abs/1703.09202

45. Norton, A.P., Qi, Y.: Adversarial-playground: A visualization suite showing how adversarial
examples fool deep learning. In: 2017 IEEE Symposium on Visualization for Cyber Security
(VizSec), pp. 1–4. IEEE (2017)

46. Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to adversarial
perturbations against deep neural networks. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 582–597. IEEE (2016)

47. Papernot, N., McDaniel, P.D., Goodfellow, I.J.: Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples. CoRR (2016). arXiv:abs/1605.07277

48. Qin, Y., Carlini, N., Cottrell, G.W., Goodfellow, I.J., Raffel, C.: Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition. In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach,
California, USA, pp. 5231–5240 (2019)

49. Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: Protecting classifiers against
adversarial attacks using generative models. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference
Track Proceedings. https://OpenReview.net (2018)

50. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks against
automatic speech recognition systems via psychoacoustic hiding. In: 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, February
24–27, 2019. The Internet Society (2019)

51. Shen, J., Nguyen, P., Wu, Y., Chen, Z., Chen, M.X., Jia, Y., Kannan, A., Sainath, T.N., Cao, Y.,
Chiu, C., He, Y., Chorowski, J., Hinsu, S., Laurenzo, S., Qin, J., Firat, O., Macherey, W., Gupta,
S., Bapna, A., Zhang, S., Pang, R., Weiss, R.J., Prabhavalkar, R., Liang, Q., Jacob, B., Liang,
B., Lee, H., Chelba, C., Jean, S., Li, B., Johnson, M., Anil, R., Tibrewal, R., Liu, X., Eriguchi,
A., Jaitly, N., Ari, N., Cherry, C., Haghani, P., Good, O., Cheng, Y., Alvarez, R., Caswell, I.,
Hsu, W., Yang, Z., Wang, K., Gonina, E., Tomanek, K., Vanik, B., Wu, Z., Jones, L., Schuster,
M., Huang, Y., Chen, D., Irie, K., Foster, G.F., Richardson, J., et al.: Lingvo: a modular and
scalable framework for sequence-to-sequence modeling. CoRR (2019). arXiv:abs/1902.08295

52. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings (2015)

53. Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and generalization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6976–
6987 (2019)

54. Su, D., Zhang, H., Chen, H., Yi, J., Chen, P., Gao, Y.: Is robustness the cost of accuracy? - A
comprehensive study on the robustness of 18 deep image classification models. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part XII, Lecture Notes
in Computer Science, vol. 11216, pp. 644–661. Springer (2018)

55. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015, pp. 1–9. IEEE
Computer Society (2015)

56. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.:
Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y. (eds.) 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014,
Conference Track Proceedings (2014)

57. Taori, R., Kamsetty, A., Chu, B., Vemuri, N.: Targeted adversarial examples for black box audio
systems. In: 2019 IEEE Security and Privacy Workshops (SPW), pp. 15–20. IEEE (2019)

https://OpenReview.net

Visual Analysis of Adversarial Examples in Machine Learning 97

58. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel, P.D.: Ensemble
adversarial training: Attacks and defenses. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference
Track Proceedings. https://OpenReview.net (2018)

59. Tramèr, F., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.: The space of transferable
adversarial examples. Preprint (2017). arXiv:1704.03453

60. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds
with accuracy. In: 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6–9, 2019. https://OpenReview.net (2019)

61. Wallace, E., Boyd-Graber, J.: Trick me if you can: Adversarial writing of trivia challenge
questions. In: ACL Student Research Workshop (2018)

62. Wallace, E., Tuyls, J., Wang, J., Subramanian, S., Gardner, M., Singh, S.: AllenNLP interpret:
A framework for explaining predictions of NLP models. Preprint (2019). arXiv:1909.09251

63. Wang, Q., Guo, P., Xie, L.: Inaudible adversarial perturbations for targeted attack in speaker
recognition. Preprint (2020). arXiv:2005.10637

64. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading
comprehension and question answering. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 189–198 (2017)

65. Xiao, C., Zhu, J., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples.
In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30–May 3, 2018, Conference Track Proceedings. https://OpenReview.net (2018)

66. Xiao, K.Y., Tjeng, V., Shafiullah, N.M.M., Madry, A.: Training for faster adversarial robustness
verification via inducing ReLU stability. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019. https://OpenReview.
net (2019)

67. Xie, Y., Shi, C., Li, Z., Liu, J., Chen, Y., Yuan, B.: Real-time, universal, and robust adversarial
attacks against speaker recognition systems. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1738–1742. IEEE
(2020)

68. Xu, K., Liu, S., Zhang, G., Sun, M., Zhao, P., Fan, Q., Gan, C., Lin, X.: Interpreting adversarial
examples by activation promotion and suppression. Preprint (2019). arXiv:1904.02057

69. Yakura, H., Sakuma, J.: Robust audio adversarial example for a physical attack. In:
S. Kraus (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, pp. 5334–5341. https://ijcai.org
(2019)

70. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: D.J. Fleet,
T. Pajdla, B. Schiele, T. Tuytelaars (eds.) Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I, Lecture Notes in
Computer Science, vol. 8689, pp. 818–833. Springer (2014)

71. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples from the
mutual influence of images and perturbations. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14,521–14,530 (2020)

72. Zhang, H., Wang, J.: Defense against adversarial attacks using feature scattering-based
adversarial training. In: Advances in Neural Information Processing Systems, pp. 1831–1841
(2019)

73. Zhang, H., Zhou, H., Miao, N., Li, L.: Generating fluent adversarial examples for natural
languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 5564–5569 (2019)

74. Zhang, W.E., Sheng, Q.Z., Alhazmi, A., Li, C.: Adversarial attacks on deep-learning models in
natural language processing: A survey. ACM Trans. Intell. Syst. Technol. (TIST) 11(3), 1–41
(2020)

75. Zhang, W.E., Sheng, Q.Z., Alhazmi, A.A.F.: Generating textual adversarial examples for deep
learning models: A survey. CoRR (2019). arXiv:abs/1901.06796

https://OpenReview.net
https://OpenReview.net
https://OpenReview.net
https://OpenReview.net
https://OpenReview.net
https://ijcai.org

98 W. Zong et al.

76. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Object detectors emerge in deep
scene CNNs. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track
Proceedings (2015)

77. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for
discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2921–2929 (2016)

78. Zhou, W., Hou, X., Chen, Y., Tang, M., Huang, X., Gan, X., Yang, Y.: Transferable adversarial
perturbations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp.
452–467 (2018)

Adversarial Attacks Against Deep
Learning-Based Speech Recognition
Systems

Xuejing Yuan, Yuxuan Chen, Kai Chen, Shengzhi Zhang,
and XiaoFeng Wang

1 Introduction

With the rapid development of deep learning technologies, automatic speech
recognition (ASR) applications have achieved excellent accuracy. Speech-to-Text
API services enable developers embed flexible voice capabilities in a variety of
products. Smart speakers (e.g., Amazon Echo, Google Home, etc.) and virtual voice
assistant (e.g., Google Assistant and Microsoft Cortana, etc.) have become quite
popular. In this paper, we use intelligent voice control (IVC) devices to refer to
all the voice-enabled centralized control devices and smartphones or tablets. In
our life, various smart home devices, like smart lock, smart switch, and social
networks, can be connected to such voice “hub.” More importantly, autopilot can
be controlled by voice commands with ASR services (e.g., Amazon Auto SDK).
However, researchers show that the maliciously and even slightly crafted samples
(e.g., adversarial examples, AEs) can cause deep neural network (DNN) models to

X. Yuan · K. Chen (�)
SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
e-mail: chenkai@iie.ac.cn

Y. Chen
Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Shandong, China

School of Cyber Science and Technology, Shandong University, Shandong, China

S. Zhang
Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA

X. Wang
School of Informatics, Computing, and Engineering, Indiana University Bloomington,
Bloomington, IN, USA

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_5

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_5&domain=pdf
mailto:chenkai@iie.ac.cn
https://doi.org/10.1007/978-981-33-6726-5_5

100 X. Yuan et al.

misbehave in an unexpected way. In general, AE is generated by adding adversarial
perturbations to a normal sample, so that it can cheat machine learning (ML)
systems without human awareness. As the IVC devices are always “listening,” AEs
can pose serious threats to them. For example, if the attackers embed the voice
commands into common audio signals (e.g., music, water sound, etc.) to generate
AEs, they can attack the IVC devices by playing the AEs, while human cannot
hear the commands. We propose a general approach for practical adversarial attacks
against the ASR systems.

Usually, the deep learning architecture has multiple hidden layers between the
input and output layers. Theoretically, sufficient number of hidden layers can model
any non-linear relationship, so as to distinguish small differences between two
samples. To build such a well-performing speech recognition model (e.g., Google
Speech-to-Text API), a large corpus and special computing hardware are demanded
in the training process. In fact, finding the vulnerability of ASR algorithms and
generating AEs to attack the complex model are very difficult. In detail, there are
many challenges to attack ASR systems, especially the IVC devices in the real
world. (1) The perturbations should not be filtered out by IVC devices. Since most
IVC devices will remove background sound to increase the accuracy of recognition,
the slight perturbations should not be filtered out as background noises. (2) The
AEs should work under physical world environment where there exist much more
complicated impacts for the samples, e.g., electronic noise, etc. (3) The malicious
command should not be noticed by ordinary users. Therefore, the perturbations
should be carefully added so that the embedded command cannot attract attentions
from humans. (4) Generating AEs based on a substitute model and transferability is
the main method to attack black-box models. However, it is extremely difficult to
simulate the large and complex black-box model, while the AEs of the common
available white-box models are difficult to be transferred to complex black-box
models. To achieve the practical adversarial attack, we divide our approach into
three steps as follows.

“WAV-to-API” White-Box Attack We analyze the ASR algorithm of Kaldi,
which is a popular open source toolkit in both academia and industry. By taking
its “ASpIRE Chain Model” (referred as ASpIRE model in short) as the white-box
model, we excavate the vulnerability of the algorithm and inject commands into
songs, so that the generated AEs can cheat the ASpIRE model if they are directly
input to it. As audios are usually saved in the form of a wave file (in “WAV” format),
we take it as “WAV-to-API (WTA)” white-box attack.

“WAV-air-API” White-Box Attack We would like the attack can be succeed in
the real world. Therefore, we use a “noise model” to enhance the injected command
features of the AEs, so that they can practically attack the target model. We play the
AE over the air with speakers and record it. If the recorded audio can be recognized
as the target command by the ASpIRE model, we take the practical “WAV-air-API
(WAA)” white-box attack successful.

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 101

Practical Black-Box Attack We enhance a simple local substitute model roughly
approximating the target black-box model with the ASpIRE model that is more
advanced yet unrelated to the target model (Google Assistant/Home, Amazon Echo,
and Microsoft Cortana). So that the AEs generated based on these models have high
transferability to the target black-box model. The results show that for 98% of the
target commands of these devices, we can generate at least one successful AE.

2 Background and Related Work

2.1 Speech Recognition

Besides the commercial ASR systems of Google, Microsoft, Amazon, and IBM,
there also exist well known open source ASR toolkits such as Kaldi, Mozilla
DeepSpeech, etc. As shown in Fig. 1, the architecture of a typical ASR system
includes four main procedures: pre-processing, feature extraction, acoustic model,
and language model. After receiving the raw audio, the pre-processing filters out
the background noises. Then, the acoustic features like Mel-Frequency Cepstral
Coefficients (MFCC) are extracted and examined according to the pre-trained
acoustic model to predict the most possible phonemes/characters sequence. Finally,
relying on the language model, the results will be refined as a sentence with
grammar rules, commonly used words, etc.

2.2 Adversarial Examples

Szegedy et al. [3] first found neural network suffers from adversarial examples
(AEs). Formally speaking, one neural network can be defined as y = F(x), which
maps the input x to the corresponding output y. Given a specific y ′, the original
input x, and the corresponding output y, it is feasible to find such an input x ′ so that
y ′ = F(x ′), while x and x ′ are too close to be distinguished by human. The above
example x ′, together with its prediction y ′, is considered as targeted adversarial
(TA) attack. Such attacks have potential impact since the prediction results could
be manipulated by the adversary. Compared to TA attacks, untargeted adversarial
(UTA) attack identifies the input x ′, which is still close enough to the original input
x, but has different output than that of x.

Acoustic
Model

Feature
Extraction

Language
Model

Text Output

Pre-
processing Play music

Audio Input

Fig. 1 Architecture of the automatic speech recognition system

102 X. Yuan et al.

AE Attacks on Black-Box Image Recognition Models Recent researches pro-
posed various algorithms to generate targeted AEs toward different image recog-
nition systems. Liu et al. [4] proposed the ensemble-training approach to attack
Clarifai.com, which is a black-box image classification system. Papernot et al. [5]
proved that by training a local model to substitute remote DNN using the returned
labels, they can attack Google and Amazon image recognition systems.

2.3 Related Work

Researchers have found that the ASR systems could be exposed to different types
of attacks. We classify the existing attacks against ASR systems into four categories
as below.

Speech Misinterpretation Attack The lack of proper authentication raises secu-
rity and privacy concerns of ASR systems. Previous studies show third-party
applications are facing misinterpretation attacks. Kumar et al. [6] presented an
empirical analysis of the interpretation errors on Amazon Alexa and demonstrated
that the attacker can launch a skill squatting attack. Zhang et al. [7] reported a
similar attack, which utilizes a malicious skill with the similarly pronounced name
to impersonate a benign skill. Zhang et al. [8] developed a linguistic-guided fuzzing
tool in an attempt to systematically discover such attacks.

Signal-Manipulation Based Attacks The adversary can compromise the ASR
system by either manipulating the input signal or exploiting the vulnerability of the
functionalities in pre-processing. Kasmi et al. [9] found that by leveraging the inten-
tional electromagnetic interference (IEMI) of the headset cord, voice commands can
be injected into the FM signals and then can be recovered and understood by ASR
systems on the smartphones. DolphinAttack [10] and SurfingAttack [11] injected
voice commands into inaudible ultrasonic signal. The injected commands can be
demodulated and interpreted as desired malicious commands by the target IVC
devices, e.g., Apple Siri, Google Assistant, etc.

Obfuscation Based Attacks The obfuscation based attacks explore that the feature
extraction of ASR systems could be manipulated. Vaidya et al. [12] and Carlini et
al. [13] showed that by inverting MFCC features of the desired commands, they
can get malicious audios that can be interpreted by Google Now running on a
smartphone, while human beings cannot understand. Abdullah et al. [14] developed
four kinds of perturbations to create malicious audio samples, so that the noisy
sound can be recognized as commands by the target model.

Adversarial Example Based Attacks The attacker can craft an original audio into
AEs that can be interpreted as malicious commands by the ASR systems, while
human cannot recognize out. Carlini et al. proposed Hidden Voice Commands [13]
attack to generate AEs against the system with a GMM-based model. In addition,
their team generated AEs against the end-to-end Mozilla DeepSpeech model [15].

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 103

Schönherr et al. [16] showed that they can use psychoacoustic hiding to make
imperceptible AEs toward the WSJ model of Kaldi toolkit. Qin et al. [17] succeeded
in generating the imperceptible AEs to attack the Lingvo ASR system, while
the results were tested in the simulated room environments. However, none of
them can make the success in the real world. Furthermore, Yakura et al. [18] and
Chen et al. [19] can practically attack DeepSpeech, while they cannot attack other
commercial black-box ASR systems.

3 Overview

3.1 Motivation

An example for the potential security risk of adversarial attacks to the IVC system is
voice navigation, which is widely used today to help drive through unfamiliar areas.
Previous work [20] shows that the FM radio channel can be controlled by attackers
to broadcast their malicious signals. Therefore, if the attackers craft their AE hiding
a hostile navigation command and broadcast it on the selected FM radio channel,
those who run voice navigation while listening to the corresponding FM channel
will be impacted. This attack, if successful, will put both drivers and passengers
to serious danger. Given the pervasiveness of the commercial IVC systems, it is
important to understand whether such an attack is indeed realistic, particularly when
the adversary has little information about how such systems work. Our research,
therefore, aims at finding the answer.

White-Box Attack As DNN is widely used in the advanced ASR systems, we
investigated DNN-based speech recognition algorithms and explored adversarial
attacks against them. The research is motivated by the following questions: (Q1)
Is it possible to build the practical adversarial attack against ASR systems, given the
facts that the most ASR systems are becoming more intelligent (e.g., by integrating
DNN models) and that the AEs should work in the very complicated physical
environment, e.g., electronic noise from speaker, background noise, etc.? (Q2) Is
it feasible to generate the AEs that are difficult, or even impossible, to be noticed
by ordinary users, so the control over the ASR systems can happen in a “hidden”
fashion? (Q3) If such AEs can be produced, is it possible to impact a large amount
of victims in an automated way, rather than solely relying on attackers to play the
AEs and affecting victims nearby?

Black-Box Attack To hack the commercial IVC devices in the real world, there
are generally two requirements for the attacks: (R1) effectiveness (toward device)
and (R2) concealing (toward human). Both of the two requirements emphasize the
practical aspects of such attacks, that is, to deceive those devices successfully but
uninterpretable by human. Unfortunately, most of the existing adversarial attacks
fail either (R1) [15] or (R2) [13] in some extents. Hence, we concentrate on the

104 X. Yuan et al.

research question “whether it is possible to hack those commercial IVC devices
(mostly black-box based) in the real world with both (R1) and (R2) satisfied.”

3.2 Technical Challenges

White-Box Attack Challenges As we totally grasp the parameters of the white-
box model, we can step through the principles of speech recognition and try to
find the vulnerability for generating AEs. To find practical AEs, a few technical
challenges need to be addressed: (C1) the AE is expected to be effective in a
complicated, real-world audible environment, in the presence of electronic noise
from speaker and other noises; (C2) it should be stealthy, unnoticeable to ordinary
users; and (C3) impactful AE should be remotely deliverable and can be played by
devices from online sources, which can widely affect IVC devices.

Black-Box Attack Challenges There are two main methods to attack black-box
models. Firstly, the attacker can use the “transferability” based method, i.e., AEs
generated on a white-box Model A are used to attack the target Model B, as long
as those two models are similar in the aspects of algorithm, training data, and
model structure. Secondly, if Model A is hard to find, a local model can be trained
based on the algorithm and training data to approximate Model B, to implement
the “transferability.” However, since Model B is black-box, the similarity is hard
to determine and the algorithm as well as the training data may not be available.
Therefore, such method normally suffers from the problems of uncertainty in terms
of probing process and costs, especially for the commercial IVC devices whose
models are quite complex for approximation.

4 White-Box Attack

We propose the “CommanderSong” attack, which aims at integrating a voice
command into a clip of song. In this way, when the crafted song is played, the ASR
system will recognize the injected command inside, while users are still enjoying
the song as usual. In detail, based on an open source ASR platform and a white-box
model, we try to discover the vulnerability of speech recognition algorithms using
reverse analysis. So that we can inject voice commands into an original audio clip
to generate AEs. Furthermore, we simulate the noises in the real world and enhance
the robustness of the AEs, so that they can practically attack the target white-box
model.

To build the “CommanderSong” attack, we leverage the Kaldi toolkit (an open
source speech recognition toolkit), in which the acoustic model can be trained
with DNN, and the language model is trained with Finite State Transducer (FST)
algorithm. As the FST is very complex, we focus on exploiting the vulnerability

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 105

of DNN. Therefore, by carefully synthesizing the outputs of the acoustic model
from both the song and the given normal voice command audio, we are able to
generate the AEs with minimum perturbations through gradient descent, so that the
CommanderSong can be less noticeable to human users.

4.1 Threat Model of White-Box Attack

To address Q3 (Sect. 3.1), we choose songs as the “carrier” of the voice commands
recognizable by ASR systems and name it as “CommanderSong” attack. The
reason is at least two-fold. On one hand, enjoying songs is always a preferred
way for people to relax, e.g., listening to the music station, streaming music from
online libraries, or just browsing YouTube for favorite programs. Moreover, such
entertainment is not restricted by using radio, CD player, or desktop computer any
more. A mobile device, e.g., smartphone, allows people to enjoy songs everywhere.
Hence, the attack would be widely spread. On the other hand, “hiding” the desired
command in the song also makes the command much more difficult to be noticed
by victims.

Actually choosing the songs as the “carrier” of desired commands makes Q2
even more challenging. Our basic idea is when generating the AEs, we revise the
original song leveraging the pure voice audio of the desired command as a reference.
In particular, we find the revision of the original song to generate the AEs is always
a trade-off between preserving the fidelity of the original song and recognizing the
desired commands from the generated AE by ASR systems. To better obfuscate the
desired commands, we emphasize the former than the latter. For Q1, we use a “noise
model” to simulate the real attack scenario to make sure the AEs can overcome the
distortion of the noise model, so that they can be robust enough in the real world.

4.2 The Detail Decoding Process of Kaldi

There are some trained models on Kaldi website that can be used for research.
As the ASpIRE model is trained with the large “Fisher” English corpus and has
good recognition performance (15.6% WER), we take it as the target white-box
model. After pre-processing, it extracts acoustic features (e.g., MFCC) from the raw
audio. Then based on the trained probability density function (p.d.f.) of the acoustic
model, those features are taken as input to DNN to compute the posterior probability
matrix. The p.d.f. is indexed by the pdf identifier (pdf-id), which exactly indicates
the column of the output matrix of DNN.

Phoneme is the smallest unit composing a word. There are three states (each
is denoted as an HMM state) of sound production for each phoneme, and a series
of transitions among those states can identify a phoneme. A transition identifier
(transition-id) is used to uniquely identify the HMM-state transition. Therefore, a

106 X. Yuan et al.

sequence of transition-ids can identify a phoneme, so we name such a sequence as
phoneme identifier. Note that the transition-id is also mapped to pdf-id. Actually,
during the procedure of ASpIRE model decoding, the phoneme identifiers can be
obtained. By referring to the pre-obtained mapping between transition-id and pdf-
id, the phoneme identifier can be mapped to a sequence of pdf-ids. Such a specific
sequence of pdf-ids actually is a segment from the posterior probability matrix
computed from DNN. This implies that to make the ASpIRE model decode any
specific phoneme, we can have DNN to compute a posterior probability matrix
containing high probabilities of the corresponding pdf-ids sequence.

To illustrate the above findings, we use the ASpIRE model to process a piece of
audio with several words and obtain the intermediate results, including the posterior
probability matrix computed by DNN, the transition-ids sequence, the phonemes,
and the decoded words. Table 1 shows the relationship among the phoneme, HMM-
state, pdf-id, transition-id, etc. analyzed from the trained acoustic model. Figure 2
demonstrates the decoded result of Echo, which contains three phonemes (i.e.,
ehB , kI , and owE). The rectangular box highlights the phoneme-id representing the
corresponding phoneme, and each phoneme is identified by a sequence of transition-
ids or the phoneme identifiers. By referring to Table 1, we can obtain the pdf-ids

Table 1 Relationship between transition-id and pdf-id

Phoneme Phoneme-id HMM-state Pdf-id Transition-id Transition

ehB 61 0 6383 15985 0→1

15986 0→2

ehB 61 1 5760 16189 Self-loop

16190 1→2

kI 99 0 6673 31223 0→1

31224 0→2

kI 99 1 3787 31379 Self-loop

31380 1→2

owE 118 0 5316 39643 0→1

39644 0→2

owE 118 1 8335 39897 Self-loop

39898 1→2

Fig. 2 Result of decoding
“Echo” by the ASpIRE model

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 107

Fig. 3 Architecture of the CommanderSong WTA attack

sequence corresponding to the decoded transition-ids sequence.1 Hence, for any
posterior probability matrix demonstrating such a pdf-ids sequence can be decoded
by the ASpIRE model as ehB .

4.3 Gradient Descent to Craft Audio Clip

Based on the analysis of the ASpIRE model, we use gradient descent to generate
AEs. As shown in Fig. 3, given the original song x(t) and the pure voice audio of
the desired command y(t), we use the ASpIRE model to decode them separately.
By analyzing the decoding procedures, we can get the output of DNN matrix A
of the original song (Step 1© in Fig. 3) and the phoneme identifiers of the desired
command audio (Step 4© in Fig. 3).

The DNN’s output A is a matrix containing the probability of each pdf-id at each
frame. Suppose there are n frames and k pdf-ids, and let ai,j (1 ≤ i ≤ n, 1 ≤
j ≤ k) be the element at the ith row and j th column in A. Then ai,j represents the
probability of the j th pdf-id at frame i. For each frame, we calculate the most likely
pdf-id as the one with the highest probability in that frame. That is,

mi = arg max
j

ai,j . (1)

1For instance, the pdf-ids sequence for ehB should be 6383, 5760, 5760, 5760, 5760, 5760, 5760,
5760, 5760, 5760.

108 X. Yuan et al.

Let m = (m1,m2, . . . ,mn). It represents a sequence of most likely pdf-ids of the
original song audio x(t). For simplification, we use g to represent the function that
takes the original audio as input and outputs a sequence of most likely pdf-ids based
on DNN’s predictions. That is,

g(x(t)) = m. (2)

As shown in Step 5© in Fig. 3, we can extract a sequence of pdf-ids of the command
b = (b1, b2, . . . , bn), where bi (1 ≤ i ≤ n) represents the highest probability pdf-
id of the command at frame i. To have the original song decoded as the desired
command, we need to identify the minimum modification δ(t) on x(t) so that m is
the same as b. Specifically, we minimize the L1 distance between the probabilities
of m and b. As m and b are related with the pdf-ids sequence, we define this method
as pdf-ids sequence matching algorithm.

arg min
δ(t)

‖Pg(x(t)+δ(t)) − Pb‖1. (3)

Based on these observations, we construct the objective function as Eq. (3), where
P is the function to represent the sum probabilities of the pdf-ids sequence. To
ensure that the modified audio does not deviate too much from the original one,
we optimize Eq. (3) under the constraint of |δ(t)| ≤ l. Finally, we use gradient
descent, an iterative optimization algorithm to find the local minimum of a function,
to solve Eq. (3). By repeating this process until the value starts to remain stable, the
algorithm is able to find a local minimum value. In particular, based on our objective
function, we revise the song x(t) into x ′(t) = x(t) + δ(t) with the aim of making
most likely pdf-ids g

(
x ′(t)

)
equal or close to b. Therefore, the crafted audio x ′(t)

can be decoded as the desired command.

4.4 Practical Adversarial Attack Against White-Box Model

In the real world, playing the AE through a speaker and recording it to physically
attack the white-box model (WAV-air-API, WAA attack) are difficult. This is mainly
due to the noises introduced by the speaker and environment, as well as the
distortion caused by the receiver of the IVC device. Hence, our idea is to add a
noise model to simulate the influence of the real world on AEs, considering the
speaker noise, the receiver distortion, as well as the generic background noise, and
integrate it in the approach in Sect. 4.3. We redesign the objective function as shown
in Eq. (4).

arg min
μ(t)

‖Pg(x(t)+μ(t)+n(t)) − Pb‖1, (4)

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 109

where μ(t) is the perturbation that we add to the original song, and n(t) is the noisy
audio. In this way, we can get the adversarial audio x ′(t) = x(t) + μ(t) that can be
used to launch the practical attack over the air.

Even though we can carefully pick up several songs and play them through the
speaker and then compare the recorded audio with the original one to build a noise
model, such noise model is quite device-dependent. Since different speakers and
receivers may introduce different noises when playing or receiving audio, x ′(t)
generated based on that noise model may only work with the devices that we use to
capture the noise. To enhance the robustness of x ′(t), we introduce random noise,
which is shown in Eq. (5). Here, the function rand() returns a vector of random
numbers in the interval (-N,N), which is saved as a “WAV” format file to represent
n(t). Our evaluation results show that this approach can make the adversarial audio
x ′(t) robust enough for different speakers and receivers.

n(t) = rand(t), |n(t)| <= N. (5)

4.5 Experiment Setup of CommanderSong Attack

The pure voice audio of the desired commands can be generated by any Text-
to-Speech (TTS) engine (e.g., Google Text-to-Speech, etc.) as long as it can be
correctly recognized by the ASpIRE model. We randomly downloaded 20 songs
from the Internet. To understand the impact of using different types of songs as the
carrier, we intended to choose songs from different categories, i.e., popular, rock,
rap, and soft music. Regarding the commands to inject, we chose 12 commonly used
ones, as shown in Table 2. One GPU server (1075 MHz GPU with 12GB memory,
and 512GB hard drive) was used as the computing environment.

Table 2 Results of the CommanderSong WTA attack

Command Success rate (%) SNR (dB)

Okay Google read mail 100 15.5

Okay Google good night 100 15.6

Okay Google flashlight on 100 14.7

Okay Google clear notification 100 14

Okay Google airplane mode on 100 16.9

Okay Google restart phone now 100 18.6

Okay Google read last sms from boss 100 15.1

Okay Google turn on wireless hot spot 100 14.7

Okay Google call one one zero one one nine one two zero 100 14.8

Echo turn off the light 100 17.3

Echo open the front door 100 17.2

Echo ask capital one to make a credit card payment 100 15.8

110 X. Yuan et al.

The WAA attack was conducted in a meeting room (16 m long, 8 m wide, and
4 m tall). We did not consider the invariance of background noise in different
environments, e.g., grocery, restaurant, office, etc., due to the following reasons:
(1) In a quite noisy environment like restaurant or grocery, even the original voice
command y(t) may not be correctly recognized by IVC devices. (2) Modeling any
slightly variant background noise itself is still an open research problem. The AEs
were played using three different speakers including a JBL clip2 portable speaker,
an ASUS laptop, and a SENMATE broadcast equipment. The distance between the
speaker and the pseudo IVC device (i.e., the microphone of the iPhone 6S) was set
at 1.5 m.

4.6 Evaluation of CommanderSong Attack

SNR is a parameter widely used to quantify the level of a signal power to noise, so
we use it to measure the distortion of the AE over the original audio. We use the
following equation: SNR(dB) = 10log10(Px(t)/Pδ(t)) to obtain SNR, where the
original song x(t) is the signal, while the perturbation δ(t) is the noise. Larger SNR
value indicates a smaller perturbation. To evaluate the human comprehension, we
conducted a survey examining the effects of “hiding” the desired command in the
song. Then, we checked whether CommanderSong can spread through Internet and
radio. Demos of attacks are uploaded on the website (https://sites.google.com/view/
commandersong/).

WTA Attack We got more than 200 AEs and sent them to the ASpIRE model. If
the AE can be identified as the command injected inside, we denote the attack is
successful. Table 2 shows the WTA attack results. The success rate is calculated as
the ratio of the number of words successfully decoded and the number of words
in the desired command. The success rate 100% means every word in the desired
command can be correctly decoded by the ASpIRE model. It can be seen that we can
generate AEs for all the target commands. The high SNR (14∼18.6 dB) indicates
that the perturbation in the original song is very small.

WAA Attack To practically attack the white-box model, we chose two commands
as in Table 2 and generated AEs based on Sect. 4.4. Then we play the AEs by
speakers over the air and use iPhone 6S to record the audio, which is sent to the
ASpIRE model to decode. Table 3 shows the WAA attack results. For both of the
two commands, JBL speaker overwhelms the other two with the success rate up to
96%, which might indicate its sound quality is better than the other two. All the SNR
values are below 2 dB, which indicates slightly bigger perturbation to the original
songs due to the random noise from the signal’s point of view.

https://sites.google.com/view/commandersong/
https://sites.google.com/view/commandersong/

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 111

Table 3 Results of the CommanderSong WAA attack

Command Speaker Success rate (%) SNR (dB)

Echo ask capital one JBL speaker 90 1.7

to make a credit ASUS Laptop 82 1.7

card payment SENMATE Broadcast 72 1.7

Okay Google call one JBL speaker 96 1.3

one zero one one ASUS Laptop 60 1.3

nine one two zero SENMATE Broadcast 70 1.3

Table 4 Human comprehension of CommanderSong WTA AEs

Music type Listened (%) Abnormal (%) Recognize command (%)

Soft music 13 15 0

Rock 33 28 0

Popular 32 26 0

Rap 41 23 0

Human Comprehension from the Survey To evaluate the effectiveness of hiding
the desired command in the song, we conducted a survey2 on Amazon Mechanical
Turk (MTurk), an online marketplace for crowdsourcing intelligence. We recruited
204 individuals who were asked to listen to 26 AEs, each lasting for about 20 s
(only about 4 or 5 s in the middle is crafted to contain the desired command). A
series of questions regarding each audio need to be answered, e.g., (1) whether they
have heard the original song before; (2) whether they heard anything abnormal than
a regular song (The four options are no, not sure, noisy, and words different than
lyrics.); (3) if choosing noisy option in (2), where they believe the noise comes
from, while if choosing words different than lyrics option in (2), they are asked to
write down those words, and how many times they listened to the song before they
can recognize the words.

Table 4 shows the results of the human comprehension of our WTA AEs. We
show the average results for songs belonging to the same category. Generally, the
songs in the soft music category are the best candidates for the carrier of the desired
command, with as low as 15% of participants noticed the abnormality. None of the
participants could recognize any word of the desired command injected in the AEs
of any category. Table 5 demonstrates the results of the human comprehension of our
WAA AEs. On average, 40% of the participants believed the noise was generated by
the speaker or like radio, while only 2.2% of them thought the noise from the AEs.
In addition, less than 1% believed that there were other words except the original

2The surveys in our CommanderSong attack and Devil’s Whisper attack will not cause any
potential risks to the participants (physical, psychological, social, legal, etc.). The questions in
our survey do not involve any confidential information about the participants. We obtained the IRB
Exempt certificates from our institutes.

112 X. Yuan et al.

Table 5 Human comprehension of the CommanderSong WAA AEs

Song name Listened (%) Abnormal (%) Noise speaker (%) Noise song (%)

Did You Need It 15 67 42 1

Outlaw of Love 11 63 36 2

The Saltwater Room 27 67 39 3

Sleepwalker 13 67 41 0

Underneath 13 68 45 3

Feeling Good 38 59 36 4

Average 19.5 65.2 40 2.2

lyrics. However, none of them successfully identified any word even repeating the
songs several times.

Automated Spreading To explore the potential channels that can be leveraged to
impact a large amount of victims automatically, we consider the online sharing
platforms like YouTube and radio signal to spread CommanderSong attack. We
picked up one five-second WAA AE embedded with the command “open the
door” and applied Windows Movie Maker software to make a video and upload
it on YouTube. We then connected our desktop audio output to Bose Companion
2 speaker and installed iFLYTEK Input application on LG V20 smartphone. The
distance between the speaker and the phone can be up to 0.5 m, and iFLYTEK
Input can decode the command successfully. In addition, we used HackRF One,
a hardware that supports Software Defined Radio (SDR) to broadcast the AE at the
frequency of FM 103.4 MHz, simulating a radio station. We setup a radio at the
corresponding frequency, so it can receive and broadcast the AE signal. The results
show that iFLYTEK Input can successfully recognize the command “open the door”
from the audio played by the radio.

5 Black-Box Attack

After successfully attacking the white-box model in the real world, we consider
to attack the black-box ASR models, especially the commercial IVC devices. As
we have no knowledge of the internals of the black-box ASR systems, e.g., model
parameters or hyperparameters, we try the “Transferability Based Approach” (i.e.,
enhanced “CommanderSong” attack) and “Local Model Approximation Approach”
(i.e., training a substitute model) to attack them. However, neither of them work
well for all the target commands. Finally, by taking advantage of these approaches,
we propose the “Alternate Models based Generation Approach” (i.e., “Devil’s
Whisper” attack). The results show that “Devil’s Whisper” is a general approach
for physical adversarial attacks against the black-box ASR systems (e.g., Google
Assistant/Home, Microsoft Cortana, and Amazon Echo).

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 113

5.1 Threat Model of Black-Box Attack

A straightforward method to attack IVC devices is to generate AEs based on a
white-box model and transfer the AEs to the black-box model. The success of the
transferability based attack depends on the similarity between the internal structure
and parameters of the white-box and target black-box models. We tested the AEs of
the CommanderSong WAA attack on the ASR systems such as the Google Cloud
Speech-to-text API and found that only few AEs can be partially recognized as “Hey
Google,” “phone,” etc. The success rate of the transferability on Amazon Transcribe,
the API service offered by Amazon, is even lower. Therefore, we try to enhance the
transferability of CommanderSong attack and probe the target black-box model to
generate robust AEs.

To probe the black-box model and train a local substitute model, we should
continually input samples and get the recognized results. Even though previous work
shows that we can obtain the recognized results of the IVC devices (e.g., Amazon
Echo), we cannot get the confidence value, which indicates the reliability of the
results. Therefore, it is very difficult to directly probe and train a substitute model
of the IVC devices. Instead, we assume the corresponding online Speech-to-Text
API services, i.e., providing real time decoding results and confidence values of the
audio, are open to public. This assumption is valid for most of the popular IVC
devices available on the market, e.g., Google Cloud Speech-to-Text API, Microsoft
Bing Speech Service API, etc. Either free or pay as you go, they are accessible to
the third-party developers. We assume that for the same company, the ASR system
used to provide speech API service and that used for the IVC devices is the same or
similar.

Once the AE is generated based on the common white-box model (e.g., ASpIRE
model) and the special substitute model, we assume it will be played by speakers,
which is placed not quite far away (e.g., 5 ∼ 200 cm) from the target IVC devices.
Furthermore, we do not have the knowledge of the speakers or the microphones of
the target devices. Once the attack is successful, an indicator could be observed. For
instance, the AE with the command of “Echo turn off the light” is successful by
observing the corresponding light off.

5.2 Transferability Based Approach

Recent research demonstrates that the transferability could work on heterogeneous
models through the improvement of AE generation algorithm [5]. The momentum
method [21] can accumulate a velocity vector in the gradient direction during
iterations. In each iteration, the gradient is saved and then combined using a decay
factor with the previously saved gradients. By combining these gradients together,
the gradient direction will be much more stabilized and the transferability of AEs
could be enhanced. Therefore, we enhance the CommanderSong attack by applying

114 X. Yuan et al.

the Momentum based Iterative Fast Gradient Method (MI-FGM), which we name as
the enhanced CommanderSong attack. Furthermore, we added random noise model
in each iteration to improve the robustness of the AEs.

Based on our evaluation, the enhanced approach helps to generate a few AEs
attacking black-box ASR API services (e.g., Google Cloud Speech-to-Text API)
with low success rate and works even poorer on IVC devices. The main reason
is that these AEs mainly depend on the example’s transferability to other black-
box systems. Thus, we consider the transferability based approach has one major
limitation: the crafted AEs are generated more toward the white-box model.
However, the decision boundaries may vary between the white-box model used to
generate the AEs and the target black-box model.

5.3 Local Model Approximation Approach

Training Set with Limited Number of Phrases Generally, the commercial ASR
systems are trained with significantly large proprietary corpus, and the structure of
the DNN can be quite complicated. Therefore, it is extremely difficult to obtain
the corpus or even infer the details about the DNN. In other words, training a local
substitute model completely approximating the target commercial black-box system
is almost unpractical. However, since our ultimate goal is to hack the IVC devices
and in turn leverage it to compromise the victim’s life, we are only interested in a
limited number of commands such as “open my door,” “play music,” etc. A side
product of selecting those commands is that, based on our experiences, the IVC
devices are trained to be quite robust to them, e.g., “open my door” on Amazon
Echo and “play music” on Google Assistant. Hence, we just need to train a local
model approximating the target system on the most frequently used commands, also
the ones we are interested in, on IVC devices.

Training Set Augment We use TTS services to generate audio clips for our desired
commands as the training data for local model approximation. For the local partial
approximation, the training data has two problems: the number of commands in the
training data is too limited for training and the robustness of an IVC device to a
command is unknown. To solve these problems, we augment the training data by
tuning the TTS audio clips, i.e., either changing the speech rate or adding noises to
them. We assume that the speech recognition mechanisms of the IVC devices are
similar to that of the API service provided by the same company.3 Hence, we query
the corresponding online speech API service on the tuned audios and filter out those
either not correctly decoded or decoded correctly but with low confidence values.
The magnitude of the corpus augmented in this way is not very big, usually 3 ∼ 6

3Although previous studies [6, 7] show that it is possible to recover Speech-to-Text functionality
from some IVC devices like Echo, their approaches cannot obtain the confidence values for the
decoded results, which are required in our approach.

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 115

hours for ten selected commands, which can be finished in about 1500 queries on
the target speech API service.

5.4 Alternate Models Based Generation Approach

Based on the substitute model of Google Speech-to-Text “command_and_search
model,” we use the “pdf-ids sequence matching algorithm” and “MI-FGM” to
generate AEs for the target commands. Less than 25% of the commands can be
successfully injected into songs to attack Google. In other words, the “Local Model
Approximation Approach” has poor performance on the desired commands. As the
AEs generated from the ASpIRE model can be transferred to the target black-box
model in some extent, we take it as the large base model and use it to enhance
the small substitute model to generate AEs. In the hope that the large base model
can generate most of the acoustic features of the desired command, and the small
substitute model fine-tunes them, since it was trained based on an augmented corpus
(details in Sect. 5.3) that can be recognized as the target commands by the black-box
model.

As shown in Fig. 4, our Devil’s Whisper attack starts by transferability based
approach (Step 1© in Fig. 4), via an enhancement of our CommanderSong attack
(details in Sect. 5.2). Then we describe the novel approach of “Alternate Models
based Generation Approach” (Step 2©, 3©, and 4© in Fig. 4). Furthermore, the last
generated AE of the base model will be fed into the substitute model (Step 2© in
Fig. 4). Thus, the unique features of the desired command on the target model can be
adjusted in a fine-grained manner by the substitute model (Step 3© in Fig. 4). During
the AEs generation process under each model, we intermittently select the crafted
audios to query the target ASR API service to reduce the query times (Step 5© and
Step 6© in Fig. 4). If none of them works, the last crafted audio from the substitute
model will be fed to the base model as the input for the next epoch (Step 4© in
Fig. 4). Finally, we select the effective AEs to compromise the IVC devices (Step 7©
in Fig. 4).

Base
Model

AEs

Substitute
Model

AEs

Online
Speech API

Service

Target
IVC Devices

Successful
AEs

Failed
AEs

Original Audio

Alternate Models
based Generation

Test on Black-
box Platformsthe last generated AE

the last generated AE
Query

Reduction

Fig. 4 Architecture of the general adversarial attack (Devil’s Whisper attack) against ASR API
services and IVC devices

116 X. Yuan et al.

Algorithm 1: Alternate Models based Generation Algorithm (Devil’s Whisper)
Require: The function to get output from black-box model ftarget , the original audio x0, the

generated audio x∗, the target label y (ftarget (x0) �= y), the maximum allowed epoch
EpochMax, the total iterations of the base model in one Epoch TB , the total iterations of
the substitute model in one Epoch TS .

Ensure: A set of successful AEs collection X∗, all with label y under ftarget .
1: x∗ = x0; CurrentEpoch = 0;
2: while CurrentEpoch < EpochMax

3: AEgeneration (base model); if ftarget (x
∗) = y, put x∗ into X∗;

4: AEgeneration (substitute model); if ftarget (x
∗) = y, put x∗ into X∗;

5: CurrentEpoch + +;
6: end while
7: return X∗

The alternate models based generation approach (Devil’s Whisper attack) is
summarized in Algorithm 1. Specifically, Line 3 and Line 4 are for the AE
generation on the large base model and the small substitute model, respectively.
The EpochMax parameter restrains the number of total alternations. During the
first epoch, if after TB iterations, effective AE is still not generated (i.e., no x∗ can
be recognized as the target command y), we assume the transferability based attack
does not work well toward the target black-box system. We will use the output
x∗ from the last iteration as the input to the local substitute model and continue to
generate x∗ using the same gradient algorithm. If no success AEs are generated until
TS iterations with the substitute model, we input the last x∗ to the base model for
the next epoch. As the successful sample to attack the target ASR API service does
not necessarily indicate the success toward IVC devices, instead of breaking the
function, once a successful AE (x∗) is found, we save it toward the target ASR API
service. Finally, we can return a set X∗, where we preserve all potential effective
AEs toward the target IVC devices.

5.5 Experiment Setup of Devil’s Whisper Attack

Hardware We conducted the experiment on the sever equipped with four Nvidia
Tesla K40m GPUs and 2 x 10 core Intel Xeon E5-2650 2.30 GHz processors, with
131 Gigabytes of RAM and 1 Terabyte Hard Drive. We used a laptop (Lenovo
W541/Dell XPS 15/ASUS P453U) and a phone (iPhone SE/iPhone 8) connected
to a speaker (JBL clip 2/3 portable speaker) to play out AEs. The target IVC devices
were Google Home Mini, Amazon Echo 1st Gen, and voice assistants on phones
(Google Assistant App on Samsung C7100/iPhone SE and Microsoft Cortana App
on Samsung C7100/iPhone 8). The AEs on IBM WAA tests were recorded by
Huawei P30.

TargetModels and Commands For the target black-box platforms, we considered
the speech recognition devices/systems from Google, Microsoft, Amazon, and IBM.

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 117

We only focused on the specific commands frequently used on these devices, e.g.,
“turn off the light,” “navigate to my home,” “call my wife,” “open YouTube,”
“turn on the WeMo Insight,” etc. For each commercial company, we selected 10
such commands (Table 9 in Appendix) and further appended the default wake-up
words for different systems (Google Assistant/Home, Amazon Echo, and Microsoft
Cortana) before each of them.

Training the LocalModel We chose the Mini Librispeech model4 as the substitute
model to approximate the target black-box model. We used 5 TTS services to
synthesize the desired commands audio clips, with 14 speakers in total. After that,
we enriched the TTS corpus by adding background noise and twisting the audio. It
may lead to overfitting if the substitute model is only trained with the tuned TTS
audios. Therefore, we constructed the training corpus by combining the tuned TTS
audio clips (generated from the queries on the target model) and the supplemental
corpus of Mini Librispeech.

The Original Audio We selected the 10 songs in the soft and popular categories of
CommanderSong, which are less noisy, allowing the integrated perturbations more
likely to overwhelm the background music and be decoded correctly by the target
IVC devices. To further evaluate the 10 songs, we utilized two commands “Okay
Google navigate to my home” and “Hey Cortana turn off the bedroom light” and
ran our Devil’s Whisper approach to embed the commands into the songs, against
the speech recognition APIs provided by Google and Microsoft Bing. The results
show that all the 10 songs can serve as carriers for the commands to ensure their
recognition by the APIs. However, when listening to these AEs, we found that four
instances using soft songs and one using a popular song were less stealthy than
the other 5 manipulated songs and therefore selected the latter for all follow-up
experiments. Our experimental results show that for each target command, there are
at least 2 music clips across these 5 songs that can be crafted as effective and stealthy
AEs. Therefore, we chose the 5 songs as our carriers.

5.6 Evaluation of Devil’s Whisper Attack

We evaluate the effectiveness of Devil’s Whisper attack on the commercial Speech-
to-Text API services and IVC devices. Specifically, the effectiveness of our approach
for the target commands is evaluated using the success rate of command (SRoC),
that is, the number of successful commands vs. the total number of the commands
evaluated on a target service. Here a successful command is the one for which
we can generate at least one workable AE using our approach. Furthermore, to
evaluate the robustness of our attack, we define the success rate of AE (SRoA)
as the ratio of the number of successful tests to the total number of tests if an AE

4Both Mini Librispeech and ASpIRE use chain model. We used the default architecture and
hyperparameters of Mini Librispeech to train all four substitute models.

118 X. Yuan et al.

Table 6 The overall SRoC results on API services of Devil’s Whisper attack

Google Microsoft Amazon IBM

Black box Phone Command Bing Transcribe STT

SRoC 10/10 10/10 10/10 4/10 10/10

SNR (dB) 11.97 9.39 13.36 11.21 10.06

Note: (1) “Phone” and “Command” represent the “phone_call model” and “command_and_search
model” of Google Cloud Speech-to-Text API, respectively. (2) “Microsoft Bing” represents the
Microsoft Bing Speech Service API. (3) “IBM STT” represents the IBM Speech-to-Text API. (4)
The results were all based on the tests conducted in October 2019

has been repeatedly played. Attack demos are available on the website (https://sites.
google.com/view/devil-whisper), and the source code is uploaded (https://github.
com/RiskySignal/Devil-Whisper-Attack).

Speech-to-Text API Services Attack We feed our AEs directly into the corre-
sponding API services and observe the results. Since we do not need to wake up
the IVC devices, we consider the AE successfully attacks the target if the returned
transcript matches the desired command. The results are shown in Table 6,5 with
the SNR being the average of all commands on each black-box platform (Table 8
in Appendix shows the result of each individual command). It can be seen that the
attack achieves a SRoC of 100% for all Speech-to-Text API services except Amazon
Transcribe API.

As for Amazon Transcribe API service, we only crafted successful AEs on 4
out of 10 target commands. We then performed more tests on Amazon Transcribe
API and found that it cannot even recognize some plain TTS audio clips for the
target commands correctly. In contrast, these commands can always be recognized
by Amazon Echo. There can be reasons for such difference. First, different
models could be used by Amazon Transcribe API and Amazon Echo. Second, the
developers of Amazon Echo may set lower threshold to identify voice commands,
and thus, it is more sensitive to the voice commands when used physically.

IVC Devices Attack We selected the AEs that can successfully attack the API
services with high confidence score (≥ 0.6) to attack the IVC devices. Specifically,
since the AEs work poorly on Amazon Transcribe API, we tested them on Amazon
Echo directly, even if they failed on Amazon Transcribe API. If the devices respond
to the played AE in the same way as the regular voice command from human, we
consider the AE for this command successful. As we cannot find any IVC devices
for IBM, we used “Wav-air-API” (WAA) to simulate it.

As shown in Table 7, the average SRoC over all IVC devices can achieve to 98%,
which shows Devil’s Whisper is very effective in attacking real-world IVC devices.
For most of the black-box models, we can always find the AEs that successfully

5For the four models of Google Cloud Speech-to-Text API, we show the results of “phone_call
model” and “command_and_search model,” since according to our tests the former is similar to
“video model” and the latter is similar to “default model”.

https://sites.google.com/view/devil-whisper
https://sites.google.com/view/devil-whisper
https://github.com/RiskySignal/Devil-Whisper-Attack
https://github.com/RiskySignal/Devil-Whisper-Attack

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 119

Table 7 The overall SRoC results on IVC devices of Devil’s Whisper attack

Google Microsoft Amazon IBM

Black box Assistant Home Cortana Echo WAA

SRoC 10/10 9/10 10/10 10/10 10/10

SNR (dB) 9.03 8.81 10.55 12.10 7.86

Note: (1) “WAA” is used to represent “Wav-air-API” attack. (2) The results were all based on the
tests conducted in October 2019

attack their corresponding IVC devices from the ones that have fooled the ASR
API services, except Amazon Transcribe API. The full list of target commands on
different IVC devices is shown in Table 9 in Appendix. As we can see, some of
them can cause safety or privacy issues, e.g., “Echo open my door,” “Okay Google
navigate to my home,” “Okay Google take a picture,” etc. The SRoA is measured
over 30 tests for each target command. The results show that 76% (38/50) of the
commands have SRoAs over 1/3, showing that our attack is quite robust against the
IVC devices in the real world.

We used a “SMART SENSOR AS824” to measure the volume of the played AEs.
The background noise was about 50 dB, and the played audios were about 65 ∼ 75
dB, compared to some special cases of the sound level, e.g., talking at 3 feet (65
dB), living room music (76 dB). We also conducted experiments to test our AEs in
realistic distance. For example, the AE with the command “Echo turn off the light”
can successfully attack Echo as far as 200 cm away, and the AE with the command
“Hey Cortana open the website” can successfully attack Microsoft Cortana as far as
50 cm away.

Human Perception of Devil’s Whisper Attack We chose eight samples carrying
different target commands (two AEs for Google Assistant, Google Home, Amazon
Echo, and Microsoft Cortana, respectively) from our attack to conduct a survey
on Amazon Mechanical Turk for the evaluation of human perception. The survey
results show that 16.1% of participants think that somebody is talking in the
background when they listen to Devil’s Whisper, but nobody could recognize any
command when an AE was played to them. Even if the participants were exposed to
the same AEs for the second time, only 1.4% of them could tell over 50% of words
in the target commands in the AEs. This indicates that our AEs remain very stealthy
for the survey users.

6 Defense

To defense the adversarial attack against the ASR systems, we can mitigate the
adversarial perturbations by signal processing (e.g., audio downsampling, signal
smoothing, etc.) and authentication (e.g., source identification).

120 X. Yuan et al.

Audio Downsampling To reduce the voice command features in the AE, we
can always first downsample it to a lower sampling rate and upsample it to the
sampling rate that is accepted by the target black-box model. During such process,
the adversarial perturbations may be mitigated, which makes the AEs fail to be
recognized by the target model. For instance, we choose the AEs of IBM WAA
attack. When first downsampled to 5200 Hz and then upsampled to 8000 Hz, none
of them can succeed to attack IBM. In contrast, the regular recorded human voice
and TTS audios can still be recognized correctly after such process. Hence, audio
downsampling could be one way in detecting speech AEs.

Signal Smoothing Since the effectiveness of our AEs is highly dependent on the
added perturbations by gradient algorithm, we can conduct local signal smoothing
toward AEs to weaken the perturbations. Specifically, for a piece of audio x, we can
replace the sample xi with the more smooth value according to its local reference
sequence, i.e., the average value of the k samples before and after xi . Hence, the
added perturbations may be mitigated by this method.

Audio Source Identification Audio source identification aims to identify the
source of the audio, e.g., from an electronic speaker or human. Such defence is
based on the assumption that the legitimate voice commands should only come from
human rather than an electronic speaker. Therefore, if the audio is detected not from
human, the audio signal will be simply ignored. Chen et al. [22] shows that they can
identify the audio source by either examining the electromagnetic wave from the
audio or training a model to label the audio. Such defence mechanism could work
for most of the existing speech AEs that require a speaker to play. However, the
attacker could play the samples over a long range, which might evade the detection.

7 Conclusion

In this paper, we perform practical adversarial attacks on ASR systems. By injecting
“voice” commands into songs, our generated AEs can successfully fool the acoustic
model and language model utilized in ASR systems after bypassing their pre-
processing and feature extraction procedures. In addition, the AEs are stealthy
enough to be recognized by humans. In detail, with no prior knowledge of the
targets’ machine learning models and their parameters, we enhance a simple
substitute model roughly approximating the target black-box platform with a white-
box model that is more advanced yet unrelated to the target. The two models are
found to effectively complement each other for generating highly transferable and
generic AEs on the target, which only require around 1500 queries on remote
services to ensure a nearly 100% success rate of command on attacking most
popular commercial ASR systems (e.g., Google Speech-to-Text, IBM Speech-to-
Text, and Microsoft Bing Speech service) and IVC devices (Google Assistant,
Google Home, Amazon Echo, and Microsoft Cortana).

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 121

Appendix

The detail results of Devil’s Whisper attack on Speech-to-Text API and IVC devices
are shown in Tables 8 and 9, respectively. All tests were conducted in October 2019.
We mark the failure of the target command with “X,” and the SNR of one success
AE of the target command is listed. The results in Table 8 show that attacking
Amazon Transcribe API is difficult. As we filter the TTS audios for the corpus of
the substitute model, we find that Amazon Transcribe API is harder to recognize the
TTS than other API services, such as the word “Echo.” Therefore, we think that the
recognition of Amazon Transcribe API is much rigorous. The practical IVC devices
tests were conducted in two meeting rooms about 12 and 20 square meters, 4 m
high. The volume of AEs is about 65 ∼ 75 dB. The distance ranges 5 ∼ 50 cm
(5 ∼ 200 cm for Echo). In the tests, the language of the devices needs to be English
(US) only and the region/location needs to be US only (if apply). The AE carrying
“Ok Google turn on the Wi-Fi” was tested on iPhone 8 using Dell XPS 15 connected
to a JBL Clip 3 speaker, while it cannot succeed on iPhone SE as the other AEs.

Table 8 Detail results of the Speech-to-Text API services attack

Black-box Command SNR (dB)

Google Okay Google turn off the light 14.32

phone_call API Okay Google play music 15.17

Okay Google take a picture 13.92

Okay Google call 911 12.82

Okay Google turn on airplane mode 11.91

Okay Google navigate to my home 14.28

Okay Google set an alarm on 8 am 12.40

Okay Google open YouTube 7.19

Okay Google turn on the Wi-Fi 8.21

Okay Google turn on the Bluetooth 9.44

Google Okay Google turn off the light 13.13

command_ Okay Google play music 10.07

and_search API Okay Google take a picture 9.11

Okay Google call 911 12.80

Okay Google turn on airplane mode 8.01

Okay Google navigate to my home 13.36

Okay Google set an alarm on 8 am 5.82

Okay Google open YouTube 8.46

Okay Google turn on the Wi-Fi 5.99

Okay Google turn on the Bluetooth 7.11

(continued)

122 X. Yuan et al.

Table 8 (continued)

Black-box Command SNR (dB)

Microsoft Bing Hey Cortana send a text 14.30

Speech Service API Hey Cortana make it warmer 14.97

Hey Cortana open the website 13.4

Hey Cortana where is my phone? 13.52

Hey Cortana what is the weather? 14.45

Hey Cortana turn off the computer 14.11

Hey Cortana turn on the coffee maker 13.72

Hey Cortana turn off the bedroom lights 13.55

Hey Cortana set the temperature to 72 degrees 9.73

Hey Cortana add an appointment to my calendar 11.85

Amazon Echo play music 12.25

Transcribe API Echo call my wife X

Echo open my door X

Echo where is my car? 10.92

Echo turn off the light X

Echo clear notification 13.27

Echo what is the weather? X

Echo turn off the computer 8.39

Echo turn on the TV X

Echo turn on the WeMo Insight X

IBM Education is provided by schools 12.51

Speech-to-Text API Teachers are trained in normal schools 13.72

What would you recommend? 12.30

The economist provides news and information 11.54

Business is the activity of making money 13.86

Share the new version 11.28

This article is about the profession 8.08

All governments have an official form 6.10

Children are divided by age groups into grades 6.75

A partnership is a business owned by two or more people 4.41

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 123

T
ab

le
9

D
et

ai
lr

es
ul

ts
of

th
e

IV
C

de
vi

ce
s

at
ta

ck

B
la

ck
-b

ox
C

om
m

an
d

SN
R

(d
B

)
SR

oA
Sp

ea
ke

r
R

ec
or

de
r

A
ud

io
so

ur
ce

G
oo

gl
e

O
ka

y
G

oo
gl

e
ca

ll
91

1
9.

50
19

/3
0

JB
L

iP
ho

ne
L

en
ov

o

A
ss

is
ta

nt
O

ka
y

G
oo

gl
e

se
ta

n
al

ar
m

on
8

am
8.

08
4/

30
C

li
p

2
SE

W
54

1

V
er

si
on

-
O

ka
y

G
oo

gl
e

ta
ke

a
pi

ct
ur

e
5.

85
5/

30

0.
1.

18
79

4
O

ka
y

G
oo

gl
e

tu
rn

of
f

th
e

li
gh

t
10

.7
5

16
/3

0

55
13

O
ka

y
G

oo
gl

e
pl

ay
m

us
ic

11
.6

2
8/

30

O
ka

y
G

oo
gl

e
tu

rn
on

ai
rp

la
ne

m
od

e
8.

30
19

/3
0

O
ka

y
G

oo
gl

e
na

vi
ga

te
to

m
y

ho
m

e
12

.0
2

18
/3

0

O
ka

y
G

oo
gl

e
op

en
Y

ou
T

ub
e

9.
49

4/
30

O
ka

y
G

oo
gl

e
tu

rn
on

th
e

B
lu

et
oo

th
9.

44
15

/3
0

O
ka

y
G

oo
gl

e
tu

rn
on

th
e

W
i-

Fi
5.

27
12

/3
0

**
**

**

G
oo

gl
e

O
ka

y
G

oo
gl

e
pl

ay
m

us
ic

11
.6

2
28

/3
0

JB
L

G
oo

gl
e

iP
ho

ne

H
om

e
O

ka
y

G
oo

gl
e

tu
rn

of
f

th
e

li
gh

t
10

.7
5

15
/3

0
C

li
p

3
H

om
e

SE

V
er

si
on

-
O

ka
y

G
oo

gl
e

tu
rn

on
ai

rp
la

ne
m

od
e

8.
30

18
/3

0
M

in
i

1.
42

.1
71

O
ka

y
G

oo
gl

e
ca

ll
91

1
12

.7
9

25
/3

0

86
1

O
ka

y
G

oo
gl

e
se

ta
n

al
ar

m
on

8
am

X
X

O
ka

y
G

oo
gl

e
ta

ke
a

pi
ct

ur
e

5.
85

24
/3

0

O
ka

y
G

oo
gl

e
na

vi
ga

te
to

m
y

ho
m

e
7.

62
26

/3
0

O
ka

y
G

oo
gl

e
op

en
Y

ou
T

ub
e

9.
49

22
/3

0

O
ka

y
G

oo
gl

e
tu

rn
on

th
e

W
i-

Fi
5.

16
6/

30

O
ka

y
G

oo
gl

e
tu

rn
on

th
e

B
lu

et
oo

th
7.

67
21

/3
0

(c
on

ti
nu

ed
)

124 X. Yuan et al.

T
ab

le
9

(c
on

ti
nu

ed
)

B
la

ck
-b

ox
C

om
m

an
d

SN
R

(d
B

)
SR

oA
Sp

ea
ke

r
R

ec
or

de
r

A
ud

io
so

ur
ce

M
ic

ro
so

ft
H

ey
C

or
ta

na
se

nd
a

te
xt

11
.7

1
21

/3
0

JB
L

iP
ho

ne
A

SU
S

C
or

ta
na

H
ey

C
or

ta
na

m
ak

e
it

w
ar

m
er

9.
28

18
/3

0
C

li
p

2
8

P4
53

U

V
er

si
on

-3
H

ey
C

or
ta

na
op

en
th

e
w

eb
si

te
12

.4
4

29
/3

0

.3
.2

.2
68

2
H

ey
C

or
ta

na
w

he
re

is
m

y
ph

on
e?

11
.6

7
6/

30

H
ey

C
or

ta
na

w
ha

ti
s

th
e

w
ea

th
er

?
9.

92
15

/3
0

H
ey

C
or

ta
na

tu
rn

of
f

th
e

co
m

pu
te

r
10

.0
7

7/
30

H
ey

C
or

ta
na

tu
rn

on
th

e
co

ff
ee

m
ak

er
10

.7
3

15
/3

0

H
ey

C
or

ta
na

tu
rn

of
f

th
e

be
dr

oo
m

li
gh

ts
9.

63
13

/3
0

H
ey

C
or

ta
na

se
tt

he
te

m
pe

ra
tu

re
to

72
de

gr
ee

s
10

.2
4

9/
30

H
ey

C
or

ta
na

ad
d

an
ap

po
in

tm
en

tt
o

m
y

ca
le

nd
ar

9.
77

14
/3

0

A
m

az
on

E
ch

o
pl

ay
m

us
ic

13
.4

3
21

/3
0

JB
L

E
ch

o
A

SU
S

E
ch

o
E

ch
o

ca
ll

m
y

w
if

e
10

.8
6

17
/3

0
C

li
p

2
1s

tg
en

P4
53

U

V
er

si
on

-6
E

ch
o

op
en

m
y

do
or

11
.3

6
17

/3
0

47
58

87
20

E
ch

o
w

he
re

is
m

y
ca

r?
11

.3
1

23
/3

0

E
ch

o
tu

rn
of

f
th

e
li

gh
t

12
.3

6
28

/3
0

E
ch

o
cl

ea
r

no
ti

fic
at

io
n

12
.4

5
10

/3
0

E
ch

o
w

ha
ti

s
th

e
w

ea
th

er
?

11
.1

3
30

/3
0

E
ch

o
tu

rn
of

f
th

e
co

m
pu

te
r

14
.2

8
11

/3
0

E
ch

o
tu

rn
on

th
e

T
V

11
.5

6
6/

30

E
ch

o
tu

rn
on

th
e

W
eM

o
In

si
gh

t
12

.2
1

14
/3

0

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 125

IB
M

E
du

ca
ti

on
is

pr
ov

id
ed

by
sc

ho
ol

s
9.

21
4/

30
JB

L
H

ua
w

ei
iP

ho
ne

(W
A

A
)

Te
ac

he
rs

ar
e

tr
ai

ne
d

in
no

rm
al

sc
ho

ol
s

13
.7

4
10

/3
0

C
li

p
2

P3
0

SE

W
ha

tw
ou

ld
yo

u
re

co
m

m
en

d?
12

.2
4

25
/3

0

T
he

ec
on

om
is

tp
ro

vi
de

s
ne

w
s

an
d

in
fo

rm
at

io
n

8.
07

24
/3

0

B
us

in
es

s
is

th
e

ac
tiv

it
y

of
m

ak
in

g
m

on
ey

4.
07

24
/3

0

Sh
ar

e
th

e
ne

w
ve

rs
io

n
7.

89
12

/3
0

T
hi

s
ar

ti
cl

e
is

ab
ou

tt
he

pr
of

es
si

on
7.

82
26

/3
0

A
ll

go
ve

rn
m

en
ts

ha
ve

an
of

fic
ia

lf
or

m
5.

33
13

/3
0

C
hi

ld
re

n
ar

e
di

vi
de

d
by

ag
e

gr
ou

ps
in

to
gr

ad
es

6.
55

18
/3

0

A
pa

rt
ne

rs
hi

p
is

a
bu

si
ne

ss
ow

ne
d

by
tw

o
or

m
or

e
pe

op
le

3.
72

2/
30

126 X. Yuan et al.

References

1. Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., xZhang, K., Huang, H., Wang,
X., Gunter, C.A.: Commandersong: A systematic approach for practical adversarial voice
recognition. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 49–64 (2018)

2. Chen, Y., Yuan, X., Zhang, J., Zhao, Y., Zhang, S., Chen, K., Wang, X.: Devil’s Whisper:
A general approach for physical adversarial attacks against commercial black-box speech
recognition devices. In: 29th USENIX Security Symposium (USENIX Security 20) (2020)

3. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. Preprint (2013). arXiv:1312.6199

4. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-
box attacks. Preprint (2016). arXiv:1611.02770

5. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box
attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pp. 506–519. ACM (2017)

6. D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason, A. Bates, M. Bailey. Skill
squatting attacks on Amazon Alexa. In: 27th {USENIX} Security Symposium ({USENIX}
Security 18), pp. 33–47 (2018)

7. Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., Qian, F.: Dangerous skills: Understanding and
mitigating security risks of voice-controlled third-party functions on virtual personal assistant
systems. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 1381–1396. IEEE
(2019)

8. Zhang, Y., Xu, L., Mendoza, A., Yang, G., Chinprutthiwong, P., Gu, G.: Life after speech
recognition: Fuzzing semantic misinterpretation for voice assistant applications. In: Network
and Distributed Systems Security (NDSS) Symposium (2019)

9. Kasmi, C., Esteves, J.L.: IEMI threats for information security: Remote command injection on
modern smartphones. IEEE Trans. Electromagn. Compat. 57(6), 1752–1755 (2015)

10. Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., Xu, W.: DolphinAttack: Inaudible voice
commands. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 103–117. ACM (2017)

11. Yan, Q., Liu, K., Zhou, Q., Guo, H., Zhang, N.: SurfingAttack: Interactive hidden attack on
voice assistants using ultrasonic guided waves. In: Network and Distributed Systems Security
(NDSS) Symposium (2020)

12. Vaidya, T., Yuankai, Z., et al.: Cocaine noodles: Exploiting the gap between human
and machine speech recognition. In: 9th USENIX Workshop on Offensive Technologies
(WOOT’15). USENIX Association (2015)

13. Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner, D., Zhou, W.:
Hidden voice commands. In: 25th USENIX Security Symposium (USENIX Security 16),
Austin, TX (2016)

14. Abdullah, H., Garcia, W., Peeters, C., Traynor, P., Butler, K.R.B., Wilson, J.: Practical hidden
voice attacks against speech and speaker recognition systems. In: Network and Distributed
Systems Security (NDSS) Symposium (2019)

15. Carlini, N., Wagner, D.: Audio adversarial examples: Targeted attacks on speech-to-text. In:
2018 IEEE Security and Privacy Workshops (SPW), pp. 1–7. IEEE (2018)

16. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks against automatic
speech recognition systems via psychoacoustic hiding. In: Network and Distributed Systems
Security (NDSS) Symposium (2019)

17. Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., Raffel, C.: Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition. In: International Conference
on Machine Learning (ICML), pp. 5231–5240 (2019)

18. Yakura, H., Sakuma, J.: Robust audio adversarial example for a physical attack. Preprint
(2018). arXiv:1810.11793

Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems 127

19. Chen, T., Shangguan, L., Li, Z., Jamieson, K.: Metamorph: Injecting inaudible commands into
over-the-air voice controlled systems. In: Network and Distributed Systems Security (NDSS)
Symposium (2020)

20. Yuan, X., Chen, Y., Wang, A., Chen, K., Zhang, S., Huang, H., Molloy, I.M.: All your
Alexa are belong to us: A remote voice control attack against echo. In: 2018 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

21. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial attacks
with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9185–9193 (2018)

22. Chen, S., Ren, K., Piao, S., Wang, C., Wang, Q., Weng, J., Su, L., Mohaisen, A.: You can
hear but you cannot steal: Defending against voice impersonation attacks on smartphones.
In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on,
pp. 183–195. IEEE (2017)

A Survey on Secure Outsourced Deep
Learning

Xu Ma, Xiaoyu Zhang, Changyu Dong, and Xiaofeng Chen

1 Introduction

The recent advances in deep learning [3] coupled with growth in computational
capacities have improved the state of the art in many data-driven applications.
For example, deep learning driven automatic detection and monitoring system can
extract actionable information from vast amounts of data that in the past would
have been impossible. Data analytics based on deep learning have transformed the
practice in healthcare and financial systems.

However, deep learning algorithms require a large amount of storage and
computation resources, and in general the performance of a machine learning model
is highly influenced by the quality and volume of the training dataset. Therefore,
the clients especially those with limited resources would prefer to outsource deep
learning tasks to a cloud server who can provide almost unlimited storage and
computation resources. But serious privacy and security issues also emerge from
outsourced deep learning. Firstly, highly sensitive information can be included in
the training data, such as healthcare and financial data. Directly uploading sensitive
data in the clear to a potentially curious or malicious cloud brings high risks of
information leakage. In addition, when distributed or collaborative learning has to
be implemented over multiple datasets, privacy concerns also extend to malicious

X. Ma
State Key Laboratory of Integrated Service Networks (ISN), Xidian University, Xi’an, China

School of Software, Qufu Normal University, Qufu, China

X. Zhang · X. Chen (�)
State Key Laboratory of Integrated Service Networks (ISN), Xidian University, Xi’an, China
e-mail: xfchen@xidian.edu.cn

C. Dong
School of Computing, Newcastle University, Newcastle upon Tyne, UK

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Chen et al. (eds.), Cyber Security Meets Machine Learning,
https://doi.org/10.1007/978-981-33-6726-5_6

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-6726-5_6&domain=pdf
mailto:xfchen@xidian.edu.cn
https://doi.org/10.1007/978-981-33-6726-5_6

130 X. Ma et al.

clients, who participate in the computation. Secondly, the cloud server has to be able
to prove the correctness of the returned result and checking the proof should require
a significantly less computational power than rerun the computation itself.

As described above, one of the most important security requirements of out-
sourced deep learning is privacy. Recall that a complete deep learning algorithm
includes feature extraction, training, and prediction. Depending on which stage
the outsourced computation occurs in, different privacy levels have to be satisfied.
To summarize, privacy requirements in outsourced deep learning can be classified
into data privacy and model privacy. Although in general privacy protection can be
realized by encrypting or blinding the datasets or the models, this makes it difficult
for the cloud server to run deep learning algorithms on the encrypted datasets.
Therefore, how to achieve a tradeoff between privacy and utility in outsourced deep
learning is the main objective.

Despite growing interest in the outsourced computation and deep learning
domain, most of the existing contributions are scattered across different research
areas. This article focuses on the crossover of the two research areas. We summarize
techniques of outsourced computation that can be tailored to deep learning tasks,
to achieve the best performance in various application scenarios. We then further
review the most relevant literature and discuss the key pros and cons of various
outsourced deep learning architectures. We conclude this paper by pinpointing
future research directions.

Our Contributions The objective of this paper is to provide a comprehensive view
on outsourced computation practices in deep learning. Specifically, we focus on
the crossovers between outsourced computation and deep learning. Our main scope
remains the outsourced deep learning domain, but for completeness we also review
and discuss deep learning and outsourced computation. Overall, our contribution is
threefold:

– We review the evolution of deep learning, including multilayer perceptron,
recurrent neural network, convolutional neural network, and deep reinforcement
learning; from these deep learning models extract the essential mathematical
algorithms that can be realized by outsourced computation.

– We survey the high-significant articles related to outsourced computation, and
discuss the cutting-edge outsourced techniques from the perspective of deep
learning, pointing out the relation between outsourced computation and the
fundamental mathematical operations extracted from deep learning algorithms.

– We particularly focus on outsourced deep learning, analyzing and comparing the
underlying cryptographical techniques and outsourced architectures with respect
to efficiency, security, and privacy; based on this analysis, we provide insights
into the outsourced computation techniques selection strategies for outsourced
deep learning.

Organization Deep learning and outsourced computation have been mostly
researched independently. In recent years, the crossover between the two areas is
increasingly emerged. We categorize these works into (1) overview of deep learning

A Survey on Secure Outsourced Deep Learning 131

and its applications, (2) overview of the techniques of outsourced computation,
and (3) reviews of the works at the intersection of deep learning and outsourced
computation. As depicted in Fig. 1, we begin by reviewing the high-significant
articles related to deep learning and introducing the background in Sect. 2. In
Sect. 3, we introduced the preliminaries of outsourced computation. In Sect. 4,
we focus on outsourced deep learning, highlighting the advantages of outsourced
computation in addressing deep learning problems. We introduce and compare the
state-of-the-art outsourced deep learning models, methods, and algorithms, aiming
to help researcher in deep learning and outsourced computation in designing more
efficient schemes. We then conclude this article with a view to future research
directions in Sect. 5.

2 Deep Learning

In this section, we begin with a brief review of deep learning, and an introduction
of the mainly used architecture is presented later. We then extract the underlying
computation of deep learning in order to build a clear relationship between deep
learning and outsourced computation.

2.1 Brief Survey on Deep Learning

Deep learning [37] is a sub-branch of machine learning, and it was originated
from artificial neural network. Most of the early research on machine learning
exploited shallow-structured architectures, such as Gaussian mixture models, sup-
port vector machines, and logistic regression. Generally, there is only one layer
in these models responsible for transforming the input features into the output
space. Although the shallow-architecture models are effective to solve many simple
problems, their limited representation power causes difficulties when dealing with
complicated application, such as speech and vision related application scenarios.
These applications suggest the need of deep architecture to extract complex features
and representations from the input. Deep Neural network is the most well-known
deep learning model that has a sufficient number of hidden layers. Besides, other
models with multiple layers can also be regarded as deep model, such as deep
Gaussian process and deep random forests.

Table 1 lists the high-significant survey articles related to deep learning. Goodfel-
low [37] provided a tutorial book on deep learning which consists of the prerequisite
knowledge, underlying optimization methods, and popular applications. In [69],
Schmidhuber et al. summarized the relevant works and gave an encyclopedic survey
on deep learning, including supervised and unsupervised learning, reinforcement
learning, and provided short programs encoding deep and large networks. In [52],

132 X. Ma et al.

F
ig
.1

T
he

or
ga

ni
za

ti
on

of
th

is
su

rv
ey

A Survey on Secure Outsourced Deep Learning 133

Table 1 Summary of existing high-significant survey articles related to deep learning

Publication One sentence contribution

[37] A tutorial book on deep learning

[69] An encyclopedic survey on deep learning

[52] A comprehensive survey on deep learning

[38] Applications of deep learning

[42]

[47]

[75]

[48] A survey on multilayer neural network and its applications

[5] A comprehensive on deep reinforcement learning

[81] A survey on multitask learning

[50] Survey the use of deep learning for medical image analysis

Liu et al. presented the historical evolution of deep learning and its applications,
summarized the underlying principles of several deep learning models. They also
reviewed the applications of deep learning, such as speech recognition, computer
vision, and signal processing [38, 42, 47, 75].

LeCun et al. [48] summarized the model, method, and algorithms of multilayer
neural networks training and reviewed the application of Convolutions Neural
Network (CNN) and Recurrent Neural Network (RNN) on image understanding and
language processing. Arulkumanran et al. [5] surveyed reinforcement learning that
covered central algorithms, including the deep Q-network, asynchronous advantage
actor-critics, and trust region policy optimization. In [81], Zhang et al. gave a
survey on multitask learning which is categorized into feature learning and selection
approaches, low-rank approach, task clustering, and relation learning approach.
Litjens et al. [50] surveyed the applications of deep learning in medical image
classification, segmentation, object detection, and other tasks.

2.2 Architecture of Deep Learning

In this section, we briefly review the architectures of deep learning, including multi-
layer perceptron, convolutional neural network (CNN), recurrent neural network
(RNN), and reinforcement neural network. We only present a concept of these
architectures, for more details please refer to [25, 37].

Multilayer Perceptron Multilayer perceptron (MLP) [25], which are also known
as multilayer networks, refers to networks composed of multiple layers of percep-
tron. MLP consists of three or more layers. Its simplest architecture consists of
an input layer, a hidden layer, and an output layer. Each node of the network is a
neuron that uses a nonlinear activation function and connects to every node in the
following layer with a certain weight. Frequently used nonlinear activation functions

134 X. Ma et al.

such as sigmoid, tanh, ReLU, etc. are described in the following section. Supervised
learning is used to optimize a MLP, by changing connection weights based on the
loss minimization methods. The most well-known algorithm is backpropagation that
is described in Sect 2.3.

Convolutional Neural Network CNN [37] is a regularized version of MLP and
widely used in detection, segmentation, and recognition of objects and regions
in images. Compared to the full connection of MLP, CNN takes advantage of
the hierarchical pattern in data and assembles more complex patterns through
convolution. Convolution is a special kind of linear transformation, and CNN is
therefore defined as the neural network that use convolution in at least one of
their layers. During the convolution stage, each unit is connected to local patches
in the feature maps through a set of weights called a filter bank which is shared
among all the units in a feature map. Typically, the architecture of CNN consists
of convolutional layers, pooling layers, and nonlinear transformation layers, and
several fully connected layers are used to achieve final classification.

Recurrent Neural Network RNN [37] is designed to take a series of input without
a limited size. It remembers the past and the decisions are influenced by the
experiences leaned from the past. During the training process, RNN remembers
things learned from prior input while generating output. The output is determined
not only by weights applied on inputs but also by the context based on prior
inputs or outputs. So, the output of the same input could be different depending
on previous inputs in the series. Because of its memorability, RNN is suitable for
cases where the output depends on previous computations, like speech recognition,
text recommendation, or DNA sequences analysis. Figure 2 shows a RNN with a
hidden state.

Reinforcement Learning Reinforcement learning (RL) [73] is one of the methods
of machine learning. It is about how software agent should take actions to maximize
the cumulative reward in a particular environment which is typically described as

Fig. 2 An example of RNN with a hidden state

A Survey on Secure Outsourced Deep Learning 135

a form of Markov decision process. Compared to supervised learning, there is no
training dataset in reinforcement learning. Therefore, in the absence of existing
training data, RL learns from the experiences. During the learning process, the agent
attempts its task through trial-and-error and rewards and punishment are used as
signals for positive and negative behaviors. Also, it is different from unsupervised
learning whose goal is to find the similarities between data points. The goal of RL is
to find a suitable actions model to maximize the reward. Recent advances in RL have
enabled a variety of applications such as games [73], robotics [39], and generative
modeling [78].

2.3 Main Computation in Deep Learning

We introduce several mainly used computation in deep neural network. As shown
in Fig. 3, the architecture of deep neural network consists of input layer, multiple
hidden layers, and the output layer. The input layer is composed of features while
the output layer stands for a classification. The layers are connected in a hierarchical
manner, and the output of the previous layer is the input of the successive layer
uses. Each node, which is also called a neuron, in the hidden layer and the output
layer is associated with a coefficient vector and an activation function. The neuron
firstly computes the weighted summation of its input, and then applies a nonlinear
activation function to the summation (Fig. 4).

Fig. 3 An example of neural network with n hidden layers

136 X. Ma et al.

Fig. 4 Computations in one neuron

Linear Transformations Linear transformation is the commonest operation in
neural network, which is composed of matrix additions and multiplications, can
be described as:

Y = WX + B,

where W denotes the weight matrix, X denotes input vector, Y denotes the output
vector, and B denotes the bias vector, for each layer. For the first layer of the neural
network depicted in Fig. 3, X ∈ Ra×1, Y ∈ Rb×1, W ∈ Rb×a .

Activation Functions Activation functions are used to model nonlinear transfor-
mations between input and output in neural network. Commonly used activation
functions include rectified linear units (ReLU), Sigmoid, hyperbolic tangent (tanh),
etc., which are defined as:

– ReLU: f (y) = max(0, y) =
{

0 y ≤ 0
y y > 0

.

– Sigmoid: f (y) = 1
1+e−y .

– tanh: f (y) = e2y−1
e2y+1

.

Combining the linear transformation and nonlinear activation function together, the
neural network model can be defined as:

Y := (WL · fL−1(· · · f1(W1X + B1) · · ·) + BL).

The approximated tanh function can be described similarly, since tanh and
sigmoid functions are closely related:

tanh(y) = 2 · sigmoid(2y) − 1.

A Survey on Secure Outsourced Deep Learning 137

Back Propagation Algorithm Parameters optimization of a neural network is a
nonlinear optimization problem. Gradient descent [6, 29, 68] is one of the mostly
used algorithms which is based on the observation that a multi-variant function
F(x) decreased fastest in the negative direction of its gradient ∇F(a) if the
function is defined and differentiable in the neighborhood of a point a. Generally,
gradient descent (1) starts at a randomly selected point, and then (2) the learning
algorithm computes the gradient of the function being optimized, and (3) updates the
parameters using the gradient so as to optimize the objective function. This process
will not stop until the algorithm converges to a local optimum.

Backpropagation [68] is a widely used algorithm which is based on gradient
descent in feedforward neural network for supervised learning. Backpropagation
computes the gradient of the loss function, which is defined as the total error
between the output of the neural network and the objective value, with respect to
the parameters (weights) of the neural network by the chain rule. After each forward
pass through the network, backpropagation performs a backward pass by adjusting
the network’s weight parameters. Let w be the flattened weight vector of the neural
network and E be the loss function. The partial derivative is computed as ∂E

∂wj
of E

with respect to each parameter in w. In each iteration, the weights can be updated as:
wj = wj − α ∂E

∂wj
, where α is the learning rate. The iteration process will continue

until the output of loss function satisfies a predefined accuracy trapdoor.

3 Outsourced Computation

In this section, we first review the evolution of outsourced computation, and then
propose the system model and security requirements of outsourced computation.

3.1 Brief Survey on Outsourced Computation

Outsourced computation has been studied in recent years by a plenty of researchers
due to the rise of cloud computing. Outsourced computation protocols enable a
computationally weak client to securely outsource some computation to a powerful
server. Generally speaking, outsourced computation can be classified into two
categories: universal-oriented solutions and function-specific solutions. Function-
specific solutions focus on a specific class of functions, while the universal solutions
can be applied to a wide range of computable functions. However, function-
specific outsourced computation protocols provide higher efficiency compared to
universal-orient outsourced protocols. For example, the universal solutions provided
in [19, 67] rely on probabilistically checkable proofs [10], fully homomorphic
encryption [35], and homomorphic authenticators [33] which are hard to be utilized
in practice due to the extremely high computation and storage costs. A summary

138 X. Ma et al.

Table 2 Summary of existing high-significant articles related to outsourced computation

Publication One sentence contribution

[71] A comprehensive survey on outsourced computation

[79] A comprehensive survey on verifiable computation delegation

[58] Secret computations using insecure auxiliary devices

[45] Efficient arguments

[60] Computationally sound proof

[8] Delegatable homomorphic encryption &applications to outsourced computation

[11] Verifiable computation for high-degree polynomial functions

[7] Outsourced computation on outsourced dataset

[67] A primitive of publicly verifiable computation delegation

[74] Publicly verifiable computation delegation for polynomial evaluation

[19] Practical homomorphic MACs for arithmetic circuits

[71, 79] Survey of outsourced computation

of existing high-significant articles related to outsourced computation is listed in
Table 2.

The problem of securely outsourcing expensive computation has been well-
studied in the cryptography community. One of the main security issues of
outsourced computation is how can the clients check the correctness of the results
provide by the cloud without much computational efforts. Efficient arguments [45]
and computationally sound proofs [60] are considered in previous work to realize
verifiability in outsourced computation.

Benabbas et al. [11] proposed verifiable delegation of computation and presented
the first practical outsourced scheme for high-degree polynomial functions over
large dataset. In [8], Barbosa et al. proposed a new privacy protection cryptograph-
ical tool called delegatable homomorphic encryption. A client can thus delegate
the evaluation of circuits to untrusted servers over encrypted data. Backes et al. [7]
proposed a method to solve the problem of outsourced computation over outsourced
dataset. In this application scenario, the client firstly outsources its data to a server
which will later be required to compute a function over the outsourced data.
The scheme is based on homomorphic message authenticator to realize efficient
verification. However, the scheme can only be used for quadratic polynomials
evaluation.

In [67], Parno et al. extended the definition of outsourced computation delegation
and proposed public verifiable outsourced computation primitive. This primitive can
be used to construct publicly verifiable outsourced computation scheme. In [74],
Song et al. investigated publicly verifiable outsourced computation for polynomial
evaluation with the support of multiple data sources. In [19] , Dario et al. proposed
a homomorphic message authenticator that allows the holder of an evaluation key
to perform computations over previously authenticated data, in such a way that the
produced tag can be used to certify the authenticity of the computation.

A Survey on Secure Outsourced Deep Learning 139

In [71], Shan et al. summarized the cutting-edge techniques for specific secure
outsourced computation, including matrix computation, mathematical optimization,
etc. In [79], Yu et al. surveyed the existing research works on verifiability compu-
tation, comparing and discussing the pros and cons according to performance and
security requirements.

3.2 System Model

In [34], Gennaro et al. provided the formal definition of outsourced computation.
Specifically, an outsourced computation scheme consists of the four algorithms
defined below.

– KeyGen(F, λ) → (PK, SK): Based on the security parameter λ, the random-
ized key generation algorithm generates a public key that encodes the target
function F , which is used by the worker to compute F . It also computes a
matching secret key, which is kept private by the client.

– ProbGenSK(x) → (σx, τx): The problem generation algorithm uses the secret
key SK to encode the function input x as a public value σx which is given to the
worker to compute with, and a secret value τx which is kept private by the client.

– ComputePK(σx) → σy : Using the client’s public key and the encoded input, the
worker computes an encoded version of the function’s output y = F(x).

– VerifySK(τx, σy) → y ∪ ⊥: Using the secret key SK and the secret “decoding”
τx , the verification algorithm converts the worker’s encoded output into the
output of the function, e.g., y = F(x) or outputs ⊥ indicating that σy does not
represent the valid output of F on x.

An outsourced computation delegation scheme is correct if the problem generation
algorithm produces values that allow an honest worker to compute values that will
verify successfully and correspond to the evaluation of F on those inputs.

3.3 Security Requirements

In this section, we review the formal security definition of outsourced computation,
for more details please refer to [21, 67].

The security requirement of privacy is for the input/output of the computation
task. The formal definition of privacy can be described in the sense of an indistin-
guishability argument.

Definition 1 (Privacy) An outsourced protocol that achieves the privacy for the
input/output of F is for any probabilistic polynomial time adversary A,

AdvA(F, λ) ≤ negl(λ),

140 X. Ma et al.

where AdvA(F, λ) = |Pr[b′ = b] − 1
2 | is defined as the advantage of A is the

experiment as follows:

Experiment ExpA[F, λ]
(PK, SK) ← KeyGen(F, λ)

(x0, x1) ← APubProbGen(·)(pk)

(σ0, τ0) ← ProbGensk(x0)

(σ1, τ1) ← ProbGensk(x1)

b ←R {0, 1}
b′ ← APubProbGensk (·)(PK, x0, x1, σb)

If b′ = b, output 1, else 0.

The adversary A is allowed to request the encoding of any input he desires in
the experiment above. PubProbGen(·) calls on ProbGen(x) and returns only the
public part σx .

Verifiability An outsourced computation scheme is secure if a malicious worker
cannot persuade the verification algorithm to accept an incorrect output. In other
words, for a given function F and input x, a malicious worker should not be able to
convince the verification algorithm to output ŷ such that F(x) �= ŷ.

Efficiency An outsourced computation delegation scheme can be outsourced if it
permits efficient generation and efficient verification. This implies that for any x

and any σy , the time required for problem generation plus the time required for
verification is O(T), where T is the time required to compute F(x).

Besides the essential security requirements described above, there are some
additional properties which are expected in some specific scenarios, such as public
verifiability, non-interactiveness, and homomorphic authentication.

Non-interactiveness In [34], Gennaro et al. proposed non-interactive outsourced
computation protocol that allows the worker (server) to return a computationally
sound, non-interactive proof that can be verified in O(m) time, where m is the
output length of the output function F . In this protocol, the client sends a single
message to the worker and vice versa. The crucial efficiency requirement is that
input preparation and output verification must take less time than computing F from
scratch.

4 Outsourced Deep Learning

In this section, we review the related works and give a comprehensive analysis on
outsourced deep learning. We first introduce the motivation and privacy concerns in
outsourced deep learning. Secondly, we present the privacy-preserving techniques,
including encryption, signature, secret sharing, etc. We classify the existing solu-
tions into privacy-preserving training and privacy-preserving inference, and then

A Survey on Secure Outsourced Deep Learning 141

summarize, compare, and discuss these works with respect to security level and
efficiency performance.

4.1 Brief Review on Outsourced Deep Learning

In Table 3, we list the high-significant articles related to outsourced deep learning.
In this section, we will specify the techniques used in these works, and present
a detailed comparison among these works in terms of privacy and efficiency
performance.

Outsourced deep learning is defined as the training or prediction tasks of deep
learning that are completed with the help of the servers without leaking private
information about the data. It can be classified into two outsourced training and
outsourced inference. Outsourced training algorithms can be used for outsourced
inference, but not vice versa. Because inference is actually a forward pass through
of the learning model, which is already included in the training process. Shokri et al.
[72] proposed a secure multiparty deep learning based on the technique of parameter
sharing. To solve the privacy leakage problem in [72], Anno et al. [4] introduced
privacy-preserving deep learning using additively homomorphic encryption.

Table 3 Classification of existing privacy-preserving deep learning outsourced schemes from the
system model

Classification Publications & Main
techniques

Individual learning outsourcing One server [82]-FHE+TSE
[63]-FHE+SGD
[54]-FHE+FHECS

Collaborative learning One server [80]-DHE
[72]-PPS
[40]-DP
[64]-SGX
[66]-PATE+GAN
[13]-SS+AE
[49]-MKHE
[4]-AHE
[55]-AHE+AS
[41]-AHE+DP
[57]-PRE+AS

Multiple non-colluding servers [2, 62]-OT+GC+SS
[61]-SS+OT+3PC
[20]-MPC+SS+DP

Secure inference outsourcing One server [43]-SMM+HE
[22]-MKHE

Multiple non-colluding servers [56]-AHE+AS

142 X. Ma et al.

Mohassel et al. [62] presented an outsourced deep learning protocol in two non-
colluding servers model. The neural network model is additively shared to the
servers. In prediction phase, the client also splits its input into two parts which are
sent to the servers, respectively. However, the protocol is interactive, the client has
to stay online during the learning process and the security model is honest-but-
curious. In [55], Ma et al. proposed a secure multiparty aggregation scheme with
verifiability in malicious adversary, and used it to construct a privacy-preserving
multiparty learning algorithm. Zhang et al. [83] proposed an outsourced batch
matrix multiplication scheme which was extended to privacy-preserving one-layer
perceptron deep learning.

Federated learning [46] proposed by Google AI can also be viewed as a kind of
outsourced deep learning where the parameters are exchanged and aggregated by a
cloud server. Compared to traditional collaborative learning on distributed dataset
where all the local datasets are uploaded to a central server, federated learning
exhibited many advantages. The general principle of federated learning is training
on local dataset and exchanging the parameters originated from each local learning
model. Since the local data never leaves its domain, federated learning addresses the
security issues such as data privacy and data access rights. However, as pointed out
by Fredrikson [30], federated learning is vulnerable against model inversion attack
which enables the adversary to extract private information about the training data
using white box attack to the learned model.

4.2 Privacy Concerns in Outsourced Deep Learning

The great advancement of deep learning in recent years is largely due to the
improvement of computation power and storage capability. For those who has
limited computation and storage resources, it is difficult for them to run deep
learning algorithms independently. Therefore, outsourced deep learning tasks to
a powerful infrastructure such as a cloud provides an alternative choice. On the
other hand, the accuracy of a learning model is highly influenced by how much
data used for training. Generally, multiple parties would benefit from collaborative
learning where the machine learning algorithm runs on the aggregated dataset. A
trivial method for multiparty learning is outsourced the data from multiple parties
to a server to construct a large enough dataset center and process them centrally.

However, privacy concerns on the training data and the learning model are
raised when we outsource deep learning tasks to an untrusted server. Data privacy
denotes that the data used for training must be kept private against the server during
the outsourced deep learning process. In some of the application scenarios, such
as the financial or healthcare systems in which the data is highly sensitive, it is
prohibited for these organizations to share its data with any other third party. Model
privacy refers to that the trained model has to be protect. The learning model
is abstracted from the training data, and it is a valuable property that should be
protected. Model inversion attack was firstly introduced in [30] and extended in

A Survey on Secure Outsourced Deep Learning 143

[31]. In model inversion attack, adversarial access to the trained model is abused to
learn sensitive information about individuals, such as reconstructing recognizable
images of people’s face.

To tackle the privacy concerns in outsourced deep learning, various approaches
have been proposed. In [80], Yuan et al. propose a secure multiparty collaborative
learning in cloud computing. In the proposed scheme, each party encrypts his private
data using BGN homomorphic encryption and uploads the encrypted data to the
server. The cloud server can execute most of the operations of the learning algorithm
over the ciphertexts and return encrypted results to the client. However, since
BGN is not a fully homomorphic encryption scheme [17], each participant has to
decrypt and re-encrypt the intermediate values during the learning process. Thus, the
interactiveness between the server and each participant brings high communication
overhead, and the decryption and encryption computation costs for every in the
learning process make the scheme difficult to be used in real application scenarios.

In [9], Barni et al. propose a privacy-preserving neural network prediction
scheme, in which a user asks a services provider to run a neural network predic-
tion on protected personal data. Meanwhile, model privacy, including the weight
parameters, activation functions, and neural network topology, is protected against
the user. The scheme relies on secure multiparty computation techniques, such as
private scalar product and private polynomial evaluation, and it is proved secure
under semi-honest security model. In the following sections, we will classify
the related privacy-preserving articles and give a comprehensive analysis with
respect to the underlying techniques, security model, efficiency, and performance
improvements.

4.3 Privacy-Preserving Techniques for Outsourced Deep
Learning

Homomorphic Encryption An additively homomorphic encryption scheme sat-
isfies the following properties: given two ciphertexts c1 := E(pk, x1) and c2 :=
E(pk, x2), there is a public key operation ⊕ such that E(pk, x1 + x2) = c1 ⊕ c2.
Examples of such schemes include ElGamal encryption [28], Paillier’s encryption
[65], and DGK encryption [24]. An example of multiplicative homomorphic encryp-
tion is presented as follows: given the ciphertexts C, Ĉ of m and m̂, respectively.

C = (c1, c2) = (gk1 , yk1m);
Ĉ = (ĉ1, ĉ2) = (gk2 , yk2m̂).

The ciphertext C̄ of mm̂ can be computed as CĈ. More specifically:

c̄1 = c1ĉ1 = gk1+k2 , c̄2 = c2ĉ2 = yk1+k2mm̂.

144 X. Ma et al.

If the plaintext space is small, it is easy to transfer this multiplicative homomorphic
encryption to additively homomorphic encryption by lifting the message m to
exponentiation gm, such that the ciphertext is

C = (c1, c2) = (gk1 , yk1gm).

Secret Sharing Secret sharing [70] refers the methods of distributing a secret
among a group of participants. Each participant of the group is allocated a share
of the secret, and the secret can be reconstructed by a subset of the group. The
(n, t)-threshold secret sharing is defined as in a group of n participants, in which
each participant is given a share. The secret can be reconstructed in such a way that
any t (t ≤ n) or more participants can work together to reconstruct the secret. One of
the most widely used secret sharing is additively secret sharing, in which the secret
is shared between two or more parties such as that the addition of all shares yields
the secret. The operations are usually performed in the ring Z2l , and each share is
represented as an l-bit integer. Take an example in two-party setting, the secret s can
be secretly shared as follows: (1) randomly select a number r ∈R Z2l ; (2) compute
s − r mod 2l; (3) set the shares as 〈s〉0 = r and 〈s〉1 = s − r mod 2l . The secret
s can therefore be reconstructed as s = 〈s〉0 + 〈s〉1 mod 2l .

Oblivious Transfer Oblivious transfer (OT) [36] is a fundamental cryptographical
primitive in secure multiparty computation. The OT protocol involves a sender S

and a receiver R. R selects and receives a message from a set of messages owned
by S who knows nothing about which message was selected, and R should also
know nothing about the unselected message. A commonly used form of oblivious
transfer is 1-out-of-2 OT, in which the sender S has two l-bit messages x0 and x1
and the receiver R has a bit b indicating the index of the desired message. After
performing the protocol, R obtains xb without learning anything about x1−b or
revealing anything to S

Garbled Circuits Garbled circuits, introduced in [77], are an efficient method
for generic secure two-party computation in which two mutually untrusted parties
jointly compute a function f (a, b) without leaking any information about their
private inputs a, b except what is leaked by the final output. Briefly speaking, the
function to be computed is described as a Boolean circuit with two-input gates AND
and XOR. Then one of the parties (Alice) garbles the circuit and sends it to the
other party (Bob). Alice generates and assigns two k-bit random numbers for each
wire in the circuit, one stands for Boolean semantic 0 and one for 1, where k is
the security parameter. Then, Alice garbles the circuit according to the truth table
by replacing 0 and 1 with the random values, and sends the garbled table to Bob
after permutation. The garbling process can be done with symmetric encryption,
such as AES. Meanwhile, Alice sends the random numbers corresponding to her
input to Bob who also receives the random numbers corresponding to his input from
Alice through OT. Then, Bob goes through all gates one by one and continues the
evaluation until he reaches the output. Finally, Bob reveals the random numbers to
Alice who can map them back to Boolean values.

A Survey on Secure Outsourced Deep Learning 145

Proxy Re-encryption In [12], Blaze et al. introduced the concept of PRE (Proxy
Re-encryption). Using PRE, one can convert the ciphertexts for one key into
ciphertexts for another with a proxy function and a public proxy key. PRE has the
following properties:

– Bidirectional: Encryption delegation from user A to user B allows re-encryption
in both directions, i.e., from A to B and vice versa (B ⇔ A).

– Collusion nonresistance: Collusion of user A and proxy can recover user B’s
secret key. The PRE scheme in [12] is secure under the assumption that there is
no collusion between proxy and users.

– Homomorphic: Note that the PRE is ElGamal-based, so it is multiplicatively
homomorphic over the ciphertexts. Upon the input ciphertexts C of m and Ĉ of
m̂,

C = (c1, c2) = (m · gr1, gsar1), Ĉ = (ĉ1, ĉ2) = (m̂ · gr2, gsar2).

The encryption C̄ for m · m̂ can be computed as C ⊗ Ĉ. More specifically,

C̄ = C ⊗ Ĉ = (c1 · ĉ1, c2 · ĉ2) = (m · m̂ · gr1+r2, gsa(r1+r2)).

Bilinear Aggregate Signature In many applications, the verifier must verify
many signatures on different messages generated by different signers, such as the
verification of a chain of n certificates signed by n Certificate Authorities (CAs).
To improve the verification efficiency, the aggregate signature was proposed in [14].
Suppose that each user ui owns a key pair (pki, ski), where σi is the signature
on message mi signed by ui . Then, there is a public aggregation algorithm that
generates a short aggregate signature σ from σ1, σ2, . . . , σn. Additionally, there
is an aggregate verification algorithm that takes pk1, pk2, . . . , pkn, σ and all
messages m1,m2, . . . ,mn as input and determines the correctness of the aggregate
signature.

Differential Privacy Differential privacy [26, 27] constitutes a strong standard
for privacy guarantee. It guarantees that the outcome of any analysis are not
substantially affected by the removal or addition of a single data item. In other
words, the goal of differential privacy is to reveal only results such that it is
impossible to tell if a certain record was, or was not, in the dataset that the function
was computed on.

A randomized function K fulfills ε-differential privacy iff all datasets D and D′
differing on at most one tuple, and for all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D′) ∈ S]

, where ε stands for privacy budget that controls the amount of difference induced
by two neighboring datasets. In [26], Dwork et al. presented a general method to
preserve differential privacy for any function f using Laplace mechanism. The
mechanism exploits the global sensitivity of function f over any two neighboring

146 X. Ma et al.

datasets, and injects appropriately chosen random noise to the answer of the query
function f on the database. For more details, please refer to [26].

4.4 Taxonomy Standard

Differentiated by the different phase of outsourced deep learning, we classified
outsourced deep learning into (1) privacy-preserving training outsourcing and
(2) privacy-preserving inference outsourcing. Note that the techniques utilized in
collaborative learning can be trivially extended into individual learning outsourcing.
Individual learning outsourcing can be viewed as a special case of collaborative
learning where there is only one participant. Considering the system model,
outsourced deep learning algorithms can be further classified into individual
learning and collaborative learning. For each category, there might be one or more
servers. We describe the classification of existing privacy-preserving deep learning
outsourced schemes in Table 3. All the abbreviations in Table 3 are listed in Table 4.

Individual learning is mostly used for one client with limited computation or
storage resources that outsources the deep learning task to one cloud server. Usually,
homomorphic encryption [35] is used to encrypt the original dataset, while allowing
the cloud server to implement deep learning algorithms on the encrypted data
without having to decrypt it. However, using homomorphic encryption to process
the whole dataset and running deep learning algorithms on the encrypted dataset
incur high latency for outsourced deep learning.

It has been shown that in neural network learning significant accuracy improve-
ments can be achieved by incorporating more data into the training set. However,
collecting data from distributed datasets may be challenging when privacy is a major
concern. A plenty of research work have been done towards the privacy-preserving
collaborative learning. Secure multiparty computation, secret sharing, homomor-
phic encryption, and differential privacy are commonly used cryptographical tools in
privacy-preserving collaborative learning, each of which has its own pros and cons.
In the following sections, we will present a comparison on those cryptographical
techniques based outsourced deep learning algorithms.

4.5 Privacy-Preserving Training Outsourcing

We describe in this section the solutions for privacy-preserving training outsourcing.
As presented in Table 3, privacy-preserving training outsourcing can be further clas-
sified into individual learning outsourcing and collaborative learning outsourcing.
Further, the related works can be classified into one server model and multiple
(two) non-colluding model, based on how many servers are involved in the scheme.
We therefore begin by reviewing the main techniques used in individual learning

A Survey on Secure Outsourced Deep Learning 147

Table 4 List of the
abbreviations in alphabetic
order

Acronym Explanation

3PC 3-Party computation

AHE Additively homomorphic
encryption

AE Authenticated encryption

AS Aggregation signature

DHE Doubly homomorphic encryption

DP Differential privacy

FHE Fully homomorphic encryption

FHECS Fully homomorphic encryption
combing and switching

GAN Generative adversarial network

GC Garbled circuit

HE Homomorphic encryption

MKHE Multi-key homomorphic encryption

MPC Multiparty computation

OT Oblivious transfer

PATE Private aggregation of teacher
ensembles

PPS Partially parameter sharing

PRE Proxy re-encryption

RG Repeated Gompertz

RP Random projection

PAHE Packed additively homomorphic
encryption

SMC Secure multiparty computation

SGX Secure guard extensions

SGD Stochastic gradient decent

SS Secret sharing

SMM Secure matrix multiplication

TSE Taylor series expansion

USC Unconditionally secure comparison

and collaborative learning, then summarize and compare the performance of these
schemes with respect to adversary model, privacy protection, and effectiveness.

Individual Learning Outsourcing In [82], Zhang et al. proposed an outsourced
deep learning scheme based on FHE [17]. The learning efficiency is improved by
outsourcing most of the computations to a semi-honest cloud server. To protect data
and model privacy, training data and the initialized neural network are encrypted
using FHE before being uploaded to the cloud server. Moreover, the nonlinear acti-
vation function (sigmoid function) is approximated by polynomials involving only
additions and multiplications using Taylor theorem. Based on the homomorphism
of FHE, the cloud server can run backpropagation algorithm without decrypting
the ciphertext and return an encrypted model to the data owner. The security proof

148 X. Ma et al.

shows that data privacy and model privacy are satisfied. However, for each iteration
of the learning process, the client has to decrypt and re-encrypt the cyphertexts
returned from the cloud server, which makes the scheme fully interactive and incurs
high computation and communication overhead to the data owner.

To realize a completely non-interactive and privacy-preserving individual learn-
ing, Nandakumar et al. [63] proposed a fully homomorphic encryption based
stochastic gradient decent algorithm. The proposed scheme introduces a few tricks,
such as neural network simplification, appropriate selection of data representation
and resolution, and ciphertext packing techniques. Moreover, the neural network is
trained in the fix-point domain and achieves convergence with reasonable accuracy.
In the proposed scheme, the data owner encrypts the training data and initialized
neural network model and uploads these ciphertexts to the cloud server. After that,
the data owner can go offline until the cloud server returns the learned model.
Although, the scheme achieves an overall classification accuracy approximately
97.8%, it is seriously limited by its long training latency. The experiments results
showed that it takes about two hours with mini-batch including 60 samples on a
machine that has two Intel Xeon E5-2698 16-cores CPUs (running at 2.30 GHz)
and 250 GB RAM.

Recently, Lou et al. [54] proposed Glyph, which enables individual private
deep learning over encrypted data. The scheme also relies on fully homomorphic
encryption, but the efficiency and accuracy are improved by switching between
TFHE [23] and BGV cryptosystems [17]. The correctness of such transformation
originated from a recent work [16], which demonstrates the feasibility of combining
and switching between TFHE and BGV via homomorphic operations. The nonlinear
activations are implemented by logic-operation-friendly TFHE, while multiply-
accumulation operations are performed with vectorial-arithmetic-friendly BGV.
Moreover, transfer learning is incorporated into the scheme to reduce the number of
trainable layers so that the training latency can be further reduced. The experimental
results show that Glyph reduces the training latency by 99% over the prior work in
[63] on various encrypted datasets (Table 5).

Table 5 Comparison of individual learning outsourced schemes

Publication Main concept Interactiveness

Zhang et al. [82] –Encrypts the input data using the BGV encryption
[17]
–Approximate the Sigmoid function as a
polynomial function

Interactive

Nandakumar et al. [63] –Encrypts input data and model with FHE
–Network simplification and ciphertext packing

Non-interactive

Lou et al. [54] –Fully homomorphic cryptosystem transformation
–Knowledge transfer

Non-interactive

The security models of these schemes are honest-but-curious
All the schemes have accuracy loss which depends on the activation function approximation
method

A Survey on Secure Outsourced Deep Learning 149

Collaborative Learning (One Server Model) Learning from data collected by
multiple parties has many potential applications. However, collecting massive data
from distributed datasets presents new privacy issues and new solutions which
enable multiple parties to jointly train a global learning model without revealing
their private data are urgently demanded. Many works have been done towards
privacy-preserving collaborative learning. In Table 6, we present the comparisons
of the related schemes.

In [80], Yuan et al. proposed neural network learning in cloud computing,
which enables two-party learning over arbitrarily partitioned data. The scheme is
based on a special homomorphic encryption proposed by Boneh et al. [15], which
supports one multiplication and unlimited number of addition operations. Sigmoid
is approximated by a polynomial using Maclaurin series expansion method, but this
approximation introduces an accuracy loss of the learned model. Moreover, the
scheme is fully interactive since the participants have to decrypt the cyphertexts
and re-encrypt them during each round of the learning process. Therefore, the
computation and communication overhead are linearly related with the complexity
of the neural network, database size, and number of participants.

Shokri et al. [72] considered a different way to realize privacy-preserving deep
learning in multiparty scenarios. They abandoned cryptographical encryptions to
process the data or learning model and design an efficient learning algorithm from
partially parameter sharing which stimulate the following research on federated
learning. A distributed selective stochastic gradient decent protocol was proposed
in this paper. The participants train independently on their own datasets and then
selectively share small subsets of parameters with other participants. The sharing
process is implemented asynchronously, and each participant fully controls which
gradient to share and how often. This method reaches a tradeoff between utility and
privacy protection. The experiment results show that the learning accuracy of the
proposed scheme is higher than standalone learning even when only 1 percent of
parameters are shared.

Phong et al. [4] pointed out that in the system proposed by Shokri et al. [72],
even a small portion of gradient parameters shared and stored on the cloud server
can be exploited. They analyzed the information leakage problem about the training
data through several computation examples related to the training process, and the
results showed that the true value of the training data can be guessed with a non-
negligible probability. In [72], Shokri et al. showed how to protect gradient privacy
with differential privacy. However, a differential privacy protection mechanism
harmed learning accuracy which is the main appeal of deep learning. To protect
the gradient privacy without sacrificing learning accuracy, Phong et al. [4] proposed
a new outsourced deep learning method by encrypting the gradients using additively
homomorphic encryption before uploading to the cloud server. The scheme leaks no
information about participants’ gradient but also incurs increased computation and
communication costs. Moreover, all the participants that share the same secret key
of the homomorphic encryption are vulnerable against collusion attacks.

150 X. Ma et al.

Table 6 Comparison of collaborative learning outsourced schemes with one server

Publication Main concept Interactiveness Security model

Yuan et al. [80] – Supports two data owners.
– Uses a special homomorphic
encryption to encrypt the data and
model parameters.
– Maclaurin series expansion

Interactive Honest-but-curious

Shokri et al. [72] – Gradient sharing.
– Asynchronous stochastic
gradient decent

Interactive Honest-but-curious

Phong et al. [4] – Using additively homomorphic
to encrypt local gradients
– Asynchronous stochastic
gradient decent

Interactive Honest-but-curious

Li et al. [49] – Using multi-key fully
homomorphic to encrypt the data
and model parameters
– Stochastic gradient decent

Non-
interactive

Honest-but-curious

Ma et al. [55] – Using additively homomorphic
to encrypt the local gradients.
– Using aggregate signature to
verify the result.
– Asynchronous stochastic
gradient decent

Interactive Malicious

Hao et al. [41] – Using symmetric homomorphic
to encrypt the local gradients.
– Using differential privacy
technique to perturb local
gradients.
– Asynchronous stochastic
gradient decent

Interactive Honest-but-curious
Collusion resistant

Hamm et al. [40] – Using knowledge transfer to
train a student mode to train a
student model.
– Using technique to perturb
teacher model’s classification.

Non-
interactive

Fully trusted server

Papernot et al.
[66]

– Using knowledge transfer and
differential privacy to train a
student model.
– Semi-supervised learning with
GAN.

Non-
interactive

Honest-but-curious

Ma et al. [57] – Using knowledge transfer to
train the model.
– Using proxy re-encryption to
encrypt local model’s
classification

Non-
interactive

Malicious

Bonawitz et al.
[13]

– Using secret sharing and double
masking to blind the local
gradients

Interactive Malicious

Ohrimenko et al.
[64]

– Using SGX to store secret data
and execute secure computations

Non-
interactive

Malicious

A Survey on Secure Outsourced Deep Learning 151

A method to address this problem was proposed in [49]. The basic idea is
to encrypt the gradient with multi-key fully homomorphic encryption [53]. The
advantage of multi-key homomorphic encryption lies in that it is unnecessary to
share one secret key among all the participants. Instead, each participant owns a
pair of public/secret keys. The local gradients are encrypted with different keys
and uploaded to the cloud server and all the ciphertexts can still be aggregated
together due to multi-key homomorphism. On receiving the encrypted result, all
the participants work together through secure multiparty computation to decrypt
it. Taking account of the high computation cost of multi-key fully homomorphic
encryption and the complexity of deep learning, the scheme is hardly applicable in
real application scenarios.

The related works mentioned above are secure in the honest-but-curious model
(semi-honest model or passive model), where the cloud server and all the par-
ticipants will honestly follow the protocol as prescribed but try to learn extra
private information from the messages seen during the protocol execution by more
computation. The honest-but-curious security model enables the development of
efficient protocols, but it is also a weak security model. In [55], Ma et al. proposed a
new method for secure collaborative learning under the malicious adversary model
where the adversary is assumed to be able to deviate from the prescribed protocol at
any time. In the proposed scheme, an aggregate signature of the gradient is also
generated when a participant uploads the encrypted local gradients to the cloud
server. The aggregate signature can later be aggregated into an aggregate signature
of the aggregated gradients so that the participants can verify its correctness by
checking whether the aggregated gradients and the signature form a valid pair of
a message and its signature. Experiments demonstrate that the proposed scheme
enables significantly efficient training compared to training on the encrypted dataset.
However, the scheme is secure under the non-colluding assumption.

Hao et al. [41] proposed a federated learning scheme that is secure against
collusion attack. Symmetric homomorphic encryption and differential privacy
techniques are combined to protect the local gradients. Moreover, the scheme is
based on stochastic gradient decent method so that it is tolerable of arbitrary subset
of user dropping out with negligible accuracy loss. Specifically, for each epoch
of the training process, each user computes the local gradient Gμ and perturbs
it with Laplace noise Lap(

�f
ε

). Then, the encrypted and blinded gradient Cμ =
Encsk(Gμ + Lap(

�f
ε

) is sent to the server who executes the aggregation operation
by Cadd = C1 + C2 + · · · + Cn = Encsk(

∑n
μ=1 Gμ). The noises are almost

eliminated from the summation due to the symmetric distribution of the Laplace
mechanism. However, the scheme is secure under the honest-but-curious model.

Hamm et al. [40] proposed a secure multiparty learning scheme based on
knowledge transfer [32] and differential privacy. In particular, there is a trust
authority in the framework who is responsible for collecting the locally trained
classifiers (teacher model). These classifiers are not aggregated directly to generate
the global classifier but used for generating labels for non-sensitive, auxiliary, and
unlabeled data. When generating labels for the auxiliary data, the authors proposed

152 X. Ma et al.

a new aggregation method, in which each sample is weighted by the confidence of
the ensemble. The labeled data constitutes a new training set for the student model
which will be perturbed with ε-differential privacy before releasing. Compared
to a non-private solution, its generalization error converges with a fast rate of
O(ε−2M−2) and O(N−1), where N is the number of unlabeled auxiliary data and
M is the number of parties. However, there is a serious weakness in [40], that is,
the local classifiers are collected by a fully trusted server. This assumption might
not be practical in the real application scenarios. As pointed out by Fredrikson et
al. in [31], the prediction or the internal parameters of a model can be used to infer
sensitive information about the training data.

Papernot et al. proposed a strengthened scheme in [66] to address the privacy
leakage problem in [40]. They proposed PATE, for Privacy Aggregation of Teacher
Ensembles. The proposed strategy’s privacy is guaranteed by limiting the teacher
votes for student training, and by adding random noise to the topmost votes. The
random noise is added under a well-established and rigorous standard of differential
privacy, so that the privacy impact can be analyzed and bounded for each data item,
and moments accountant technique is used to tighten the privacy bound. To further
reduce the student/teacher consultation during the learning process, the authors
presented how to do semi-supervised learning using generative adversarial networks
(GANs). The experiment evaluation showed that the proposed scheme achieves an
(ε, σ) differential privacy bound of (2.04, 10−5) for MNIST with accuracy of 98%.

Ma et al. [57] introduced a different method to realize privacy-preserving
multiparty learning. The proposed scheme (denoted as SML in [57]) also relies
on knowledge transfer to construct labeled data from the aggregation of n locally
trained model. Each participant trains a local model independently on the local
dataset. Given a new public unlabeled dataset, those local models are aggregated
together to generate label for each data item in the unlabeled dataset. But the
aggregation is realized in a cryptographical manner. For each unlabeled date item,
the participants give a classification (vote) based on their local models. A proxy
re-encryption scheme is used to encrypt each participant’s vote, which can later
be summed up by a cloud server on the ciphertexts. Vote stands for the output of
the local learning model upon the data item extracted from the auxiliary unlabeled
dataset. SML achieves identical accuracy to the corresponding multiparty learning
scheme proposed by Hamm et al. [40]. SML provides privacy guarantee for the local
model and data, but these private information are all leaked to a trusted server in the
scheme proposed in [40]. Moreover, the participants can verify the correctness of
the returned result, thereby providing stronger security guarantee.

Bonawitz et al. [13] focused on mobile devices where communication is expen-
sive and the workers dropout occur frequently and proposed two secure aggregation
variant protocols which are low-communication overhead and robust to failures. The
first one is secure against honest-but-curious adversaries but more efficient while the
latter one can guarantee privacy against active adversaries with the cost of requiring
an extra round. The main idea behind their design is double masking, i.e., based
on the threshold secret sharing, two blinding factors are leveraged to conceal the
original input data which is split and distributed to the remaining workers. The

A Survey on Secure Outsourced Deep Learning 153

first blinding factors are generated via Diffie-Hellman protocol and form a circle
naturally and then can be removed in aggregation phase. The second blinding factors
are chosen randomly by each worker and required to reconstruct the secret by the
remaining workers in the aggregation phase when workers revoke. However, the
aggregate result is revealed to the server. Performance evaluation results show it
is efficient, i.e., the communication cost and the running time remain low on large
datasets and workers pools.

To reduce the high computation costs of those privacy-preserving machine
learning schemes constructed from secure multi-party computation or fully homo-
morphic encryption, Ohrimenko et al. [64] proposed secure outsourced learning
with trusted SGX processors in USENIX 2016. According to the introduction of
SGX in [59], it is a set of new ×86 instructions that applications can use to create
enclaves, which are protected memory regions and isolated from any other code
in the system. Only code running in an enclave can access data in the enclave. In
the proposed system, the data owners agree on the machine learning tasks and on
an SGX-enabled server to run the task. The machine learning algorithm is deployed
into the processor-protected memory region. During the process, data owner uploads
the encrypted data to non-protected memory but uploads their encryption keys into
the SGX processor. The framework guarantees that only the machine learning code
inside the trusted processor has direct access to the data, and the learned model
will be returned to each data owner in encrypted form. The experiment results show
that the computation costs of the proposed scheme are several orders of magnitude
better than previous methods based on advanced secure multiparty computation or
fully homomorphic encryption schemes.

Collaborative Learning (Multiple Non-colluding Servers) In [20], Chase et al.
proposed private collaborative learning based on multiparty and differential privacy.
The scheme was constructed on private gradient decent algorithm and collaborative
gradient computation algorithm. In the collaborative setting, it is important to
compute a differentially private gradient over the distributed records. If each data
owner computes the local gradient from its local data and adds random noise to
make it differentially private, the final learning model computed from the average
gradients might have bad performance, since the amount of noise added will
be large. In this scheme, the computed local gradients are secretly shared over
two non-collusion servers H1 and H2 using secret sharing, who use secure two-
party computation to output a differentially private gradient over the distributed
records. The authors prove that the collaborative private gradient decent algorithm
is differentially private so that the final learning model is also differentially private.

Mohassel and Zhang presented SecureML [62] that realize secure collaborative
neural network learning under the two-server model. In the proposed protocol,
the data are split into two additive shares and sent to two non-colluding servers,
respectively. The two servers will complete the training interactively using secure
two-party computation. New techniques were introduced in this paper, such as
arithmetic on shared decimal numbers, multiparty computation friendly activation
functions, and vectorizing the protocol in shared setting. For fix-point multi-

154 X. Ma et al.

plication, decimal numbers are represented as shared integers in a finite field.
Offline-generated multiplication triplets are used to perform a multiplication on
shared integers. In addition, they proposed a new activation function which can
be efficiently computed using garbled circuits. They use additively HE and OT to
realize the multiplication on shared matrixes and vectors. The proposed protocol is
secure against the honest-but-curious adversary who can corrupt a subset of clients
but at most one of the two servers. Efficiency analysis showed that the protocol is
highly efficient and total non-interactive since most of computations are offloaded
to the two cloud servers.

In [61], Mohassel et al. presented a general framework (ABY) for outsourced
deep learning in a three-server model. Training data are secretly shared among
the three servers using secret sharing. And the learning task is offloaded to the
servers who train the learning model through secure multiparty computation.
During the three-party learning process, an efficient switching between arithmetic,
binary, and Yao three-party computation will be used to accelerate the learning
speed. In addition, new approximation technique for fixed-point multiplication over
shared decimal numbers in three-party setting is proposed, which is much more
efficient than previous methods and secures against malicious adversaries under
the assumption that there is a single malicious adversary (server). The experiment
evaluation shows that ABY is up to 55,000× faster than SecureML when training
neural network.

Most of the previous work on secure multiparty neural network learning focus
on either applying secure techniques to existing training algorithms or on applying
generic secure protocols to tailor training algorithms. These methods have several
downsides, such as high offline computation overheads and online communication
costs, accuracy loss and omitting the techniques necessary for modern deep
learning. In [2], Agrawal et al. proposed QUOTIENT—a new method for multiparty
learning in honest-but-curious two-server model. The scheme optimizes both the
training algorithm and the secure protocol. The network weights are ternarized as
−1, 0, 1 during the training process. Accordingly, a specialized scheme for ternary
matrix-vector multiplication is constructed from correlated OT, Boolean sharing,
and additive sharing. In addition, the operations of quantization and normalization
in the backward process are replaced by alternatives which can be efficiently
implemented in secure computation model without accuracy loss. Compared to
SecureML [62], QUOTIENT obtains an improvement of 50× in WAN time and
6% in accuracy (Table 7).

4.6 Privacy-Preserving Inference Outsourcing

Privacy-preserving inference outsourced is a new paradigm in deep learning out-
sourced. As shown in Fig. 5, three parties are involved in this new framework,
including a model provider, the servers, and clients. In this new paradigm, the model

A Survey on Secure Outsourced Deep Learning 155

Table 7 Comparison of collaborative learning outsourced schemes with multiple servers

Publication Main concept Interactiveness Security model

Chase et al. [20] – Secretly share local gradients to
two non-colluding servers.
– Using 2PC to generate
differentially private global
gradients over distributed data.
– Differentially private learning
model.

Interactive Honest-but-curious

Mohassel et al.
[62]

– Share the training data to two
non-colluding servers.
– Arithmetic on shared decimal
numbers.
– Multiparty computation for
activation functions.
– Vectorizing.

Non-
interactive

Honest-but-curious

Mohassel et al.
[61]

– Privacy-preserving machine
learning in a three-server model
with a single corrupted server.
– Efficient switching between
arithmetic, binary and Yao
three-party computation in the
three-party setting.
– Fixed-point multiplication for
shared decimal numbers in
three-party setting.

Non-
interactive

Malicious

Agrawal et al. [2] – Two non-colluding servers.
– Optimize both the training
algorithm and the secure protocol.
– Ternarize network weight and
ternarized matrix-vector
multiplication in secret sharing
setting.

Non-
interactive

Honest-but-curious

provider offers a well learned and encrypted model to the server who can provide
inference services to the clients. For privacy guarantee, the learned model and
clients’ data should be encrypted before uploading to the cloud. The cloud server
provides inference services on encrypted model and encrypted data. Finally, the
client will receive an encrypted classification which can be decrypted by the client
or decrypted together by the client and the model provider. And when the prediction
is done, the server should learn nothing about the private data and learning model.
Meanwhile, the clients should learn nothing except the final prediction.

A quite similar research domain is oblivious neural network prediction [9, 18,
44, 51]in which the model owner himself/herself provides prediction services to the
clients. And “oblivious” in this application scenario means that the predictions can
be computed in such a way that the clients learn nothing about the model except the
prediction results while the server knows nothing about the client’s input data.

156 X. Ma et al.

Fig. 5 The simplified framework of privacy-privacy inference outsourcing

In [56], Ma et al. presented a new secure outsourced prediction scheme that was
secure against two non-colluding servers. The model provider securely outsources
the pre-trained model to two non-colluding servers who can provide prediction
service to data owners. To protect model privacy, the model owner splits it into two
parts using additive secret sharing and uploads each part to one server, respectively.
During the prediction phase, data are encrypted using additively homomorphic
uploaded to both servers. Then, the servers evaluate the neural network on the
ciphertext through secure two-party computation and return the encrypted classifica-
tion back. The inference process is fully non-interactive for the data owner, and the
proposed scheme is secure in honest-but-curious and non-colluding security model.

Jiang et al. [43] proposed a practical solution to secure outsourced matrix
computation and apply it to privacy-preserving inference outsourced. Homomorphic
encryption is used to encrypt the matrix and make it possible for an untrusted server
to multiplication operations on encrypted matrices. For two matrices of size d × d ,
the proposed matrix multiplication solution requires O(d) homomorphic operations,
compared with O(d2) of the previous works. The efficiency improvement is
obtained from a new matrix encoding method and a combination of homomorphic
operations and packed ciphertexts using the technique of Single Instruction Multiple
Data (SIMD). The matrix computation mechanism can be applied in secure infer-
ence outsourcing assuming that the server is honest-but-curious. For the experiment
evaluation, the authors choose the encrypted CNN model trained from MNIST,
which includes one convolution layer, two fully connected layers with square
activation functions. The experiment result shows that it requires 0.45 seconds per
image, and the prediction accuracy reaches 98.1%. However, the framework works
in the single-key scenario, which means that the network model and input data must
be encrypted with the same encryption key.

Chen et al. [22] presented a new multi-key homomorphic encryption scheme. In
the scheme, arithmetic operations on packed ciphertexts encrypted under different
keys can be performed efficiently. A new relinearization key generation method,

A Survey on Secure Outsourced Deep Learning 157

Table 8 Comparison of privacy-preserving inference outsourced schemes

Publication Main concept Interactiveness Security
model

Ma et al. [56] – Secretly share the pre-trained model
to two non-colluding servers.
– Use additive homomorphic to encrypt
the data.
– Use secure comparison to compute
the activation function

Non-
interactive

Honest-but-
curious
Non-
colluding

Jiang et al. [43] – Secure outsourced matrix
multiplication.
– Matrix encoding.
– SIMD.

Non-
interactive

Honest-but-
curious

Chen et al. [22] – A new multi-key homomorphic
encryption.
– Encrypts the pre-trained model and
data with different keys.

Evaluation
(non-
interactive)
Distributed
decryption
(interactive)

Honest-but-
curious

which is more efficient and simplified compared to previous techniques, is proposed
in this paper. The privacy-preserving inference outsourced scheme based on this
multi-key homomorphic encryption is more efficient and flexible than previous
schemes. The model provider encrypts the pre-trained model using his own public
key and uploads it to a cloud server. Similarly, the data owner encrypts its data
using his public key. The cloud server evaluates the neural network model on
the ciphertext and outputs the encrypted classification. Then, the model provider
and data owner work together to decrypt the ciphertext. Due to the multi-key
homomorphic encryption, this inference service is suitable for the distributed
application scenarios in which each data owner provides partial data to the server,
and the prediction is evaluated on the aggregate data (Table 8).

5 Conclusion and Future Research Perspectives

In this paper, we bridge the gap between outsourced computation and deep
learning, by investigating and presenting a comprehensive survey of the crossover
between the two research areas. We briefly introduce the background of outsourced
computation and deep learning. We then discuss the main techniques used in deep
learning outsourced. Subsequently, we review and analyze the related works in
outsourced deep learning. The related works are classified into individual training
outsourced, collaborative training outsourcing, and privacy-preserving inference
outsourcing.

158 X. Ma et al.

As outsourced deep learning is achieving increasingly promising results, several
important research issues remain to be addressed in the future. We conclude our
survey by discussing these challenges.

1. Collaborative Learning against Malicious Participant. The main idea of fed-
erated learning is to build a machine learning model from multiple distributed
datasets while preventing the raw data leakage. Typically, there is a parameter
server who coordinates the distributed learning tasks, aggregates the response
of the workers, and updates a global view of the model. Most of the previous
researches on federated learning rely on the assumption that the data providers
are honest. However, real-world applications often encounter such situations
that some of the nodes might be unreliable or malicious, which means that
some data providers might not behave as intended. Traditional federated learning
becomes fragile when attacked by such Byzantine adversaries. Moreover, it
has been proven that the parameter updates leak unintended information about
participants’ training data and develops passive and active inference attacks to
exploit this leakage. Therefore, how to construct a federated learning system
that is secure against Byzantine adversaries while preventing parameter updates
leakage becomes an interesting problem.

2. Secure Oblivious Neural Network Inference against Model Inversion Attack.
There are model inversion attacks against machine learning, including black
box attack and white box attack. Black box attack requires only oracle access
to a trained model, while white box refers to such attacks with full knowledge
of the training mechanism and access to the model’s parameters. In oblivious
neural network inference schemes, black box attacks can be implemented by
querying the server many times [76]. In [1], Abadi et al. proposed a deep learning
scheme with differential privacy to tackle model inversion attack. Although
differential privacy provides a strict privacy guarantee, it also brings accuracy
loss. Therefore, how to guarantee privacy protection in oblivious neural network
inference applications while preserving the prediction utility requires further
research.

3. Exploiting the Tradeoff among Effectiveness, Privacy, and Utility.Privacy pro-
tection measures in outsourcing processes such as data encryption, blinding
or perturbation might prevent the original data from being leaked at the cost
of introducing utility loss and lower efficiency. The main impact on its effi-
ciency influenced by the privacy protection mechanisms consists of computation
overhead and communication overhead. Although homomorphic encryption and
secure multiparty computation techniques provide the same meaning operations
as in plaintexts, it inevitably makes great contributions to computation-intensive
ciphertexts-based operations. Besides, compared to the traditional local training
mode, secure outsourcing operations embedded in neural network training incur
more interactive rounds. Besides, differential privacy involves relatively simple
calculations. However, privacy protection is satisfied with sacrificing data utility.
Hence, the next research direction is to seek the equilibrium point under three
standards rules including effectiveness, privacy, utility. Accordingly, constructing

A Survey on Secure Outsourced Deep Learning 159

a relatively comprehensive privacy assessment mechanism facilitates a better
awareness concerning the three factors, and further improves the performance
of outsourcing computation applied to machine learning.

4. Implementation of the Customized Privacy Protection for Clients. Massive data
contributes to a more accurate model, leading to the rise of federated learning
or collaborative learning. What they have in common is that there are multiple
data contributors or data providers. In these scenarios, only a fraction of users
or some certain attributes need to be prevented from leakage. Therefore, a
personalized privacy protection mechanism becomes a new research hotspot.
Traditional outsourcing computation algorithms based on differential privacy,
secure multiparty computation and homomorphic encryption techniques might
not suitable in some application scenarios. Thus, we will devote ourselves to
explore a dynamic perception of privacy requirements and the corresponding
allocation of customized privacy budget in designing outsourcing algorithms.
In this manner, the trained model can achieve high prediction accuracy while
satisfying different privacy requirements for a variety of clients.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 308–318 (2016)

2. Agrawal, N., Shahin Shamsabadi, A., Kusner, M.J., Gascón, A.: Quotient: two-party secure
neural network training and prediction. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1231–1247 (2019)

3. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge, MA (2014)
4. Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively

homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018)
5. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learn-

ing: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017)
6. Avriel, M.: Nonlinear Programming: Analysis and Methods. Courier Corporation, North

Chelmsford (2003)
7. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced

data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, pp. 863–874 (2013)

8. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to secure
outsourcing of computation. In: Cryptographers’ Track at the RSA Conference, pp. 296–312.
Springer, New York (2012)

9. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based
computation. In: Proceedings of the 8th workshop on Multimedia & Security, MM&Sec 2006,
Geneva, September 26–27, 2006, pp. 146–151 (2006)

10. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically checkable
proofs and applications to approximations. In: Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, pp. 294–304 (1993)

11. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets.
In: Annual Cryptology Conference, pp. 111–131. Springer, New York (2011)

12. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In:
Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 127–144. Springer, New York (1998)

160 X. Ma et al.

13. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage,
D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving machine learning.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1175–1191 (2017)

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: Advances in Cryptology - EUROCRYPT, pp. 416–432 (2003)

15. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Theory of
Cryptography Conference, pp. 325–341. Springer, New York (2005)

16. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining Ring-LWE-based
fully homomorphic encryption schemes. Technical report, Cryptology ePrint Archive, Report
2018/758 (2018). https://eprint.iacr.org/2018/758

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without
bootstrapping. ACM Trans. Comput. Theor. 6(3), 1–36 (2014)

18. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics.
In: Proceedings of the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, Alexandria, VA, October 28–31, 2007, pp. 498–507 (2007)

19. Catalano, D., Fiore, D.: Practical homomorphic macs for arithmetic circuits. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pp. 336–352. Springer, New York (2013)

20. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Rindal, P.: Private collaborative neural
network learning. IACR Cryptol. ePrint Archive 2017, 762 (2017)

21. Chen, X.: Introduction to secure outsourcing computation. Synth. Lect. Inf. Secur. Priv. Trust
8(2), 1–93 (2016)

22. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with
packed ciphertexts with application to oblivious neural network inference. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 395–412
(2019)

23. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic
encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

24. Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure comparison.
IJACT 1(1), 22–31 (2008)

25. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. In
APSIPA Transactions on Signal and Information Processing, vol. 3 (2014)

26. Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory
and Applications of Models of Computation, pp. 1–19. Springer, New York (2008)

27. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy
via distributed noise generation. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 486–503. Springer, New York (2006)

28. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory 31(4), 469–472 (2003)

29. Fahlman, S.E.: Faster-learning variations on back-propagation: an empirical study. Proceed-
ings of the Connectionist Models Summer School Morgan Kaufmann (1988)

30. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacoge-
netics: an end-to-end case study of personalized warfarin dosing. In: 23rd USENIX Security
Symposium (USENIX Security 14), pp. 17–32 (2014)

31. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence infor-
mation and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1322–1333. ACM, New York (2015)

32. Gao, J., Fan, W., Jiang, J., Han, J.: Knowledge transfer via multiple model local structure
mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 283–291 (2008)

33. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: International Con-
ference on the Theory and Application of Cryptology and Information Security, pp. 301–320.
Springer, New York (2013)

https://eprint.iacr.org/2018/758

A Survey on Secure Outsourced Deep Learning 161

34. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In: Annual Cryptology Conference, pp. 465–482. Springer,
New York (2010)

35. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford
University, Stanford (2009)

36. Gilboa, N.: Two party RSA key generation. In: Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, CA, August 15–19, 1999,
Proceedings, pp. 116–129 (1999)

37. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2016)
38. Graves, A., Mohamed, A.-R., Hinton, G.: Speech recognition with deep recurrent neural

networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 6645–6649 (2013)

39. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3389–3396. IEEE, New York (2017)

40. Hamm, J., Cao, Y., Belkin, M.: Learning privately from multiparty data. In: Proceedings of the
33nd International Conference on Machine Learning, pp. 555–563 (2016)

41. Hao, M., Li, H., Xu, G., Liu, S., Yang, H.: Towards efficient and privacy-preserving federated
deep learning. In: ICC 2019-2019 IEEE International Conference on Communications (ICC),
pp. 1–6. IEEE, New York (2019)

42. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–
97 (2012)

43. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation and application
to neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1209–1222 (2018)

44. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework
for secure neural network inference. In: Enck, W., Felt, A.P. (eds.) 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, August 15–17, 2018, pp. 1651–1669.
USENIX Association, Baltimore (2018)

45. Kilian, J.: Improved efficient arguments. In: Annual International Cryptology Conference,
pp. 311–324. Springer, New York (1995)

46. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated Learn-
ing: Strategies for Improving Communication Efficiency (2016). Preprint. arXiv:1610.05492

47. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

48. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
49. Li, P., Li, J., Huang, Z., Li, T., Gao, C.-Z., Yiu, S.-M., Chen, K.: Multi-key privacy-preserving

deep learning in cloud computing. Fut. Gener. Comput. Syst. 74, 76–85 (2017)
50. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak,

J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis.
Med. Image Anal. 42, 60–88 (2017)

51. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via miniONN
transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, October 30–November 03, 2017, pp. 619–
631 (2017)

52. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network
architectures and their applications. Neurocomputing 234, 11–26 (2017)

53. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM
Symposium on Theory of Computing, pp. 1219–1234 (2012)

162 X. Ma et al.

54. Lou, Q., Feng, B., Fox, G.C., Jiang, L.: Glyph: fast and accurately training deep neural
networks on encrypted data (2019). Preprint. arXiv:1911.07101

55. Ma, X., Zhang, F., Chen, X., Shen, J.: Privacy preserving multi-party computation delegation
for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)

56. Ma, X., Chen, X., Zhang, X.: Non-interactive privacy-preserving neural network prediction.
Inf. Sci. 481, 507–519 (2019)

57. Ma, X., Ji, C., Zhang, X., Wang, J., Li, J., Li, K.-C.: Secure multiparty learning from
aggregation of locally trained models. In: International Conference on Machine Learning for
Cyber Security, pp. 173–182. Springer, New York (2019)

58. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with insecure auxiliary
devices. In: Conference on the Theory and Application of Cryptography, pp. 497–506.
Springer, New York (1988)

59. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue, V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execution. In:
HASP@ ISCA, vol. 10(1) (2013)

60. Micali, S.: CS proofs. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science, pp. 436–453. IEEE, New York (1994)

61. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 35–52 (2018)

62. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning.
In: Proceedings of the 2017 38th IEEE Symposium on Security and Privacy (SP), pp. 19–38.
IEEE, New York (2017)

63. Nandakumar, K., Ratha, N., Pankanti, S., Halevi, S.: Towards deep neural network training
on encrypted data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops (2019)

64. Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K., Costa, M.:
Oblivious multi-party machine learning on trusted processors. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 619–636 (2016)

65. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, May 2–6, 1999, Proceeding, pp. 223–238
(1999)

66. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowl-
edge transfer for deep learning from private training data (2016). Preprint. arXiv:1610.05755

67. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifi-
able computation from attribute-based encryption. In: Theory of Cryptography Conference,
pp. 422–439. Springer, New York (2012)

68. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. Technical report, DTIC Document (1985)

69. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

70. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
71. Shan, Z., Ren, K., Blanton, M., Wang, C.: Practical secure computation outsourcing: a survey.

ACM Comput. Surv. 51(2), 1–40 (2018)
72. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
73. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-

twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go
with deep neural networks and tree search. Nature 529(7587), 484 (2016)

74. Song, W., Wang, B., Wang, Q., Shi, C., Lou, W., Peng, Z.: Publicly verifiable computation
of polynomials over outsourced data with multiple sources. IEEE Trans. Inf. Forensics Secur.
12(10), 2334–2347 (2017)

A Survey on Secure Outsourced Deep Learning 163

75. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level
performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1701–1708 (2014)

76. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction APIs. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 601–
618 (2016)

77. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE, New York (1986)

78. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy
gradient. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

79. Yu, X., Yan, Z., Vasilakos, A.V.: A survey of verifiable computation. Mob. Netw. Appl. 22(3),
438–453 (2017)

80. Yuan, J., Yu, S.: Privacy preserving back-propagation neural network learning made practical
with cloud computing. IEEE Trans. Parall. Distrib. Syst. 25(1), 212–221 (2013)

81. Zhang, Y., Yang, Q.: A survey on multi-task learning (2017). Preprint. arXiv:1707.08114
82. Zhang, Q., Yang, L.T., Chen, Z.: Privacy preserving deep computation model on cloud for big

data feature learning. IEEE Trans. Comput. 65(5), 1351–1362 (2015)
83. Zhang, X., Jiang, T., Li, K.C., Castiglione, A., Chen, X.: New publicly verifiable computation

for batch matrix multiplication. Information Sciences (2017). https://doi.org/10.1016/j.ins.
2017.11.063

https://doi.org/10.1016/j.ins.2017.11.063
https://doi.org/10.1016/j.ins.2017.11.063

	Preface
	Contents
	IoT Attacks and Malware
	1 Introduction
	2 Background
	2.1 Cybersecurity Kill Chains
	2.2 Major IoT Security Concerns

	3 Attack Classification
	3.1 Passive/Information Stealing Attacks
	3.2 Service Degradation Attacks
	3.3 DDoS Attacks

	4 IoT Malware Analysis and Classification
	5 AI-Based IDS Solutions
	6 Conclusion
	References

	Machine Learning-Based Online Source Identification for Image Forensics
	1 Introduction
	2 Related Work
	2.1 Features Engineering for Image Source Identification
	2.2 Statistical Learning-Based Image Source Identification

	3 Proposed Scheme: OSIU
	3.1 Unknown Sample Triage
	3.2 Unknown Image Discovery
	3.3 (K+1)-class Classification

	4 Experiments and Results
	4.1 Dataset and Experiment Settings
	4.2 Features
	4.3 Evaluation Metrics
	4.4 Performance of Triaging Unknown Samples
	4.5 Performance of OSIU

	5 Conclusion
	References

	Reinforcement Learning Based Communication Security for Unmanned Aerial Vehicles
	1 Introduction
	2 Communication Security for Unmanned Aerial Vehicles
	2.1 UAV Communication Model
	2.2 Attack Model

	3 Reinforcement Learning Based UAV Communication Security
	3.1 Reinforcement Learning Based Anti-Jamming Communications
	3.2 Reinforcement Learning Based UAV Communications Against Smart Attacks

	4 UAV Secure Communication Game
	4.1 Game Model
	4.2 Nash Equilibrium of the Game

	5 Related Work
	5.1 General Anti-jamming Policies in UAV-Aided Communication
	5.2 Reinforcement Learning in Anti-jamming Communication
	5.3 Game Theory in Anti-jamming Communication

	6 Conclusion
	References

	Visual Analysis of Adversarial Examples in Machine Learning
	1 Introduction
	2 Adversarial Examples
	3 Generation of Adversarial Examples
	4 Properties of Adversarial Examples
	5 Distinguishing Adversarial Examples
	6 Robustness of Models
	7 Challenges and Research Directions
	8 Conclusion
	References

	Adversarial Attacks Against Deep Learning-Based Speech Recognition Systems
	1 Introduction
	2 Background and Related Work
	2.1 Speech Recognition
	2.2 Adversarial Examples
	2.3 Related Work

	3 Overview
	3.1 Motivation
	3.2 Technical Challenges

	4 White-Box Attack
	4.1 Threat Model of White-Box Attack
	4.2 The Detail Decoding Process of Kaldi
	4.3 Gradient Descent to Craft Audio Clip
	4.4 Practical Adversarial Attack Against White-Box Model
	4.5 Experiment Setup of CommanderSong Attack
	4.6 Evaluation of CommanderSong Attack

	5 Black-Box Attack
	5.1 Threat Model of Black-Box Attack
	5.2 Transferability Based Approach
	5.3 Local Model Approximation Approach
	5.4 Alternate Models Based Generation Approach
	5.5 Experiment Setup of Devil's Whisper Attack
	5.6 Evaluation of Devil's Whisper Attack

	6 Defense
	7 Conclusion
	Appendix
	References

	A Survey on Secure Outsourced Deep Learning
	1 Introduction
	2 Deep Learning
	2.1 Brief Survey on Deep Learning
	2.2 Architecture of Deep Learning
	2.3 Main Computation in Deep Learning

	3 Outsourced Computation
	3.1 Brief Survey on Outsourced Computation
	3.2 System Model
	3.3 Security Requirements

	4 Outsourced Deep Learning
	4.1 Brief Review on Outsourced Deep Learning
	4.2 Privacy Concerns in Outsourced Deep Learning
	4.3 Privacy-Preserving Techniques for Outsourced Deep Learning
	4.4 Taxonomy Standard
	4.5 Privacy-Preserving Training Outsourcing
	4.6 Privacy-Preserving Inference Outsourcing

	5 Conclusion and Future Research Perspectives
	References

