
Springer Theses
Recognizing Outstanding Ph.D. Research

Research on the Key 
Technologies in 
Narrowband Interference 
and Impulsive Noise 
Mitigation and 
Cancellation

Sicong Liu



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Sicong Liu

Research on the Key
Technologies in Narrowband
Interference and Impulsive
Noise Mitigation
and Cancellation
Doctoral Thesis accepted by
Tsinghua University, Beijing, China

123



Author
Dr. Sicong Liu
Department Information
and Communication Engineering
School of Informatics
Xiamen University
Xiamen, Fujian, China

Supervisor
Prof. Jian Song
Electronic Engineering, DTV Technology
R&D Center
Tsinghua University
Beijing, China

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-981-15-4723-2 ISBN 978-981-15-4724-9 (eBook)
https://doi.org/10.1007/978-981-15-4724-9

Jointly published with Tsinghua University Press
The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the
print book from: Tsinghua University Press.

© Tsinghua University Press 2021
This work is subject to copyright. All rights are reserved by the Publishers, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publishers nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publishers remain neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-4724-9


Supervisor’s Foreword

With the commence of era of internet-of-things and the help from big data, the need
for human-human, human-thing and thing-thing communications and intercon-
nections is explosively increasing. To meet the requirements of “massive and
intelligent interconnections” for those important scenarios such as intelligent
lighting, smart grid, vehicular networks and the internet-of-lights, etc., the new
communication technologies to support high rate, ultra-reliability, low latency,
wide coverage and massive connections are emerging. However, the noise and
interference in the communication systems have always been the bottleneck that
limits the system performance. Especially the Narrowband Interference (NBI) and
Impulsive Noise (IN) are special noise and interference that prevailingly exist in
broadband transmission systems. They are quite different from the commonly
perceived additive white Gaussian noise due to the characteristics of difficult to
model, randomness, sparsity and high-intensity. Because of the passive nature,
conventional methods couldn’t effectively mitigate or accurately eliminate the noise
and interference, leading to inevitable system performance loss. In order to support
the effective transmission of broadband communication systems and improve both
the throughput and QoS of the next-generation communication network, this critical
issue needs to be well addressed.

Based on the classical digital communication theory and the emerging sparse
recovery theory, Dr. Sicong Liu, the author of this book summarized his research
results from his Ph.D. thesis, which investigates this issue from three strategies
including anti-NBI synchronization, time-frequency interleaving against NBI and
IN, and accurate NBI and IN recovery. The main contribution of this thesis is as
follows. First, an efficient anti-NBI frame structure which can be applied for
broadband power line communications was proposed, and an effective synchro-
nization algorithm against NBI was therefore designed. Second, a time-frequency
combined interleaver that is able to maximize the time-frequency diversity gain was
devised, which can be applied in many broadband transmission scenarios such as
digital terrestrial multimedia broadcasting. It provides a novel and effective inter-
leaving scheme for the reliable transmission in the time-frequency doubly selective
channel with both NBI and IN. Furthermore, a more important contribution in this
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work is that, a sparse recovery and multi-dimensional compressed sensing-based
framework of NBI and IN estimation was formulated, in which he designed several
practical algorithms with superior performance for NBI and IN estimation and
cancelation. The proposed schemes have provided novel research regimes and
solutions with both theoretical and practical value for the area of NBI and IN
mitigation.

I do hope that this book can be a good reference to researchers, undergraduate
and graduate students in the area of communications and signal processing, and
provide theoretical and technical support for the design and application of the
next-generation communication systems.

Beijing, China
February 2020

Prof. Jian Song
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Preface

With the rapid development of broadband digital communications, the requirements
for transmission reliability, effectiveness and stability keep increasing. However,
the ubiquitously existing Barrowband Interference (NBI) and Impulsive Noise
(IN) have become a vital bottleneck constraining the system performance of
broadband communications systems. Due to the complicated characteristics of the
NBI and IN that are different from additive white Gaussian noise, such as ran-
domness, sparseness and high intensity, the conventional methods cannot eliminate
their impacts effectively. Aimed at this technological difficulty, this thesis is con-
centrated on the main topic of “key technologies in NBI and IN mitigation and
cancelation” based on the theories of digital communications systems and sparse
recovery. The research is taken on the four aspects including frame structure,
interleaving, sparse recovery and noise elimination:

First, concerning about the severe impacts of NBI on the synchronization of
orthogonal frequency division multiplexing systems, the optimized frame structure
design that can effectively mitigate the NBI impacts on synchronization is studied.
Optimized synchronization algorithm is proposed to mitigate NBI, which signifi-
cantly improves the accuracy of frame and carrier synchronization in the presence
of NBI. Thus, a new signal frame structure for broadband transmission, which takes
both spectral efficiency and transmission robustness into consideration, is formed.

Second, considering about the drawback that conventional interleaving tech-
niques cannot simultaneously mitigate NBI and IN effectively, the optimal
time-frequency combined interleaving technology is studied. The techniques of the
interleaving parameters optimization and the sub-matrix cyclic shifting for symbol
interleaving are proposed to maximize both time and frequency diversity gains. The
performance of both anti-NBI and anti-IN capability is significantly improved.

Moreover, to solve the crucial problem that conventional anti-NBI methods
cannot exactly reconstruct the NBI, the technology of accurate NBI reconstruction
based on the sparse recovery theory is researched on by exploiting the sparse
property of NBI in the frequency domain. The Compressed Sensing (CS) and
Structured CS (SCS)-based recovery algorithms are proposed. The spatially
multi-dimensional SCS-based recovery algorithm for MIMO systems is proposed.
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The research in sparse recovery theory-based NBI estimation is insufficient at
present, so this thesis proffers cutting-edge and novel technology in this field to
improve the performance of NBI estimation significantly, which can be widely
applied to many different broadband transmission systems such as power line and
wireless communications.

Finally, aimed at solving the drawbacks of the existing anti-IN methods such as
high complexity, low spectral efficiency and inaccuracy, the technology of
multi-dimensional CS-based IN cancelation is studied by exploiting the sparse
property of IN in the time domain. The prior information aided CS-based method,
along with the spatially multi-dimensional SCS-based method for IN cancelation, is
proposed to effectively guarantee the reliable and efficient broadband transmission
in the channel with severe noise and interference.

Through these researches, this thesis provides theoretical basis and technological
essentials for the NBI and IN mitigation and cancelation in the next-generation
broadband digital communications, and facilitates the application and standard-
ization of the proposed technologies.

Xiamen, China
January 2020

Dr. Sicong Liu
Assistant Professor
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Chapter 1
Introduction

Abstract As the introductory content of this thesis, this chapter firstly introduces
the development process and key technologies of broadband digital communications
systems and the main noise and interference in it, and describes the characteristics
and detrimental effects of NBI and IN, raising the main research topic, i.e., NBI
and IN in broadband communications systems; Secondly, a comprehensive survey
on the current research on the technologies of NBI and IN mitigation is given, with
the major problems and challenges that the current related researches are faced with;
Later the key problems to be solved and the research aims are given, based on
which the research routine, the main research contents, the technological roadmap,
the research outcomes and contributions of this thesis are described; Finally, a brief
introduction to the structure of the thesis contents is presented.

1.1 Research Background and Aims

Since the originator of information theory, Sir Claude E. Shannon, proposed informa-
tion theory to lay the foundation of communications technologies in 1948 [1],modern
communications theory, techniques and systems have gone through plenty of devel-
opment and evolution. Through technological evolution and application practice, the
communications system developed from the earliest analog communications system,
to the digital communications system gradually. Since the 1990s, digital communi-
cations have been developing through a long-term process of over 30years, with the
bandwidth growing, the rate increasing, and tremendous changes have taken place till
now. Broadband digital communications have a solid basis of technologies, covering
most of the populations all over the world. The research and industrial applications
on broadband digital communications technologies are developing very fast, push-
ing the modern communications technologies towards the prospects and aims of
high-speed, low-latency, ultra-reliability, wide-coverage, ubiquitous-connection.

With the development of modern society, many strict requirements of the sta-
bility, robustness and reliability for broadband digital communications systems are
challenging the people’s ever-increasing communications needs and the demands

© Tsinghua University Press 2021
S. Liu, Research on the Key Technologies in Narrowband Interference
and Impulsive Noise Mitigation and Cancellation, Springer Theses,
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2 1 Introduction

of big data as well as “everything interconnection” for Internet of Things (IoT).
However, the noise and interference in communications systems are always a severe
bottleneck that limits the communications system performance. Especially for the
special noise and interference widely existing in broadband communications sys-
tems, such as narrowband interference (NBI) and impulsive noise (IN), due to the
characteristics different from those of Gaussian white noise, such as complication,
randomness, sparsity, and intensiveness, the state-of-the-art methods can only “pas-
sively” combat against them, resulting in lots of drawbacks. The unfavorable impacts
cannot be effectively mitigated, and it is even harder to completely eliminate them
accurately, leading to inevitable performance loss to broadband digital communica-
tions systems. In order to ensure the effective and correct transmission of broadband
communications systems, to improve the network throughput and quality of ser-
vice (QoS), and to meet the requirements of the next generation communications
technologies including ultra-reliability and high-speed, this difficulty limiting the
communications system performance should be overcome. Hence, it is in desperate
need to study key technologies on NBI and IN mitigation and cancellation.

In this background, this thesis cuts in the research from the scientific problems of
how to mitigate the impacts of NBI on synchronization, how to improve the time-
frequency interleaving performance of communications systems in the presence of
NBI and IN, and how to accurately recover and eliminate NBI and IN. The thesis fol-
lows the investigation routine of “scrambling for mitigation, diversity for avoidance,
recovery for cancellation”, and a series of specific researches on the key technologies
are carried out. The thesis proposes the frame design method to effectively mitigate
NBI, the optimal time-frequency joint interleaving scheme for maximizing time-
frequency diversities, and accurate recovery and elimination algorithms based on the
theory of sparse recovery. From multiple aspects, the capability of mitigating and
eliminating NBI and IN for the next generation broadband communications systems
is fully improved. Through the research in this thesis, it is expected to provide the-
oretical basis and technological support for the further research of the researchers
in this area, and meanwhile, to endeavor to boost the standardization and industrial
applications of the research technologies in this thesis.

As the introductory content of this thesis, this chapter firstly introduces the devel-
opment process and key technologies of broadband digital communications systems
and the main noise and interference in it, and describes the characteristics and detri-
mental effects of NBI and IN, raising the main research topic, i.e., NBI and IN in
broadband communications systems; Secondly, a comprehensive survey on the cur-
rent research on the technologies of NBI and IN mitigation is given, with the major
problems and challenges that the current related researches are faced with; Later
the key problems to be solved and the research aims are given, based on which the
research routine, the main research contents, the technological roadmap, the research
outcomes and contributions of this thesis are described; Finally, a brief introduction
to the structure of the thesis contents is presented.



1.1 Research Background and Aims 3

1.1.1 An Overview of Digital Communication Systems

There are various types of standards, formation and corresponding techniques of
modern broadband communication systems. Among them, the basic components
mainly include the signal source, the transmitter, the channel (with noise and inter-
ference), the receiver, and the signal sink [2]. The signal source is the component
that generates the information of interest, which is commonly denoted by a binary
bit stream. The bit stream is coded in the digital domain at the transmitter using
channel coding, and then it is modulated using some kind of constellation mapping.
Afterwards, the modulated symbols are converted from digital to analog signal by a
digital-to-analog converter (DAC), and then pass the shaping filter. After frequency
upshifting, the transmit signal is formulated by the analog front end, and sent to
the channel. The signal passes through the fading channel and reaches the receiver,
during which the signal suffers from the noise and interference in the channel. After
receiving the signal coupled from the analog front end in the receiver, the received
signal is down-converted in frequency and converted from analog to digital signal
using an analog-to-digital converter (ADC), which generates the received digital
baseband signal. After that, the processes of synchronization, noise and interference
mitigation, channel estimation and equalization, demapping and decoding are car-
ried out, and the binary bit stream conveying the information of interest is recovered.
Finally, the recovered information is passed to the signal sink [3, 4]. Among these
processes, the estimation, mitigation and elimination of noise and interference are an
important part of broadband digital communication systems. Whether the noise and
interference can be effectively mitigated, estimated and eliminated, has a significant
impact on the performance of many other parts such as synchronization, channel
estimation, demapping and decoding, etc. Thus, the mitigation and elimination of
noise and interference is the core problem of this research.

In digital communication systems, all the components except the source and the
sink, can be regarded as a kind of “digital interface”, or “binary interface” [5]. The
function of the binary interface is to provide a physical-layer digital interface of the
exchange of binary information bit streams for the source and the sink. Meanwhile, it
will provide a binary data transmission link for upper-layers and try to guarantee the
reliability and accuracy of the transmission of the binary bit streams to improve the
transmission rate, which is also the aims and functionality of digital communication
systems. There are many advantages of applying binary interface (i.e. digitalization).
For example, it is easy to design digital logic and circuits. Digital transmission
algorithms have a better performance and a higher stability. According to Shannon’s
Theorem of source/channel separation [6], the source coding and channel coding can
be independent of each other.

Recent years are witnessing a rapid growth of digital communication systems, and
an enormous amount of technical and industrial applications and completed standards
are brought into reality. In the evolution of digital communication technologies and
standard architecture, the most representative one is the evolution of wireless com-
munication technologies and standards. The first-generationwireless communication
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(1G) is operating in an analogmode, supporting only voice telephone and a low speed.
For example, the AMPS (AdvancedMobile Phone System) [7] is a representative 1G
system. In the 1990s, the second-generation wireless communication system (2G)
has developed digital communication mode, such as the IS-95 system [8] and the
GSM (Global System for Mobile Communications) system [9, 10], which signifi-
cantly improved the quality of voice telephone and even supported a low-rate data
service, so it was rapidly applied in a wide range. With the ever-increasing demand
of communication data rate, 2G standards were further evolved. The international
standardization organization 3GPP (3rd Generation Partnership Project) proposed
the WCDMA (Wideband CDMA) system [11], United States proposed cdma2000
[12], and China proposed TD-SCDMA standards [13]. These are the three domi-
nant standards that formed the third-generation wireless communication (3G). In the
beginning of the 21st century, 3GPP proposed the long term evolution (LTE) project,
and put forward the LTE release-8 standards series, which opened up the fourth
generation wireless communications (4G). The standards series of LTE release-10
put forward right after made the technological architecture of 4G more thorough,
which is called LTE-Advanced (LTE-A) standards. The evolutionary key technolog-
ical proposal in the 4G standards series is orthogonal frequency division multiplex-
ing (OFDM) [14–17] and multiple-input multiple-output (MIMO) [2, 18–20]. The
OFDM technique is capable of mitigating frequency-selective fading effectively, and
improving the spectral efficiency significantly. The MIMO technique is able to fully
exploit the spatial diversity to improve the system capacity, which further improves
the data rate of the 4G system by a giant leap. Recently, in order to satisfy the desper-
ate demands of many different and new scenarios including low power consumption,
wide coverage, high rate, low latency, and ultra reliability, the 4G standards are
evolving rapidly towards 5G in the project of the international telecommunications
union (ITU) International Mobile Telecommunications-2020 (IMT-2020) [21–23].
The development of the new generation of wireless communication technologies
calls for more advanced and pioneering communication techniques to guarantee the
service quality in various different complicated scenarios. To this end, this thesis is
dedicated to the study of the mitigation and elimination of the new and special noise
and interference, which is aimed at providing a better and more advanced technology
for the next generation wireless communications as well.

The development of broadband digital communication technologies also pushed
forward the development of wireless digital terrestrial multimedia broadcasting tech-
niques. After an evolution process of around 20years, there are mainly four inter-
nationally adopted common standards for digital television terrestrial broadcasting
(DTTB) systems. The first one is the ATSC standard based on single carrier modula-
tion proposed by the Advanced Television Systems Committee (ATSC) of the United
States [24]. The second one is the Digital Video Broadcasting-Terrestrial (DVB-T)
standard based on coded OFDM technique proposed by the European Telecommuni-
cations Standards Institute (ETSI) [25]. The third one is the Integrated ServiceDigital
Broadcasting-Terrestrial (ISDB-T) standard based on distinct sub-channel OFDM
technique proposed by Japan [26]. The fourth one is the Digital Terrestrial Multi-
media Broadcasting (DTMB) standard based on Time Domain Synchronous OFDM
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(TDS-OFDM) technique proposed by China [27]. In recent years, with the develop-
ment of coded modulation techniques, the DTTB system standards are also evolving
continuously.Variousmore advanced systems, including theATSC3.0 standards [28],
the DVB-T2 standards [29], and the DTMB-A (DTMB-Advanced) systems [30],
are developed based on the standards mentioned above. The high performance Low
Density Parity Check (LDPC) code [31, 32] is introduced to the advanced standards.
The advanced techniques such as the quadrature amplitude modulation (QAM) [33,
34] with high modulation order or amplitude phase shift keying (APSK) [35, 36],
and bit-interleaved codedmodulation (BICM) [36–38], are introduced as well, which
facilitates a higher rate and better performance, approaching the channel capacity.
There also existmany complicated noise and interference in terrestrialwirelessmulti-
media broadcasting channels, such as narrowband interference and impulsive noise,
which is still the major factor that constraints the performance of the DTTB sys-
tems [39–41].

Apart from these, the rapid development in many areas such as wireless local
area networks, wireline communication networks, and the newly emerging internet
of things, is also pushing forward wider industrial applications of digital commu-
nication technologies. The representative of wireless metropolitan access networks
(WMAN) is IEEE 802.16 standards series, namely theWiMAX [42] standards series,
covering outdoor cell areas, which is similar to the application scenarios of wireless
cellular communications. The standards of wireless local area networks mainly refer
to the broadband wireless local access networks (WLAN) systems specified by the
IEEE 802.11 standards series, which is commonly called WiFi (Wireless Fidelity).
WiFi adopted the 4G key technologies, such as OFDM andMIMO, so a high-quality
indoor short range wireless access service is provided, and great commercial suc-
cess has been achieved [43]. The wireless access in vehicular environments (WAVE)
system specified by the IEEE 802.11p standards [44] is an extended application
of wireless local area networks in the scenarios of vehicular communications. As
far as wireline communication networks are concerned, the representative standards
include the wireline broadband digital television system specified by DVB-C or
DVB-C2 standards [45], the broadband power line communications (PLC) systems
specified by the ITU-T G.9960 standards [46] and the IEEE P1901 [47], and the con-
ventional fiber optics communications systems, etc. Among these wireline systems,
broadband power line communication systems do not rely on dedicated communica-
tion cables, so it is very easy to deploy the PLC system in practice. The transmission
rate can reach 500 Mbps [48], and even 1 Gbps based on the reported research in lit-
erature [49]. The coverage area is in the order of 100m [50]. Thus, PLC systems have
been widely applied in many areasd, such as smart home, smart city, etc. The repre-
sentative of newly emerging internet of things is the narrowband internet of things
system (NB-IoT) based on cellular networks proposed in 2016 [51–53], which is able
to support the networking of an enormous amount of nodes with very low energy
consumption and a very wide coverage. One thing that should be noted is that, no
matter in the wireless local area networks or in the wireline systems, narrowband
interference and impulsive noise widely and prevailingly exist, and they have a great
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impact on the communication performance of the networks. Thus, it is necessary to
study effective techniques to deal with this issue.

With the ever-increasing development of the theory and technologies of broad-
band digital communications and its wide applications in different scenarios, related
advanced technologies are continuously being studied and proposed by both the
academia and industry, which also facilitates the maturity of the new broadband
digital communication technologies. Specifically, many researches on the key tech-
nologies of point-to-point transmission have set a solid theoretical and technological
basis for the continuous increase of the performance of digital communications.
Among them, some of the key techniques include: block transmission multi-carrier
OFDMmodulation, cyclic prefixed OFDM (CP-OFDM), zero padding OFDM (ZP-
OFDM), and time-domain synchronous OFDM (TDS-OFDM) [14, 16, 54], which is
able to improve the spectral efficiency of digital communication transmissions, and
avoid inter-symbol interference and inter block interference. The accuracy of equal-
ization can be improved, and a lower complexity of implementation can be achieved.
Thus, it has been widely adopted by many different cutting-edge broadband digi-
tal communication systems. On the other hand as a contrary technique, the single
carrier techniques such as the single carrier frequency division multiple access (SC-
FDMA) [55] is proposed, but the performance of single carrier techniques is worse
than that of OFDM techniques in the presence of multipath fading. Since OFDM
systems have a strict requirement on accurate synchronization, the synchronization
techniques such as frame synchronization, carrier recovery and synchronization, tim-
ing synchronization and sampling frequency recovery, are the key parts that guarantee
the reliability of block transmission [56–59]. As far as the coded modulation tech-
niques are concerned, the highly efficient channel coding and decoding techniques
such as the Turbo code [60] adopted by LTE or LTE-A, the LDPC code adopted by
the data link in the enhanced mobile broadband (eMBB) scenario of 5G [21], can
approach the channel capacity. The high order constellation mapping and demap-
ping techniques (such as QAM and APSK constellation mapping modulation) can
significantly improve the spectral efficiency and data rate. Bit-interleaved coded
modulation (BICM) and iterative decoding BICM (BICM-ID) techniques [61] are
able to make full use of the signal space diversity (SSD) to improve the equivalent
channel capacity betweenmapping and demapping [62]. The interleaving techniques
can provide time, frequency, and coordinate diversity gains [63–65]. Multiple anten-
nas techniques (such as MIMO-OFDM techniques, massive MIMO techniques) can
provide space diversity gain and increase the degrees of freedom, which significantly
increases the spectral efficiency [2].

Although the development of the technological standards evolution and industrial
applications of broadband digital communication techniques is rapid and furious, the
various kinds of noise and interference in modern broadband communication sys-
tems cannot be avoided. Furthermore, the complicated and time variant narrowband
interference and impulsive noise in the communication systems will have a great
and direct impact on the performance and functionality of the point to point trans-
mission techniques mentioned above, which is a serious bottleneck that constraints
the performance of communication systems. Therefore, in order to further improve
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and overcome the performance limit of broadband digital communication systems,
the issues of narrowband interference and impulsive noise cannot be neglected, and
should be paid high attention to.

1.1.2 Noises and Interferences

There exist many kinds of noises and interferences in broadband digital communica-
tions systems. As is generally acknowledged, noise is a detrimental factor generated
by some random noise source inside or outside the communications system, lead-
ing to impacts on the correct reception of the signal of interest, which is commonly
represented by its random probability distribution; interference is a detrimental sig-
nal caused by some outside interfering source or inner derivative signal, leading to
interference to the correct reception of the valuable signal, which can be represented
by the deterministic frequency spectrum, the random power spectrum density, or the
random probability distribution of the interference signal [66–68]. Viewed from the
definition, interference is somewhat different from noise, but there are also some rela-
tions between them. The difference is that, the reason of generation and the source of
noise and interference are different; the relation is that, both noise and interference
have some random property and they are mixed up with the signal of interest, lead-
ing to unfavorable impacts on the correct transmission and reception of the signal of
interest.

There are many different ways to classify noise and interference. According to
their logical relation with the signal of interest, they can be classified into additive
noise andmultiplicative noise; According to their linearity, they can be classified into
linear noise and nonlinear noise; According to the generation and source, they can be
classified into system inner intrinsic noise (such as thermal noise inside amplifiers
and electronic components, the shot noise of semiconductors, the intermodulation or
harmonic interference caused by the device nonlinearity) and outside noise (such as
cosmic backgroundnoise, atmospheric noise, electromagnetic radiation noise, impul-
sive noise generated by switching of electrical devices, interference from co-channel
narrowband service); According to the cause and source, they can be classified into
hostile interference (such as military electronic countermeasure interference, bar-
rage jamming and frequency hopping interference) and unintentional interference
(such as co-channel interference between different services on unlicensed public
frequency bands); According to the probability distribution characteristics, they can
be classified into white Gaussian noise (such as thermal noise and shot noise) and
non-Gaussian noise (such as colored background noise, impulsive noise and narrow-
band interference), etc. [69–72].

Nomatter in thewireless channel orwired transmission environment, there always
exist different kinds of noise and interference in communications systems. Some typ-
ical noises and interferences commonly seen in broadband digital communications
systems are described as follows.
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Noise: The noise from inside the system is called “system intrinsic noise”, and the
noise from outside is called “outside noise” or “external noise”. The distribution
of the system intrinsic noise is commonly random, which should be expressed in
probability distribution functions. It is difficult to mitigate or suppress the system
intrinsic noise due to its randomness. However, the intensity of system intrinsic noise
is normally not strong, which is particularly harmful to analog circuits but is not so
severe for digital circuits and digital communications systems whose electric levels
have large variation [69]. On the other hand, external noise might be distributed
randomly, but also likely to be from deterministic signals, whose intensity is usually
far larger than that of system intrinsic noise, sometimes significantly higher than
the amplitude of the signal of interest. Hence, external noise has severe impacts on
digital communications systems [68]. Nevertheless, it is easier to find the rules of
the distribution of external noise than intrinsic noise, so more effective methods of
mitigation might be found. Some typical noises are listed as follows:

Additive white Gaussian noise (AWGN): The most typical, commonly seen and
usedmodel of background noise, which belongs to the category of system intrinsic
noise. The cause of AWGN is the molecule thermal motion or the electric charge
motion inside the electronic components that constitute the communications sys-
tem. Because of the physical inherent characteristics of its cause of formation,
AWGN cannot be eliminated. It is widely applied in the channel and noise model-
ing, analysis andpractical simulation for communications systems.TypicalAWGN
includes the thermal noise caused by the intrinsic thermal motion of molecules or
electrons, and the hot noise caused by the motion of discrete electric charges, etc
[67]. Band-limited white noise is a special case of AWGN, which can be regarded
as a kind of AWGNwith a flat noise power spectrum density in the limited working
bandwidth [70].
Colored background noise: Colored background noise should be classified into
system intrinsic noise whose power spectrum density function is different from
that of AWGN, since it is not “flat” in the frequency band of interest and thus not
satisfied with the definition and condition of “white noise”. Contrarily, its power
spectrum density fluctuates with frequency, reflecting a characteristic of “color”.
The commonly seen colored background noise include the 1/f noise concentrated
mainly in low frequency band caused by the direct current passing through dis-
continuous medium in electronic components (i.e., “flicker noise”), division noise
mainly significant in high frequency in transistors, most audio noise whose spec-
trum is in mainly non-white low frequency band (such as pink noise, brown noise),
and auto-regression noise [70].
Impulsive noise: Impulsive noise (IN), is defined as a bursting and impulsive out-
side noise in literature, whose pulse duration is sufficiently small with respect to
the signal duration [68, 72]. As generally acknowledged in literature, quantita-
tively speaking, for block transmission systems, such as the orthogonal frequency
division multiplexing (OFDM) system, IN can be regarded as a pulse noise signal
whose nonzero pulse duration is no more than 5% of the OFDM symbol dura-
tion [73, 74]. Due to its time-domain bursting and impulsive characters, IN is



1.1 Research Background and Aims 9

usually called “pulse noise”. The cause of IN is various, commonly including the
atmospheric noise produced in the atmosphere space, the spark noise produced
by vehicles and electric devices, the runtime noise of industrial facilities, and the
switching noise of household appliances, etc [50, 69].
Other types of noises: Apart from the typical noises mentioned above, there are
some other noises in communications systems, such as the multiplicative noise
having a multiplicative relation with the signal, the phase noise having an impact
on themodulation phase of the signal, the nonlinear noise caused bynonlinear com-
ponents or nonlinear signal processing operations like the clipping noise caused
by the clipping operation to mitigate high peak-to-average-power-ratio (PAPR)
in OFDM systems, and the quantization noise due to insufficient bit accuracy in
the process of analog-to-digital conversion and other float-point or fixed-point
quantization [70, 71].

Interference: Interference mainly comes from a certain interfering source outside
the system, which is coupled into the communications system through a certain
medium and mixed up with the signal of interest in time or frequency domain,
resulting in detrimental effects on the correct reception, demodulation and decoding
of the information signal. The interference signal can normally be represented by
its deterministic spectrum or random power spectrum density [68]. Some kinds of
interference signals might also come from inside the system itself. Some typical
interferences in broadband digital communications systems are listed as follows:

Narrowband interference: In literature, narrowband interference (NBI) is com-
monly defined as a narrowband and spectrally-sparse interfering signal outside
the system, whose effective bandwidth is sufficiently narrow with respect to the
signal working bandwidth [68, 75]. As a duality of IN, it is generally acknowl-
edged in literature that, the NBI in OFDM systems can be quantitatively defined
as an interfering signal, where the ratio of the bandwidth occupied by its nonzero
frequency components to the OFDM working bandwidth is no more than 5%
[76, 77]. In some references, NBI is equivalently called “narrowband noise” [66],
but in this thesis it is called NBI for consistency. NBI is prevailing existing in
broadband digital communications systems with various causes, such as the NBI
caused by the radio frequency leakage or wired coupling from the radiation of
neighboring wireless devices or the interfering source in the same wired network
topology [50, 67], and the interference to the broadband communication service
from the co-channel narrowband licensed service or narrowband amateur radio
service, etc [68, 69].
Electronic countermeasures interference: It belongs to intended malicious inter-
ferences, whose purpose is to disturb the normal transmission of the target com-
munications system. The electronic countermeasures interference commonly seen
include frequency-hopping interference (the frequency location of interference
hops in a certain law or randomly), barrage jamming (jamming the whole work-
ing band), step disturbance (random or mixed frequency-sweeping interference to
target signal); likewise, the NBI (such as single or multi-tone interference), and
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impulsive interference (can be regarded as a kind of IN generated by intermittently
transmitting high-power interfering signals), etc [68].
Other outside interferences: The other interferences coming from outside inter-
fering sources still include the adjacent channel interference generated by other
services in adjacent bands (such as the interference caused by the spectrum leak-
age of adjacent-band services), co-channel interference in the same band with
the signal of interest (such as the interfering signal received by the UEs in the
cell edge from the same frequency of the BS in the adjacent cell, as well as pilot
contamination)[2], wireless coupling noise or crosstalk noise in wired communi-
cations, and electromagnetic interference (EMI) generated by the working circuits
of electric and electronic devices, etc. [72].
System inherent interference: The interference signals produced inside the commu-
nications system, such as the cross-modulation interference (caused by high-order
harmonics due to outside interfering signals or the nonlinear effects on the informa-
tion signal at the receiver), intermodulation interference (the interference caused
by the harmonics falling into the band of information signal because of the non-
linear operations on the different frequencies of the signal of interest), and image
frequency interference (the image frequency components falling within the range
of the intermediate frequency filter caused by frequency mixing and conversion),
etc. [78].

1.1.3 Characteristics and Detrimental Effects of NBI and IN

NBI and IN exists widely in broadband digital communications systems and have
significant detrimental effects on the system performance, which should be paid great
attention to and the mitigation schemes need to be studied. In the following contents,
the special distribution, the widely existing causes, and the detrimental effects on
communications systems of NBI and IN are described.

(1) Special Distribution of NBI and IN

According to the Shannon information theory, noise and interference are the most
essential and fundamental constraints to the communications system performance.
If there is no noise or interference, theoretically, the channel capacity can be infinity
[79, 80]. In the AWGN channel, the channel capacity has a closed-form solution [1],
which has been studied comprehensively. AWGN is an additive stationary random
process whose power spectrum density is flat (i.e. “white”) and follows a multivari-
ate Gaussian distribution [66]. However, NBI and IN are different from AWGN. No
matter in characteristics and statistical distributions, or in the causes and detrimental
effects, they are different in essence, so we cannot deal with them using conven-
tional AWGN model, theory and method. Firstly, NBI does not belong to white
noises, because its spectrum or power spectrum density is limited in a narrow band
thus not reflecting a “white” character as in AWGN [75]. Secondly, the statistical
distribution of IN is non-Gaussian [81], whose amplitude distribution usually follows
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theMiddleton Class A distribution [73, 74, 82, 83]; Meanwhile, the joint multivari-
ate distribution of the signal samples of NBI or IN does not follow a multivariate
Gaussian distribution, and the amplitude of each sample does not have the charac-
ter of the covariance of multivariate Gaussian distribution [84, 85]. Besides, due to
the impulsive, bursting and instantaneous characters of IN, its distribution can be
regarded as a non-stationary (neither stationary nor wide-sense stationary) random
process [86–88]. Although in some literature part of the characters of the statisti-
cal NBI or IN model is expressed by single-variable Gaussian distribution function,
these references still insist that it is only a special extension of Gaussian variable
within part of the features of NBI or IN: for example, for the band-limited Gaussian
noise (BLGN) model of NBI, although the amplitude of each tone interferer is a sin-
gle Gaussian variable, multiple tone interferers do not follow multivariate Gaussian
distribution [84, 85, 89]; In the Gaussian mixture model of IN, the occurrence time
of each nonzero pulse sample follows Poisson or Bernoulli distribution, so the model
does not belong to conventional AWGN model despite the fact that the amplitude of
its nonzero entries is a single Gaussian variable [90].

The time and frequency domain locations of NBI and IN have obvious irregular
and random distributing characters [86, 91]. Usually, the intensity of the power
spectrum density of NBI and IN is very high (typically 15–20 dB, sometimes 50 dB,
over the background noise floor [88]), and they aremixed upwith the signal of interest
in both time and frequency domains completely,making it very difficult to distinguish
between them [92]. Hence, it is hard to correctly analyze the theoretical performance
bound of the channel in the presence of NBI and IN. It is difficult to mitigate and
estimate NBI and IN, which will significantly impact the communications system
performance.

(2) NBI and IN Widely Exist in Broadband Communications

NBI and IN widely exist in different channel environments and application scenar-
ios of current broadband communications systems and standards, and have become
an inevitably important aspect constraining the system performance of broadband
communications systems.

Channels and systems with IN: firstly, in outdoor wireless communication chan-
nels, such as digital terrestrial television broadcasting channel and cellular wireless
communication channel, there exists IN from ignition of transportation vehicles
and weeding machines [93], and the IN generated by the switching of central air-
conditioner, heater, lighting and household appliances [94]. Secondly, various wired
communication channels, such as power line communication (PLC) networks, asym-
metric digital subscriber line (ADSL), cabled TV lines, etc, suffer from the IN from
the switching, plugging or topology changing of electric devices in the same power
grid [88, 95, 96], and the coupling IN from the vehicle ignition, sparks, lightning
and atmospheric noise [97], electric device leakage [50] and pulse radiation leakage
[98]. In indoor wireless communications scenarios, there are also widely existing IN.
For instance, it is shown by experimental tests that, there are IN in both the public
Industrial Scientific and Medical (ISM) band and the 4GHz high-frequency band,
whose bandwidth can reach 40MHz [99]. Besides, in the scenarios like internet of
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vehicles (IoV), IN also prevails, such as the radio frequency coupling IN in wire-
less IoV IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) system
[44, 100]; In smart grid andwiredVehicle-to-Grid (V2G) networks, such as the smart
IoV specified by HomePlug Green PHY standards, there also exists IN that impacts
wired devices [101]. The operation of vehicle engines also introduces severe IN to
IoV devices [102].

Channels and systems with NBI: on one hand, for wireless communications sys-
tems, the broadband wireless service networks working in the ISM unlicensed pub-
lic band, such as the communication equipment in Wireless Local Area Networks
(WLAN) [92], Wireless Metropolitan Area Networks (WMAN), wireless IoV [103],
will suffer from interference from other unlicensed narrowband services (like blue-
tooth [104], cordless telephone, gate control,microwave oven, babymonitor, etc) [75,
105]; The narrowband signal produced by unlicensed amateur radio also has an
impact on public unlicensed services, or spectrum leakage and abnormal usage of
spectrum will also produce NBI to broadband communications in some licensed
band [106]; Broadband multimedia wireless transmission systems and wireless digi-
tal terrestrial television broadcasting systems suffer from the co-channel NBI caused
by analog broadcasting signals [39], and the NBI produced by the secondary users
of cognitive radio who exploit the “white band” of digital television [40, 41]; Also,
analog narrowband broadcasting signals will generate NBI to broadband communi-
cations systems like spread-spectrum and multi-carrier based systems [107]. On the
other hand, wired communications systems like OFDM-based broadband PLC sys-
tems [108, 109] ADSL [106], ADSL [106] and cabled digital television broadcasting
(such as digital video broadcasting-cable, DVB-C) suffer from NBI produced by the
narrowband working harmonics from household appliances [50] (microwave oven
[110], water heater, personal computers [111]). In addition, NBI exists in plenty of
other scenarios, such as in the scenario of internet of things (IoT), the Narrowband
Internet-of-Thing (NB-IoT) signal generates NBI to LTE (Long Term Evolution)
or LTE-A (LTE-Advanced) cellular wireless communications systems working in
the same in-band mode [51–53]; Ultra-Wideband (UWB) systems tend to suffer
from NBI caused by many licensed or unlicensed wireless services with overlapping
spectrum because of its very wide spectrum range [112, 113], and the malicious NBI
aimed atUWBsystems is alsowidely encountered in electronic countermeasure [114,
115]; The radio frequency nonlinearity due to the carrier ingress or carrier leakage at
the transmitter will also introduce single-tone carrier remaining interference to the
communications system itself, etc. [75].

(3) Detrimental Effects of NBI and IN on Communications Systems

NBI or IN has severe detrimental effects on the normal running of each module in
the communications system, thus resulting in significant impacts on the performance
of various broadband communications systems.

Themajor harmful effects ofNBI: in the presence ofNBI, it is easy for the dynamic
range of the digital correlator or the front-end high-speed analog-to-digital-converter
(ADC) at the receiver to be saturated. Likewise, analog receivers like rake do not
have the inherent mechanism of eliminating the interference energy from decision
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statistics, leading to significant performance degradation with NBI [113]; Also, NBI
has significant detrimental effects on the synchronization performance (including
frame synchronization, timing recovery and carrier estimation) of the receivers of
broadband communications systems, especially multicarrier OFDM systems [116];
Furthermore, it is shown by theoretical analysis that, the bit error rate (BER) of
the Fourier transform and wavelet transform based OFDM systems significantly
increase in the presence of NBI [117]; It is proved by experiments that, when NBI is
present, the BER performance of OFDM-based systems suffers from severe degra-
dation [118]; It is validated that NBI might lead to complete loss of the data carried
in sub-carriers, and significant increase of BER, symbol error rate (SER) as well as
block error rate (BLER)[108]. For instance, UWB systems are very sensitive to NBI
from many licensed or unlicensed services because of its mechanism of collecting
the energy all over the frequency domain [113].

The major harmful effects of IN: it is shown in literature that, IN has severe
impacts on the performance of digital communications receivers like decoding and
demapping [119–122]; Due to the wide spectrum affected by IN, for multicarrier
systems, almost all the OFDM sub-carriers are contaminated, especially when the
intensity of IN is large enough to reach a certain threshold, leading to error recep-
tion of the whole OFDM block and performance degradation that channel coding
cannot compensate [123]; The pulses of IN might occur in bursts in multiple con-
tinuous symbols, resulting in the failure of Viterbi decoding [124]; According to the
analysis in literature, the currently widely applied broadband multicarrier systems
like OFDM-based systems tend to be affected by IN more easily than single-carrier
systems [125]; It is further shown by theoretical analysis and experimental tests
that, IN brings significant performance degradation to the accuracy of demapping
and decoding of multicarrier system receivers [96]; When the energy of IN exceeds
some certain threshold, it is difficult to eliminate the impacts on all the sub-carriers
using conventional signal processing methods [126], and inevitable bursting errors
will appear in block transmission data [127]; It is shown by practical tests in wire-
less broadband multimedia transmission systems that, IN has severe impacts on the
performance of the OFDM system receiver modulated in 64QAM [128].

Consequently, because of the special distribution, wide existence and severe detri-
mental effects of NBI and IN, it is in desperate need to research on the key tech-
nologies to effectively suppress, estimate and eliminate NBI and IN, which is utmost
urgent for ensuring the performance of broadband communications systems.

1.2 Related Works and Challenges

1.2.1 Related Works and Problems on NBI Mitigation

As far as the problem of NBI mitigation, current existing researches in literature
mainly include three basic categories, i.e., receiver-side frequency-domain estimation
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andmitigation, transmitter-side time-domain filtering and receiver-side time-domain
equalization, and transmitter-side orthogonal coding based mitigation.

(1) Receiver-side frequency-domain estimation and mitigation.

Nilsson proposed an NBI estimation method based on the rule of frequency-domain
linear minimum mean square error (LMMSE) exploiting the values in null sub-
carriers close to the real locations of NBI as measurement data [129]; Drawbacks:
This method requires a large amount of reserved virtual sub-carriers, which is a
great waste of spectrum resource, and it also requires the power spectrum density
and central frequency location of the NBI to be known a priori, which is difficult to
satisfy in practice, so the practical value of this method is relatively low.

Darsena proposed a successive interference cancelation method by sequentially
doing symbol decision and error estimation for each sub-carrier in a recursive and
iterative manner [76, 130]; Drawbacks: This method requires accurate channel esti-
mation in the stage of sub-carrier symbol decision, and requires to know the accurate
power spectrum density of NBI in the stage of error estimation, which is unpractical
in realistic systems; Besides, the estimation error at some certain sub-carrier will
accumulate and propagate to all the subsequent sub-carriers, leading to performance
deterioration.

In addition, the receiver-side frequency-domain mitigation methods include the
frequency threshold excision (FTE) method based on the decision according to the
predefined threshold, which excludes the sub-carrier data with an amplitude larger
than the given threshold [114, 131–133]; Drawbacks: The operation of directly
excluding the sub-carrier will cause spectrum leakage and data loss, and it is easy to
cause false alarm because of spectrum leakage or the peak power of OFDM signals
in frequency-selective channels, leading to more loss of information data.

(2) Transmitter-side time-domain filtering and receiver-side time-domain
equalization

Stamoulis designed an MMSE based NBI mitigation method using a nonlinear deci-
sion feedback equalizer [134];Drawbacks: Thismethod requires the accurate second-
order statistics of the received signal to be known, otherwise the performance will
be greatly degraded.

An optimized receiver with wide linear-zero forcing (WL-ZF) equalizer was
designed based on the rule of constrained minimummean output energy (CMMOE),
and thus a related method to mitigate the impacts of NBI on receivers was proposed
[135, 136]; Drawbacks: This method requires the prior statistical information of
NBI to be known, and the receiver has to know the ideally accurate channel impulse
response (CIR), which is, however, very difficult to accurately estimate in the pres-
ence of NBI in practice.

Coulson and Kelleci proposed an NBI suppression method by designing a time-
domain suppression filter based on the linear prediction rule ahead of the discrete
Fourier transform (DFT) at the transmitter, which is able to reduce spectrum leakage
compared with the FTE method [132, 137]; Drawbacks: This method is effective
only if the OFDM signal is under flat fading and the suppression filter has to be
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designed in the frequency location of the NBI, which requires the precise location
of NBI to be known in advance; Besides, this method is complicated to design and
hard to implement efficiently.

(3) Transmitter-side orthogonal coding based mitigation

Gerakoulis andWuproposed an interference suppressingOFDM(IS-OFDM)method
for NBI mitigation, which spreads the transmitted signal power over all the sub-
carriers using orthogonal spreading codes like orthogonalWalsh code at the transmit-
ter [77, 138]; Drawbacks: The performance significantly degrades in high
interference-to-signal ratio (ISR), making the method not working; And the required
operation of orthogonal coding brings in additional high complexity.

On the basis of IS-OFDM systems, Popescu and Yaddanapudi proposed an NBI-
avoidance method to mitigate the impacts of NBI and its spectrum leakage on related
sub-carriers using the spectral shaping technique or the FTE method [139, 140];
Drawbacks: The spectral shaping operation and the FTE processing will introduce
non-orthogonal property between sub-carriers; In addition, the performance of this
method degrades when the number of nonzero entries of NBI is so large that many
sub-carriers are forced to be set as zeros, so its applicability is relatively low.

It can be concluded from the above-mentioned existing conventional methods
of NBI mitigation that, there are many drawbacks in the current research, such
as the unstable performance of NBI mitigation, data loss, unrealistic assumptions,
impractical for realistic systems, high implementation complexity, and difficulties
in deployment, etc. The aims and strategies of most of the existing methods are
“passively”mitigate the effects ofNBIwhereas they cannot effectively and accurately
estimate the NBI signal, leading to the fact that they cannot completely eliminate the
impacts of NBI in essence. Therefore, it is in great need to study a series of practice-
oriented, realistic-system-applicable, stable and efficient methods of NBI mitigation
and elimination. Designing the algorithms that are able to “actively” reconstruct the
NBI accurately and eliminate NBI completely, is the key to solving this problem.

1.2.2 Related Works and Problems on IN Mitigation

Aimed at the problem of IN mitigation, the existing research literature works have
addressed three basis categories, mainly including the receiver-side nonlinear oper-
ation method, the transmitter-side preprocessing method, and the receiver-side post-
processing method.

(1) Receiver-side nonlinear operation method

The detrimental effects of too large amplitude of IN were constrained by clipping
the time-domain samples that exceed a threshold [123]; Drawbacks: The clipping
operation will introduce nonlinear distortion, leading to system performance loss;
Because the clipping operation did not accurately estimate and eliminate the IN
components, the impacts of IN cannot be completely excluded; In addition, it is
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difficult to obtain the accurate locations of time-domain samples where IN occurs,
so part of the samples affected by IN would be left out without processing when the
intensity of IN did not exceed the predefined threshold.

The time-domain components of IN in the samples whose power exceeds the
threshold can be eliminated by blanking these samples [141]; Drawbacks: When the
PAPR of the OFDM signal is high, it is difficult to correctly estimate the precise
locations of IN, so it is much probable to cause false alarm and mistakenly set the
data not affected by IN to zeros, leading to additional performance loss; Besides, part
of the samples affected by IN whose amplitude did not exceed the threshold would
be left out.

Zhidkov tried to configure two thresholds for the clipping and blanking operations
as a compromise of the two processing techniques [126]; Drawbacks: This combined
scheme still has the drawback of either the clipping method or the blanking one;
Because the locations of IN cannot be accurately obtained, part of the time-domain
samples affected by IN is left out; When the PAPR of the OFDM signal is relatively
high, it is much likely to cause false alarm and make the data set to zeros; When
doing the clipping operation, the impacts of IN were not effectively mitigated and
the detrimental effects remained; Nonlinear distortion might be introduced, etc.

(2) Transmitter-side preprocessing method

Matsuo and Haring studied the coding and decoding method using complex number
for information data at the transmitter and receiver. Since INwas not encoded but only
decoded by the complex number, it was equivalent to spreading its energy over all the
sub-carriers by dispersive filtering processing, so the impacts of IN were suppressed;
At the receiver, based on the Turbo recursive decoding mechanism and maximum a
posterior (MAP) estimation, the significance of information signal with respect to IN
was improved by multiple iterative decoding [142–144]; Drawbacks: The design of
effective complex number codes is difficult and costs large complexity; Additional
coding and decoding complexity should be included in the transmitter and receiver;
large extra delay was introduced by iterative decoding with high implementation
complexity; The performance of the iterative method of IN mitigation degraded
significantly when the intensity of IN is large.

Another major transmitter-side preprocessing method is precoding frequency
algebraic interpolation method: the frequency-domain OFDM symbols were pre-
coded in the equivalent complex-valued Reed-Solomn (RS) codes [124, 145, 146],
or precoded in the equivalent complex-valued or real-valued Bose-Chaudhuri-
Hocquenghem (BCH) codes [147, 148], and the receiver exploited the received
information at the known pilots with some certain distribution patterns, or contin-
uous zero symbols [148, 149] for frequency-domain algebraic interpolation and
decoding [150], thus mitigating the impacts of IN; Drawbacks: Extra complexity of
precoding and decoding should be included to both the transmitter and receiver, and
additional delay was produced; enough number of known pilots [124] or continu-
ous zero symbols [147, 148] should be configured in the frequency domain. It was
derived by theoretical analysis that, the distribution of the known pilots should satisfy
a certain pattern in order to be the necessary and sufficient condition of successful
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decoding [124], and the distribution of the successive zero symbols should appear
in sequence [148, 149], but it is difficult for these two conditions to be satisfied in
practical systems.

(3) Receiver-side post-processing method

Tulino made an assumption in research that, IN was independently identically dis-
tributed (i.i.d) and occurred with a certain probability. It was also assumed that, the
accurate location of IN in the time-domain sample of the OFDM symbol was known
to the receiver, and thus the sample contaminated by IN could be directly excluded
[151]; Drawbacks: In practical systems, it is not possible for the receiver to directly
obtain the accurate location of IN; the operation of excluding the sample will cause
time-domain data loss and introduce non-orthogonality between OFDM sub-carriers
and inter-carrier interference (ICI), which will lead to demodulation and decoding
errors of OFDM symbols when the IN appears intensively (with a relatively large
probability).

Rinne proposed a dynamic detectionmethod using the predefined power or energy
threshold, which online judges whether the OFDM data block was contaminated by
IN. If so, this OFDM data block was deleted as a whole [152]; Drawbacks: This
method causes too much loss of information, and significantly reduces the system
throughput;

Apart from these, an important receiver-side post-processing method is the diver-
sity combiningmethod [153–155], which utilized the channel physical state diversity
of different channels, and combined them in a certain manner, expecting to achieve
diversity gain and improve the reliability of wireless communications systems in the
presence of IN; Dubey provided a theoretical closed-form analysis of the BER of the
system performance using selection combining method in the presence of IN [154];
Drawbacks: In practical communications systems, usually it is not easy to simul-
taneously get multiple physical channels with multiple different characteristics, so
the physical channel diversity cannot be achieved in essence [155]; The combining
of multiple sub-channels based on the same category of physical channel is lack
of applicability, and the combining performance is also affected by the correlation
between different channels; Besides, the method of diversity combining is still in the
mode of “passively” combatting against IN, which is not capable of eliminating the
impacts of IN completely.

It can be observed from these categories of conventional IN mitigation methods
mentioned above that, there are plenty of drawbacks for the existing researches,
such as the nonlinear distortion introduced by the operation of IN mitigation, the
information data loss, the reduction of spectrum efficiency due to excessive time-
frequency resources consumption, the false alarm and errors caused by inaccurate
estimation, the high complexity of paradigm design, the unrealistic assumptions
of the system and the available conditions of estimation, etc. The mechanism of
most of the existing methods of IN mitigation is “passive” mitigation, which cannot
accurately reconstruct and eliminate the IN signal. In all, it is necessary to study
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highly efficient, robust and applicable algorithms of NBI and IN mitigation and
elimination, in order to “actively” reconstruct and eliminate NBI and IN, which is
also the main research aim of this thesis.

1.3 Key Research Problems and Research Aims

As far as the drawbacks of the above-mentioned conventional methods of NBI and IN
mitigation are concerned, in order to overcome the many difficulties and challenges
the current research is faced with, this thesis is concentrated on the center of “the key
technologies of NBI and IN mitigation and cancelation”, and is intended to focus on
solving the following three key scientific problems:

Scientific Problem 1: How to overcome the severe impacts of NBI on the receiver
synchronization performance. The existence of NBI severely impacts the perfor-
mance of frame synchronization and carrier synchronization of the receiver, leading
to great challenge to the synchronization-sensitive OFDM systems. Conventional
design of synchronization frame structure and synchronization algorithms cannot
mitigate NBI, thus causing the performance degradation in the presence of NBI,
which is not capable of supporting the requirements of the improvement of the next-
generation communications system performance and the accurate synchronization of
OFDM systems. Hence, new synchronization frame structures and synchronization
methods that can effectively mitigate NBI should be investigated.

Scientific Problem 2: How to improve the performance of the time-frequency
interleaving scheme in the simultaneous presence of both IN and NBI. In the seri-
ous transmission environment where NBI and IN are simultaneously present, great
impacts are imposed on the accuracy of demapping and decoding of the current
broadband communications systems. However, conventional interleaving schemes
were not jointly designed for aiming at the requirements of avoiding NBI and IN,
and thus the optimal time and frequency diversities cannot be provided, resulting in
limited interleaving performance gain. Hence, It is very urgent for guaranteeing the
communications system performance in complicated serious channels to study novel
time-frequency combined interleaving schemes.

Scientific Problem 3:How to break the bottleneck of conventional passivemethods
of mitigating NBI and IN to achieve accurate recovery and elimination. As is previ-
ously described, conventional methods of NBI and IN mitigation or estimation fall
mostly in the category of “passively” combatting against the noise and interference,
which is constrained by the limitation of conventional signal processing methods.
The existingmethods cannot accurately recover the precise time or frequency domain
locations of NBI or IN, and cannot estimate their amplitude accurately, either. Thus,
the unfavorable influences left by the noise and interference cannot be effectively
eliminated, which has become a major bottleneck limiting the system performance
improvement of existing communications systems. It is in desperate need to change
the passive scheme to an active one, and introduce new signal processing theories
and methods to establish the framework of highly efficient recovery. New algorithms
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that can effectively reconstruct NBI and IN accurately should be devised, in order to
break the bottleneck of conventional methods and the fundamental limitation of the
system performance.

Through the study of these three scientific problems, this thesis is expecting to
achieve the following related research aims:

Research Aim 1: Designing an optimized synchronization frame structure effec-
tively improving theNBImitigation performance and the highly efficient synchroniza-
tion algorithm. The proposed frame structure outperforms the conventional frame
design schemes in spectrum efficiency, and has significant gain in the same condition
of frame synchronization accuracy and carrier recovery accuracy.

Research Aim 2: Investigating the optimal time-frequency combined interleav-
ing scheme that can maximize time-frequency diversity gains in the presence of
NBI and IN. Theoretically, the time-frequency interleaving scheme investigated can
simultaneously achieve the target of the maximum time diversity gain and frequency
diversity gain. Thus the capability of avoiding NBI and IN through interleaving for
coded block transmission systems is improved to the most extent, and the system
BER is significantly reduced.

Research Aim 3: Proposing the efficient and accurate sparse recovery framework
and algorithms based on the new sparse recovery theory, realizing the accurate
recovery and cancelation of NBI and IN. The estimation accuracy of recovering NBI
and IN of the propose method is approaching the estimation theoretical bound; In
the circumstance of the simultaneous existence of NBI and IN, the proposed method
helps the performance of the system BER and the estimation accuracy of noise and
interference outperform conventional mitigation methods significantly, which is able
to approach the system performance where there is no NBI or IN present.

1.4 Main Works and Contributions

The research on key technologies of NBI and IN mitigation and cancelation is
regarded as the kernel of this thesis. The relation framework of the scientific prob-
lems the works of this thesis are faced with, the main research idea adopted, and the
major research contents and technical routine is illustrated in Fig. 1.1. The research
framework of this thesis is elaborated mainly surrounding the following three major
research routines.

Major Research Routine 1: Aimed at Scientific Problem 1, i.e., how to overcome
the severe impacts of NBI on the receiver synchronization performance, this thesis
cuts in from the perspective of smart mitigation of NBI and follows the research idea
of designing the optimized “scrambling” synchronization frame structure that effec-
tively mitigates NBI. Proposed in the research routine are the optimized design of
synchronization frame structure mitigating NBI and the efficient and robust receiver
synchronization algorithm, as well as designing novel high spectrum-efficient and
robust synchronization frame structure to signiificantly improve the accuracy of
frame synchronization and carrier recovery in the presence of NBI. The research
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Fig. 1.1 The illustration of the research framework, scientific problems and the main research
contents

outcomes have been published in one EI-indexed paper in the international confer-
ence IEEE International Symposium on Power Line Communications, and the core
technique has achieved one national invention patent. The core technology of frame
structure design has been adopted by the Chinese national standards for broadband
power line communications—physical layer, and one standardization proposal has
been submitted to the international telecommunications union. The technology stud-
ied is promisingly to be widely applied in various communications systems like
power line communications and wireless communications severely contaminated by
NBI, to achieve efficient and accurate synchronization.

Major Research Routine 2: Aimed at Scientific Problem 2, i.e., how to improve
the performance of the time-frequency interleaving scheme in the simultaneous pres-
ence of both IN and NBI, this thesis follows the research idea of trying to provide
the maximized time-frequency diversity gains and avoid NBI and IN. The optimal
time-frequency combined interleaving scheme in the presence of NBI and IN is pro-
posed. Proposed in the research routine are the optimized scheme for interleaving
parameters tomaximize the time-frequency diversity gains, and the block cyclic shift-
ing technique for symbol interleaving to maximize the frequency diversity gain. The
research aims of theoreticallymaximizing time-frequency diversity gains, effectively
avoiding the impacts of NBI and IN on the demapping and decoding performance
of coded block transmission systems, and significantly reducing the system BER in
the condition of reducing the delay of conventional interleavers, are accomplished.
The research outcomes have been published in one SCI-indexed journal paper in
IEEE Transactions on Power Delivery, and in one EI-indexed paper in IEEE Interna-
tional Conference on Communications (ICC). The proposed technology of the opti-
mal time-frequency combined interleaving has been adopted by the next-generation



1.4 Main Works and Contributions 21

national standard for digital wireless video broadcasting, i.e., Digital TerrestrialMul-
timedia Broadcasting-Advanced (DTMB-A), with the core techniques achieving one
national invention patent. The interleaving technology studied is promisingly to be
widely applied in the new generation broadband communications systems like the
broadband wireless multimedia transmission and broadcasting, etc, and will improve
the capability of jointly avoiding NBI and IN in severe transmission environments.

Major Research Routine 3: Aimed at Scientific Problem 3, i.e., how to break the
bottleneck of conventional passivemethods ofmitigatingNBI and IN to achieve accu-
rate recovery and elimination, this thesis cuts in from the perspective of “actively
reconstructing” NBI and IN and follows the research idea of the sparse recovery
algorithms that can accurately recover the noise and interference. Based on the
emerging sparse recovery theories such as the compressed sensing theory, the multi-
dimensional structured compressed sensing theory, etc, the research routine is aimed
at the sparse measuring of NBI and IN as well as the framework of recovering
model. The algorithm of accurate NBI recovery based on sparse recovery theory and
the algorithm of IN recovery based on multi-dimensional compressed sensing are
proposed. The research aims of overcoming the drawback of conventional methods
that “passively” combat against noise and interference, approaching the theoreti-
cal bound of the accuracy of NBI and IN estimation, significantly improving the
BER performance of the system, and accurately recovering NBI and IN and elimi-
nating the unfavorable effects of them, are accomplished. Until the time of writing
this thesis, the related research on the sparse recovery theory based NBI and IN
estimation has always been insufficient. The new technological outcomes from the
research in this thesis have been published in three SCI-indexed long journal papers in
IEEE Transactions on Vehicular Technology, one SCI-indexed long journal paper in
IEEE Transactions on Broadcasting, IEEE Transactions on Communications, IEEE
Transactions on Consumer Electronics, and IECIE Transactions on Fundamentals,
respectively, and several conference papers in IEEE ICC and IEEE Global Commu-
nications Conference (Globecom), etc. The key techniques proposed have achieved
six invention patents. The studied technology is widely applicable in many broad-
band communications systems and standards contaminated by NBI and IN, such as
vehicular wireless communications, cellular communications, power line commu-
nications, and wireless local area networks, etc, which provides theoretical basis
and technological support for effectively eliminating the detrimental effects of NBI
and IN.

1.5 Structural Arrangements

All the contents of this thesis are arranged as follows:
This chapter firstly gives a brief introduction to the research background and

purpose of this thesis, introduces the development history of broadband digital com-
munications systems, and describes the major noise and interference in broadband
digital communications, especially the characteristics and detrimental effects of NBI
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and IN; Secondly, a literature survey is given concerning about the current status of
related research, which concludes and analyzes the state-of-the-art techniques and
methods as well as the existing problems and challenges they have; Later, the key
scientific problems this thesis is intended to solve and the corresponding research
aims are given, and the main works, research contents and contributions of this thesis
are summarized; Finally a brief introduction to the content of each chapter is given.

Chapter2 introduces the system model of this thesis and related fundamental
knowledge. Firstly, the main blocks the broadband digital communications sys-
tem is composed of and the key technologies are briefly introduced; Secondly,
the existing frame structures commonly adopted in digital communications sys-
tems is introduced, mainly including the preamble structure of the frame header
and the sub-frame structure of the OFDM data; Later, the NBI and IN mod-
els proposed and widely adopted in literature; Finally, the fundamental knowl-
edge on sparse recovery theory is briefly presented, including compressed sensing
theory, structured compressed sensing theory and sparse Bayesian learning theory.

Chapter3 is in accordance with the scientific problem one this thesis is aimed at,
i.e. “how to overcome the severe impacts of NBI on the receiver synchronization
performance”, and emphasizes on the description of the design of the synchroniza-
tion frame structure to mitigate NBI. Firstly, the principles, models and conventional
algorithms of frame synchronization and carrier recovery for broadband communi-
cation systems are introduced; Then the design of synchronization frame structure
to mitigate NBI and the efficient receiver synchronization algorithms proposed in
this thesis are focused on; Later, the method of signaling transmission robust to NBI
is described; Finally, the performance analysis of the algorithms and the simulation
results and discussions are given.

Chapter4 is in accordance with the scientific problem two this thesis is aimed
at, i.e. “how to improve the performance of the time-frequency interleaving scheme
in the simultaneous presence of both IN and NBI”, and emphasizes on the optimal
time-frequency combined interleaving in the presence of NBI and IN. Firstly, the
interleaving-deinterleaving system model of broadband coded block transmission in
the circumstance of the existence of both NBI and IN is presented; Then the design of
optimal time-frequency combined interleaving scheme is focused on. The optimized
time interleaving scheme that maximizes the time diversity gain and the frequency
interleaving scheme that maximizes the frequency diversity gain are given; Then
the theoretical performance of the proposed interleaving algorithm in the multipath
fading channel with NBI and IN is analyzed; Finally the simulation results as well
as discussions are given.

Chapter5 is in accordance with the first technological routine of the scientific
problem three this thesis is aimed at, i.e. “how to break the bottleneck of conven-
tional passive methods of mitigating NBI and IN to achieve accurate recovery and
elimination”, and emphasizes on the NBI recovery and elimination method based
on sparse recovery theory. Firstly, the model of the frequency-domain sparse NBI as
well as its time and space correlations is introduced; The NBI recovery algorithm
based on compressed sensing and the NBI recovery algorithm based on structured
compressed sensing in themultiple-inputmultiple output (MIMO) system aremainly
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focused on, and the simulation results and discussions are given respectively; Finally,
the complexity of the algorithms, the solution existence and the convergence of the
algorithms, and the theoretical bound of the accuracy of sparse recovery, are all
theoretically analyzed.

Chapter6 is in accordance with the second technological routine of the scientific
problem three this thesis is aimed at, and emphasizes on IN reconstruction and
elimination based on sparse recovery theory. Firstly, the time-domain sparse IN
model and its spatial correlation are introduced. The IN cancelation algorithm based
on a priori aided compressed sensing and the IN elimination algorithm for MIMO
systems based on structured compressed sensing are mainly focused on, along with
the simulation results and discussions. Finally, the performance analysis and the
theoretical proof of the convergence of the algorithms are given.

Chapter7 comprehensively summarizes the innovative points of this thesis, and
concludes on the scientific problems, proposed technical routines, research aims and
contributions in accordance to each of the innovative points. Finally, based on the
current work of this thesis, the possible extensions and future research insights are
given.

Suggestions to Readers:

It is recommended that the readers who are interested to get a deep understanding of
the overall content of this book start reading from the very beginning of this chapter,
in order to get an idea of the impacts of special noise and interference on the 5G new
air interface in modern digital communications, as well as the current research of
related techniques, the key problems and scientific issues. Later, it is recommended
to read Chap.2 to know the related systemmodels and get a brief review of associated
basic knowledge, and prepare for understanding the technical content in subsequent
chapters (surely, the readers who have a good knowledge of the related basic parts can
feel free to skip this chapter, and directly read the following contents). After that, one
can read the remaining chapters in sequence, or select some chapters corresponding
to the scientific issue of interest to read. The sequence of reading Chap.3 through
Chap.6 can be arranged freely as the readers like, since the sequence of them does not
influence the understanding of any scientific issue or technological content. Finally,
it is recommended that the readers who are interested in further research on the
technological area and key problems of this book read Chap. 7, which might provide
some inspirations to the problems of special noise and interference in the future 5G,
B5G and 6G mobile communications and the possible research trends.

Notation Rules of Mathematical Formulas:

For all the notations in the mathematical formulas in this book, the following rules
based on the commonly adopted common practice in scientific and academic litera-
ture, apply: Matrices are denoted by boldface upright uppercase letters; Vectors are
denoted by boldface upright lowercase letters; Scalars are denoted by normal font
slant letters; Variables in superscripts and subscripts also follow similar rules; The
texts and descriptive words in superscripts and subscripts are denoted by normal font
upright letters.
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Chapter 2
System Model and Fundamental
Knowledge

Abstract This chapter mainly introduces the background models and fundamental
knowledge related with the research work of this thesis. Firstly, the main modules
and the related key techniques of the broadband digital communication systems
based on the technique of block transmission OFDM are briefly described. Secondly,
the preamble structure in the frame header and the structure of data sub-frames
commonly seen in many kinds of broadband digital communication systems and
standards are introduced. Then, the theoretical models of the research objective of
this thesis, i.e. narrowband interference and impulsive noise, which was proposed
and widely adopted in literature, are described in detail, providing the model basis
for the research contents of this thesis. Finally, the theory of sparse recovery is
briefly introduced, including compressed sensing, structured compressed sensing,
sparse Bayesian learning, etc, which provides theoretical basis and guidance for the
research on sparse recovery in this thesis.

2.1 An Overview of Broadband Digital Communication
Systems

2.1.1 OFDM-Based Block Transmission

The OFDM technique has the advantages of high spectral efficiency and strong
capability of combatting against frequency selectivity, etc. The broadband block
transmission technique based on the OFDM technique is able to effectively mitigate
the inter-block interference (IBI) and inter-symbol interference (ISI), which makes
it very convenient to implement accurate channel estimation [13, 42]. Thus, it is
widely applied in many kinds of broadband communication systems and standards,
including power line communications [30, 33], cellular wireless communications
[1, 2], wireless local area networks [29], wireless vehicular networks [31], etc. This
thesis is mainly focused on the broadband block transmission system based on the
OFDM technique as a system background, and studies the key technologies on nar-
rowband interference and impulsive noise mitigation and elimination.
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Fig. 2.1 The illustration of the architecture and main modules of the broadband block transmission
system based on the OFDM technique

The illustration of the system architecture of a typical point to point broadband
block transmission system based on the OFDM technique is shown in Fig. 2.1, which
contains three main logical components including the transmitter, the channel, and
the receiver [23, 63]. The transmitter finishes the task of converting the binary bit
stream in the source to the radio frequency signal and sending it to the channel through
the antenna. The transmitted signal passes through the multi-path fading channel and
suffers from the additive noise and interference. Then it is coupled into the antenna
at the receiver and received by the receiver. The main modules of the receiver can be
classified into twocategories, namely “inner receiver” and “outer receiver”, according
to the functionality of the receiver. The modules of synchronization and noise and
interference elimination can be regarded as the inner receiver, while the modules of
deinterleaving and channel decoding can be regarded as the outer receiver. It can
be observed from Fig. 2.1 that, the signals flowing through the transmission system
can be classified into mainly three types, namely the binary bit stream, the complex
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baseband signal, and the analog signal, which is denoted by black arrows, green
arrows, and red arrows, respectively.

Specifically, the transmitter mainly consists of the following modules [23, 55]:
bit stream sent from source −→ channel coding (implementing forward error check
coding on the signal source bit stream) −→ constellation mapping (mapping the
coded bit stream to the complex symbol domain according to a certain constellation
mapping rule) −→ symbol interleaving (implementing interleaving on the mapped
symbols in order to combat against time selective and frequency selective fading,
the time and frequency combined interleaving scheme investigated in Chap. 4 of
this thesis is mainly focused on this module) −→ OFDM modulation (mapping the
complex symbols to the OFDM sub-carriers, and generating the time-domain OFDM
symbols by exploiting the IDFT transform)−→ frame formulation (adding the guard
interval to generate the signal sub-frames, and generating superframes along with
the preamble and control fields) −→ digital to analog converting and baseband
waveform shaping (the complex baseband signal is converted from digital to analog,
and passes through the baseband shaping filter to generate the baseband analog
signal)−→ orthogonal frequency up-conversion−→ sending signal from the analog
front end. Among these, the signal after the frame formulation at the transmitter
(the location denoted by the mark of 1© in Fig. 2.1) can be denoted by [pT

i , xTi ]T ,
which represents the i th signal frame in the time domain, including the length-M
frame header (guard interval) of the i th signal frame pi = [pi,0, pi,1, . . . pi,M−1]T ,
the length-N frame payload of the i th signal frame (the time-domain OFDM symbol)
xi = [xi,0, xi,1, . . . xi,N−1]T .

The receiver mainly consists of the followingmodules [48, 63]: coupling received
signal from the radio frequency analog front end −→ frequency down-conversion
−→ analog to digital sampling and Hilbert transform (the complex baseband dig-
ital signal is obtained by analog to digital conversion and sampling, and Hilbert
transform)−→ synchronization (implementing receiver side frame synchronization
and carrier recovery by exploiting the preamble, frame header, and time/frequency
domain training sequences in the frame structure. The design of synchronization
frame structure and the synchronization algorithms investigated in this thesis are
mainly focused on this module) −→ reconstruction and elimination of the noise and
interference (implementing elimination of noise and interference in the baseband
equivalent complex signal. The algorithms of narrowband interference and impulsive
noise recovery and elimination based on sparse recovery investigated in this thesis
are mainly focused on this process. The state-of-the-art conventional systems do not
have this module that is able to eliminate the noise and interference) −→ removing
the guard interval and taking DFT transform (removing the guard interval between
the data sub-frame and the OFDM symbol, and implementing the DFT transform,
which is equivalent to implementing the “serial to parallel conversion”, converting
the serial complex baseband signal to the parallel OFDM sub-carrier data by using
the DFT transform) −→ deinterleaving (the deinterleaver is corresponding to the
interleaver at the transmitter, which obtains the sequence of the complex baseband
symbols before interleaving according to the deinterleaving rules) −→ demapping
(demapping the constellation mapped symbols to a binary bit stream according to a
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certain soft or hard decision or iterative decision algorithm) −→ channel decoding
(decoding the coded codeword by exploiting the decoding algorithm corresponding
to the forward error check code, meanwhile detecting and correcting the possible bit
errors) −→ the recovered data bit stream after decoding is obtained. Among these
steps, in the signal after the synchronization at the receiver and before the estimation
and elimination of the noise and interference (in the location as denoted by the mark
of 2© in Fig. 2.1), the frame payload of the i th received signal frame (the i th received
OFDM symbol in the time domain) can be denoted by yi = [yi,0, yi,1, . . . yi,N−1]T ,
which is given in detail by the following equation:

yi = hi � xi + ei + zi + wi (2.1)

where hi = [hi,0, hi,1, . . . hi,L−1]T denotes the channel impulse response (CIR)
of the multi-path channel with the maximum multi-path delay spread of L , �
denotes the convolution operation,ei = [ei,0, ei,1, . . . ei,N−1]T denotes the narrow-
band interference signal corresponding to the i th received time-domain OFDM sym-
bol, zi = [zi,0, zi,1, . . . zi,N−1]T denotes the impulsive noise corresponding to the
i th received time-domain OFDM symbol, wi = [wi,0, wi,1, . . . wi,N−1]T denotes the
corresponding background AWGN vector. After the estimation and elimination of
the noise and interference (as denoted by the location of the mark of 3© in Fig. 2.1),
the components of narrowband interference and impulsive noise in the received sig-
nal have been recovered and eliminated, and the received signal of interest can be
used for the successive processing.

2.1.2 Key Techniques of OFDM-Based Block Transmission

The formulation and implementation of the main modules of the point to point
broadband digital block transmission system based on OFDM are supported by the
key techniques of point to point transmission in both theory and technology. The
fundamental concepts, principles, and functionalities of some of the key techniques
therein are listed as follows1:

• OFDM Block Transmission Technique [13, 42]:
The OFDM technique is one kind of highly spectrally efficient multi-carrier block
transmission technique, whose main principle is based on IDFT and DFT trans-
forms. The IDFT transform maps the frequency domain data at the N sub-carriers
with identical sub-carrier spacing to the time domain, which generates a time-
domain OFDM data block (also known as an OFDM symbol in some literature).
The generated OFDM block guarantees the sub-carriers are orthogonal to each

1Although the other modules, functions and related techniques in the broadband digital communi-
cation system are also very important to the overall system, due to the limit of the pages, only the
modules and related fundamental techniques that are closely related to the research work in this
thesis are briefly described in this chapter, while the other modules and techniques are omitted.
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other and thus there is no inter-carrier interference (ICI). Since the sub-carrier
spacing is identical, the orthogonality between different sub-carriers is ensured,
which not only prevents from the ICI but also significantly improves the spectral
efficiency. Since the bandwidth occupied by one single sub-carrier (also known as
one OFDM sub-channel in some literature) is usually much smaller than the coher-
ent bandwidth which is corresponding to the maximum multi-path delay, the data
at the sub-carriers can be regarded as having passed a flat fading channel instead
of a frequency-selective fading channel. Thus it is effective for the OFDM symbol
to combat against the inter-symbol interference (ISI) and the frequency-selective
fading (multi-path fading). The OFDM modulation can be simply and efficiently
implemented by using the fast Fourier transform (FFT) algorithm in realistic sys-
tems, which is able to significantly reduce the implementation complexity and the
computational resource costs. The guard intervals inserted in between the sub-
frames of block transmission can avoid the inter-block interference (IBI), thus it
can further combat against the multi-path fading, especially the difficulty of long
delay channels can be better solved. The performance of transmission of different
transmitted blocks can be independent of each other. When the cyclic prefixing is
adopted as the guard interval, a better orthogonality between different sub-carriers
can be ensured, which better facilitates the implementation of frequency domain
equalization.

• Synchronization Techniques [37, 40, 52, 70]:
The OFDM system is very sensitive to the performance of synchronization. Both
the carrier synchronization error and the frame synchronization error will lead to
the serious loss of the decoding performance of the OFDM systems. The require-
ments of synchronization in OFDM systems mainly include frame synchroniza-
tion, carrier synchronization, and sampling synchronization. Frame synchroniza-
tion is also called timing synchronization, which is implementing the synchro-
nization of the accurate location of the transmitted OFDM sub-frames. The FFT
window is adjusted to be accurately corresponding to the OFDMdata block, which
makes it easier to implement frequency-domain equalization, demapping, and
decoding. The state of the art main methods of frame synchronization are imple-
mented by exploiting the preamble in the physical layer super-frame. The specific
patterns of the time or frequency known training sequences in the preamble are
madeuse of, and the optimal synchronization peak is foundbasedon themethods of
auto-correlation and cross correlation, which obtains the accurate synchronization
location of frame synchronization. Carrier synchronization is also called carrier
recovery, which is acquiring the accurate carrier of the transmitted signal at the
receiver. The recovered carrier is exploited for frequency down-conversion and
carrier frequency offset (CFO) compensation. The state of the art techniques of
carrier recovery are based on digital signal processing techniques, exploiting the
phase of the synchronization frame structure to deal with and achieve the recovery
of the digital carrier. Sampling synchronization is to obtain the synchronization
of the clock of the analog to digital conversion sampling, which requires to be
synchronous to the clock of the transmitter. The sampling frequency offset (SFO)
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compensation can be implemented by the methods of algebraic interpolation and
feedback compensation, etc.

• Coding and Modulation Techniques [5, 9, 12, 51, 60]:
The coding and modulation techniques are the fundamental theory of broadband
OFDMsystems, whichwill have a significant influence on the system performance
to a great extent. Whether the coding and modulation schemes are efficient is also
the key to approaching the channel capacity for the system, and it is also an indicator
to classify different generations of communication technologies in essence.
In the area of error correction coding, at present, the channel coding commonly
adopted in broadband communications that is capable of approaching the Shannon
coding channel capacity limit in theory mainly includes the low density parity
check (LDPC) code and Turbo code, etc. The LDPC code was designed by Robert
G. Gallager in 1960 and proposed in his doctoral thesis, which should be classified
into a kind of linear error correction code. The coding theory shows that in the
condition of constrained noise power, the Shannon limit can be approached by
designing appropriate LDPC codes. The LDPC code can be efficiently decoded
in a linear time scale proportional to the code length based on the iterative belief
propagation method. Moreover, LDPC codes can support parallel decoding very
well, thus improving the decoding efficiency and reducing the decoding delay,
which has a significant advantage in the condition of limited spectrum and limited
feedback transmission link. The LDPC code has already been adopted by the 5G
working group as the data channel coding schemeof long code and short code in the
enhancedmobile broadband (eMBB) scenarios. Turbo codewas proposed in 1990.
It is the first capacity approaching forward error correction code ever developed.
Turbo code has become the channel coding scheme adopted by the 3G and 4G
cellular mobile communication standards because of its superior performance and
relatively low complexity of coding and decoding, which has been widely applied
in realistic system implementation. In the recent years, the emerging polar code is
the only code discovered till now that is theoretically proven to be able to achieve
the Shannon limit, which has been adopted by the control channel of the 5G eMBB
scenario.
In the area of modulation and constellation mapping, currently the modulation
and constellation mapping methods commonly applied in the broadband digital
communication systemsmainly include quadrature amplitudemodulation (QAM),
amplitude phase shift keying (APSK), etc. Both QAM and APSK can better sup-
port high order mapping and modulation, such as 256QAM, 256APSK, etc, which
is specified in many existing standards. High order modulations can improve the
spectral efficiency. According to the Euclidean distance and Hamming distance
between different bits of constellation mapped symbols, and due to the character-
istics of them in the corresponding error correction code, the bits have different
protection levels, so the constellation mapping scheme and the bit mapping mode
can be further optimized based on the unequal bit protection levels. Furthermore,
exploiting the techniques of bit loading and bit permutation can further improve
the performance and coding and modulation. Besides, by making full use of the
signal space diversity (SSD) gain and the iterative soft demapping and decoding
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techniques, the advanced techniques of bit interleaved coded modulation (BICM),
BICM-iterative decoding (BICM-ID), BICM-ID-SSD, etc, can be exploited to
further improve the performance of decoding and demapping.

• Interleaving Techniques [7, 50, 66]:
The performance and the transmission rate of point to point transmission suf-
fer from the detrimental impacts of frequency selective and time selective fading,
noises and interferences. By exploiting the interleaving techniques, the time diver-
sity and frequency diversity can be made use of to achieve gain. The interleav-
ing schemes in the coded block transmission OFDM systems mainly include bit
interleaving and symbol interleaving. The interleaving schemes can be classified
into time interleaving and frequency interleaving from the interleaving purpose
perspective of view. For the coded block transmission systems, the interleaving
schemes can be classified, from the interleaving pattern perspective of view, into
intra block interleaving, inter block interleaving, intra codeword bit interleaving,
and inter codeword bit interleaving, etc. The commonly used interleaving schemes
include block interleaving, convolutional interleaving, row and column interleav-
ing, etc. These different interleaving schemes are all applicable for bit interleaving
and symbol interleaving. Bit interleaving is mainly aimed at the memory chan-
nel characteristics in the presence of impulsive noise. The impulsive errors and
the statistical correlation among successive codewords are dispersed in the time
scale, and thus the capability against impulsive errors and the time selective fading
channel will be improved for most of the group codes and convolutional codes,
which is usually designed for the independent and random errors instead of impul-
sive errors. By optimizing the bit interleaving technique inside the codeword or
between codewords, and in accompanywith bit loading, bit permutation, constella-
tion bit mapping patterns, and the unequal bit protection schemes, the performance
of the error correction decoder in the noisy memory channel can be improved.
Symbol interleaving can include time interleaving schemes and frequency inter-
leaving schemes. In coded block transmission systems, symbol interleaving can
be implemented within the blocks, or in between different blocks. For the long
codeword coding schemes, implementing symbol level time interleaving between
different blocks is helpful for avoiding the unfavorable channel condition of suc-
cessive impulsive errors, and can improve the time diversity gain. The delay of
the interleaver is related with the number of block symbols that participate in the
interleaving process. Frequency interleaving can be implemented inside one block
or between different blocks, too. By exploiting a specific interleaving pattern, the
frequency selective fading and spectral notches can be dispersed, and thus the
frequency diversity gain can be improved.

• MIMO Multiple Antenna Techniques [3, 26, 36, 44, 72]:
The multiple antenna techniques can make good use of the spatial diversity to
achieve gains and compensate for the channel loss of the transmitter and receiver
systems, thus significantly improving the transmission efficiency and system per-
formance of point to point transmission. The MIMO spatial multiplexing tech-
niques, the beamforming andprecoding techniques can enhance the effective signal
to noise ratio of the received signal, and significantly improve the system through-
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put by transmitting in multiple links. The techniques of multiple antenna transmit
diversity and space time coding can provide spatial and temporal combined diver-
sity gain.Multiple antenna receive diversity and the optimized combining schemes
can provide receiver side spatial diversity gain, and combat against channel fading
and errors, which reduces the transmission bit error rate in complicated channel
conditions. Therefore, the MIMO techniques have been deeply investigated and
widely applied in the current broadband communication systems. In the future 5G
mobile communication scenarios, the MIMO techniques have been developing
rapidly. The massive MIMO techniques, which make use of the enhanced great
amount of antenna arrays, can support a much higher spectral efficiency. Based on
the advanced new beamforming techniques, the multi-user MIMO techniques, the
non-orthogonal multiple access (NOMA) MIMO techniques, the efficient space
time coding, and the precoding techniques, an even greater scale of multi-user
diversity and multiplexing can be achieved, which will play a more important role
in further improving the multi-user channel capacity and the system throughput.

2.2 Frame Structure of Broadband Digital Communication
Systems

The physical layer frame structure of the commonly seen broadband communication
system based on OFDM block transmission is as shown in Fig. 2.2. No matter for the
burst transmission or for the continuous transmission and broadcasting transmission,
the physical layer transmitted signal is all composed of several super-frames. Each
super-frame contains a preamble (or usually also called “first frame of super-frame”
in some continuous transmission systems), the control field (also called the control
signalling or control information), the data field (also called the payload data). The
preamble is usually composed of some known specific time and frequency domain
training sequences, which can be used to implement the functionalities of frame
detection, automatic gain control (AGC), synchronization, and channel estimation,
etc. Some may also contain and convey some signalling information. The control
field may contain several specific fields (or control bits), which can convey some
important information such as the physical layer frame transmissionmode, the coding
and modulation mode, the physical layer parameters, and the physical layer frame
type, etc. They can be used to control the operations of decoding and demodulation
in the receiver, and support the implementation of the physical layer communication
protocols. The data field contains several data sub-frames (also called information
frames), and each data sub-frame contains a complete OFDM data block (also called
OFDM symbol or frame body) and its guard interval (also called the frame header).
The frame header guard interval therein can be padded by zeros to formulate the
zero padding OFDM (ZP-OFDM) frame structure. When the frame header guard
interval is padded by the cyclic prefix of the OFDM data block, the cyclic prefix
OFDM (CP-OFDM) frame structure is formulated. When the frame header guard
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Fig. 2.2 Illustration of the physical layer frame structure of the broadband communication system
based on OFDM block transmission

interval is filled with the specific known pseudo noise (PN) training sequences, the
time-domain synchronous OFDM (TDS-OFDM) frame structure can be formulated.

2.2.1 Structure of Preamble in Frame Header

In the physical layer frame structure, in order to facilitate the objectives of signal
detection, synchronization, and channel estimation, usually a preamble is devised
and included. In the burst transmission mode such as the wireless local area net-
works (WLAN) and the power line communication (PLC) systems, the preamble is
transmitted in front of the information frames in the data field. Through the high
speed processing on the training sequences of the preamble, the objectives of fast
detection and synchronization for the physical layer data packets of burst transmis-
sion can be implemented. The receiver is enabled to enter the process of demodu-
lation and decoding as fast as possible. In the continuous transmission scenario, the
synchronization correction and channel estimation correction can be implemented
dynamically in real time by making use of the preamble located at the beginning of
the super-frame. The preamble is usually composed of several repeated and known
training sequences. Similar preamble frame structures have been specified in many
different communication standards, such as theWLANsystems specified by the IEEE
802.11n standard [29], the PLC systems specified by the IEEE P1901 standard [30]
and the ITU-T G.9960 standard [33].

The preamble frame structure of the physical layer signal frame specified by the
wireless local area networks IEEE 802.11 standards [29] is illustrated in Fig. 2.3.
The preamble is composed of 10 identical short training sequences S1 to S10 and
two identical long training sequences L1 and L2 and their guard intervals (cyclic
prefixing) GI. The purpose of including the short training sequences is mainly to
implement signal detection, automatic gain control, diversity selection, coarse esti-
mation of carrier offset, and frame synchronization. The main purpose of the long
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Fig. 2.3 Physical layer preamble frame structure specified by WLAN IEEE 802.11 standard

Fig. 2.4 Physical layer preamble frame structure specified by the PLC systems IEEE P1901 stan-
dard

training sequences is to implement channel estimation and the refined estimation of
the carrier offset, etc. The time interval occupied by both one short training sequence
and one long training sequence is 8.0µs.

The physical layer preamble frame structure specified by the PLC systems IEEE
P1901 standard [30] is illustrated in Fig. 2.4. The preamble is composed of 10–16
identical main sequences SYNCP and one auxiliary sequence SYNCM. Each main
sequence SYNCP has a length of 512 time domain samples, which is generated by
modulating the “+1” at several sub-carriers in the frequency domain. The auxiliary
sequence SYNCM is defined by the opposite of the main sequence SYNCP, namely
multiplying by −1. The main purpose of the main sequence includes automatic gain
control, frame synchronization, and channel estimation, etc. The functionality of the
auxiliary sequence is to help locating the synchronization location, and indicating
the end of the preamble.

The physical layer preamble structure of the indoor broadband wireline inter-
connection systems specified by the international telecommunications union (ITU)
G.9960 standard [33] is illustrated in Fig. 2.5. The preamble is composed of three
groups of sequences, i.e. S1, S2, and S3. The number of frequency domain sub-
carriers of the i th group of sequences and the number of the OFDM sub-carriers in
the data payload are the same. The frequency domain training data are modulated on
the sub-carriers with the step of ki sub-carriers in between, where the value of ki can
be chosen as 1, 2, 4, and 8. The distance between the modulated data sub-carriers
in the second group of sequences is the same to that of the first group of sequences,
namely, k1 = k2. The number of the sequences in the i th group is Ni , whose values
can be different for each group. The symbols in the second group of sequences are the
inverse of those in the first group of sequences, namely, S2 = −S1. The parameters
of the preamble, such as the length, can be configured according to different realistic
channel conditions and the actual requirements of the system. These three groups of
sequences can be adopted to implement the functions of analog or digital automatic
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Fig. 2.5 Physical layer preamble structure of the indoor broadband wireline interconnection spec-
ified by ITU-T G.9960 standard

gain control, coarse synchronization and accurate synchronization, carrier recovery,
and channel estimation, etc.

2.2.2 Structure of Data Sub-Frame

(1) Structure of the CP-OFDM Data Sub-Frame
In the frame structure of the data payload information frames, the CP-OFDM frame
structure using the cyclic prefix of the OFDMdata block as the padding frame header
guard interval is widely adopted and applied as the frame structure of the data payload
information frames, by the wireless cellular communication standards LTE/LTE-A,
the wireless local area networks standards IEEE 802.11a/g/n, the European wire-
line/terrestrial digital television broadcasting standards DVB-C/DVB-T2, and the
power line communication standards IEEE P1901/ITU-T G.9960, etc. The frame
structure of CP-OFDM is illustrated in Fig. 2.6. The length of the cyclic prefix (the
guard interval in the frame header) is V , and the length of the OFDM data block
(the frame body) is N . The cyclic prefix is composed of the last V data samples
of the OFDM data block. By exploiting the frame structure of cyclic prefixing, it
is convenient for the receiver to convert the linear convolution between the signal
and the channel impulse response into cyclic convolution, and thus it can facilitate
the processing of DFT transform, frequency domain equalization, and demapping.
The guard interval of cyclic prefixing can even ensure the OFDM sub-carriers are
orthogonal to each other in the environment of multi-path fading, thus reducing the
inter-channel interference between sub-carriers. The existence of the guard intervals
is helpful for mitigating the inter-block interference between adjacent information
frames in the block transmission system, whichmakes it easier to decode and demod-
ulate the OFDM data block independently and avoid the mutual influences, finally
improving the transmission efficiency.

(2) Structure of the TDS-OFDM Data Sub-Frame
In the structure of TDS-OFDM frames, the guard interval in the frame header of the
information frames are padded by the known training sequences, which is specified
by the terrestrial multimedia broadcasting standard and its evolved DTMB/DTMB-
A standards [46, 56], and the ITU-R digital television broadcasting standards [32].
The structure of the TDS-OFDM signal frames is illustrated in Fig. 2.7. The guard
interval in the frame header of the TDS-OFDM frames is filled with the pseudo
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Fig. 2.6 CP-OFDM frame structure of the physical layer data payload information frames in the
ITU-T G.9960 system

Fig. 2.7 TDS-OFDM frame structure

random (PN) sequences. The PN sequence is usually a frequency domain or time
domain pseudo random training sequence, which can be generated by a group of
linear shifting registers or m-sequence generators. The selected PN sequence should
meet the requirements of spectrum compatibility, such as the spectrum mask and
spectral notching, and the out of band spectrum leakage should be reduced. The PN
sequence should be optimized and designed well to take a lower peak to average
power ratio (PAPR) into account. Adopting the PN sequence as the padding guard
interval has a lot of advantages such as fine spectrum characteristics and high spectral
efficiency. It can be used for a lot of functions, including coarse channel estimation
and accurate channel estimation, auxiliary accurate synchronization, and signalling
transmission. Besides, in the multipath fading channel, the receiver can make use of
the PN sequence and the subsequent OFDMdata block that have passed themultipath
fading channel and implement the overlap and add (OLA) operation, so as to achieve
the cyclic convolution between the OFDM data block that is free from the impacts
of the PN sequence and the CIR of the multipath channel. Then it can be utilized for
equalization, demodulation, and decoding.

2.3 Narrowband Interference Model and Impulsive Noise
Model

2.3.1 Narrowband Interference Model

As mentioned in Chap.1, the intuitive definition of narrowband interference is the
interfering signal outside the systemwith narrowbandproperty and frequencydomain
sparsity, whose effective bandwidth occupied in the frequency domain is sufficiently
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narrow and small compared with the working bandwidth of the information signal
[14, 47]. The quantitative definition of narrowband interference is the interfering sig-
nal whose bandwidth occupied by the frequency domain nonzero entries is no more
than 5% of the OFDMworking bandwidth in the OFDM system [16, 69]. According
the the definition of narrowband interference, the models of the narrowband interfer-
ence usually adopted in literature for theoretical analysis and simulation experiments
mainly contain the following:

(1) Single/multi-tone sinusoidal interferer model. It can be classified into classi-
cal deterministic spectrum models, which is composed of single or multiple
asynchronous and mutually independent sinusoidal wave components with the
frequency tones randomly distributed. It can be represented as a time domain
real sinusoidal signal, or an equivalent complex baseband exponential signal [24,
25, 49].

(2) Frequency sparse multiple band-limited Gaussian noise interferers model. This
model can be called as compound BLGN interferers model, which belongs to
a kind of statistical narrowband interference model. This model is defined by
the superposition of multiple BLGN interferers whose central frequencies lie in
arbitrary locations, where eachBLGN interferer is generated by aGaussian noise
source passing through a narrowband limited bandpass filter and upcoverted to
a certain central frequency. In the OFDM system, the bandwidth of each BLGN
interferer of the narrowband interference in the frequency domain is usually 0.5–
1.5 OFDM sub-carrier spacing. The distribution of the locations of the central
frequencies of eachBLGN is randomand arbitrary. The total bandwidth occupied
by the nonzero parts (the BLGN interferers) of the narrowband interference in
the frequency domain is sufficiently small compared with the bandwidth of the
OFDM signal, making this narrowband interference model a sparse model [27,
59, 64].

(3) Narrow bandlimited random power spectrum density model. This is also a kind
of statistical narrowband interference model, which is a statistical model aimed
at the narrowband interference generated by the randomly distributed interfering
sources. The effective bandwidth of the power spectrum density function of the
narrowband interference in the receiver is limited in a sufficiently small range
compared with the signal bandwidth. This model is quantitatively expressed by
the parameters of the narrowband interference source, such as the equivalent
omni-radiation power, the average amplitude of the symbols, the symbol power,
the effective bandwidth of the interference signal, the channel fading from the
interferers to the receiver, etc. [45]. This model is better applicable for the analy-
sis of the physical mechanism and power of the narrowband interference, rather
than for the modeling requirements of the digital signal processing of interfer-
ence estimation and elimination.

(4) Spatially randomlydistributednarrowband interferencegenerators fadingmodel.
This model can be classified into a kind of statistical narrowband interference
model. Multiple different narrowband interferers located at the same frequency
point follow a Poisson random distribution in the spatial domain. This model
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is mainly expressed by the following parameters: the homogeneous Poisson
process model of the narrowband interference and the related parameters which
occurs in the spatial domain, the distribution of the signal of the interferer source,
the transfer function, amplitude fading, delay andphaseoffset of the channel from
the interferer source to the receiver, etc. As a typical example, in the uplink cel-
lular wireless networks, the model from multiple narrowband interferer sources
of the user equipment (UE) to the base station (BS) is formulated, which mainly
includes the parameters of the radius of the BS and the UEs, the density of the
UEs that generate the narrowband interference, the amplitude and phase fading
of the channel that the interference passes through, etc. [4, 49].

Among the narrowband interference models mentioned above, the compound
BLGN interferers model expresses the frequency domain characteristics of the
narrowband interference correctly, which is consistent with the probabilistic statistics
and characteristics of the narrowband interference commonly seen in the practical
broadband communication systems. It is more applicable to represent the broad-
band systems and channel environment conditions in different OFDM-based sys-
tems [59, 64]. Hence, this model is mostly adopted in literature. In this thesis, this
model is thus adopted in the research and simulations to conduct analysis and exper-
iments. Specifically, in the OFDM block transmission system model described in
Sect. 2.1.1 in this chapter, the i th OFDM symbol in the baseband signal received
by the receiver is given by (2.1), where the narrowband interference component is
ei = [ei,0, ei,1, . . . ei,N−1]T . As adopted in most of the literature and in this thesis
as well, the modeling of the narrowband interference is conducted in the complex
baseband modules, which is regarded as the equivalent complex baseband model. In
order to make it convenient for the analysis and research of digital signal processing,
the receiver only has to consider the baseband processing in the digital domain, and
there is no need for the analog signal in front of the analog-to-digital converter to
be taken into consideration. The related digital baseband algorithms are aimed at
the baseband digital signals, which is aimed at the target of eliminating the noises
and interferences and facilitating the succeeding modules of digital demodulation
and decoding. After the DFT transform, the time domain narrowband interference
signal corresponding to the frequency domain narrowband interference signal can be
denoted by ẽi = [

ẽi,0, ẽi,1, · · · , ẽi,N−1
]T
. This frequency domain narrowband inter-

ference signal can be modeled as the superposition of multiple narrowband tone
interferers in the OFDM sub-carriers that are independent of each other [59, 64],
where each narrowband tone interferer is modeled by a bandlimited Gaussian noise
(BLGN) whose central frequency lies randomly and arbitrarily in the N OFDM sub-
carriers. The power spectrum density (PSD) of the signal is N0,NB = σ2

e . Thus, the
amplitude of the spectrum of each narrowband tone interferer is a random Gaus-
sian variable whose variance is also equal to σ2

e . The relationship between the time
domain and the frequency domain narrowband interference signals is given by

ei = FN ẽi (2.2)
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where the elements of the IDFT transform matrix FN ∈ C
N×N are defined as

(FN )m,n = 1√
N

exp

(
j2πmn

N

)
(2.3)

The sparsity level of the narrowband interference is denoted by K , which is
defined as the number of the nonzero elements of the frequency domain narrowband
interference signal. The sparsity level is much smaller than the dimension of the sig-
nal, i.e. K � N . As described in Chap.1, since in many broadband communication
systems, the bandwidth of the narrowband interference is much smaller than that of
the signal of interest, thus the sparsity level of the frequency domain narrowband
interference is sufficiently small compared with the dimension of the signal, which
also satisfies the definition and requirements of the sparse signal in the theory of
compressed sensing [18]. The support of the narrowband interference ẽi is denoted
byΩi = {

k
∣∣ẽi,k �= 0 , k = 0, 1, . . . , N − 1

}
, which is defined by the set of the loca-

tions (i.e. the subscripts) of all the nonzero elements of the narrowband interference.
Then it can be derived that K = |Ωi |. Usually, the interference-to-noise ratio (INR)
is adopted to indicate the intensity of the narrowband interference with respect to the
background noise, which is denoted by K = |Ωi | and defined as

γNB = 1

σ2
w

E

{ ∑

k∈Ωi

|ẽi,k |2/K
}

(2.4)

where E{·} denotes the expectation operator and the variance of the background
AWGN is σ2

w. The average power of the narrowband interference can be denoted
by PNB = ∑

k∈Ωi
|ẽi,k |2/K . Based on the frequency domain distribution, it can be

derived that E{PNB} = σ2
e , so the INR can also be represented as γNB = σ2

e/σ
2
w. The

locations of the nonzero elements of the narrowband interference signal can be arbi-
trarily and randomly distributed in all the N OFDM sub-carriers, and the sparsity
level is also arbitrarily chosen. Thus, the support of the narrowband interference is
random. For example, it can be a uniform distribution, but not necessarily a uni-
form distribution. In the compound BLGN interferer model, the amplitudes of the
tone interferers with different frequencies are random variables following Gaussian
distribution, and the amplitudes of the tone interferers are mutually independent of
each other. Without loss of generality, the randomly distributing characteristic of the
support of the narrowband interference signal makes it well suited for being applied
in many practical broadband communication systems.

The power spectrum density of the narrowband interference was tested in a practi-
cal OFDM systems [64], where the power spectrum density of the background noise
is N0 = −140 dBm/Hz, and the power spectrum density of the narrowband inter-
ference is N0,NB = −110 dBm/Hz. Thus, the INR of the narrowband interference
is γNB = 30 dB. It can be noted from the experimental data that, the narrowband
interference signal is mainly concentrated on some certain individual and randomly
distributed tone interferers. The theoretical model of the narrowband interference
mentioned above, which is also adopted as the model for simulation evaluations, is
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Fig. 2.8 The theoretical and simulationmodel of the narrowband interference in the OFDM system

illustrated in Fig. 2.8, where the horizontal axis denotes the sub-carrier index. There
are N = 1024 sub-carriers in total. The vertical axis denotes the frequency domain
normalized amplitude of the narrowband interference. It can be observed that the
sparsity level of the narrowband interference is K = 10, which means that there
are 10 mutually independent narrowband interferers distributed randomly in 1024
sub-carriers locations.

2.3.2 Impulsive Noise Model

The definition of the impulsive noise is the noise outside the system with the charac-
teristics of bursting and time domain sparsity, which occupies a time interval suffi-
ciently short compared with the duration of the block transmission symbol [47, 73].
The quantitative definition of the impulsive noise is the impulsive signal, whose tem-
poral duration is no more than 5% that of the block transmission OFDM symbol [39,
53]. Based on the definition of impulsive noise, the models proposed in literature for
common theoretical analysis and adopted in simulation experiments mainly include
the following categories:

(1) Gaussian mixture model, including the Gaussian-Bernoulli mixture model [41]
and the Gaussian-Poisson mixture model [65]: in the Gaussian mixture model,
the probability density function (PDF) of the instantaneous amplitude of the time
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domain asynchronous impulsive noise is given by

pZ (z) =
∑Jm

j=0
β j · g j (z) (2.5)

where g j (z) is the probability density function of a zero mean Gaussian dis-
tribution with the variance of σ2

j . The parameter β j is the mixture coefficient
corresponding to the PDF of the Gaussian distribution. Jm is the number of the
Gaussian components that formulate this model. As far as the Gaussian-Poisson
mixture model [65] is concerned, the arrival rate (i.e. the number of impulses
that arrive per second) of the impulses of the impulsive noise follows a Poisson
process distribution, whose probability is given by

P(Λ) = λΛe−λ/Λ! (2.6)

As far as the Gaussian-Bernoulli mixture model is concerned [41], the locations
of the sampling points where the impulsive noise occurs follow a Bernoulli
distribution.

(2) Middleton’s Class A-Poisson model [38, 39]: TheMiddleton’s Class A model is
a commonly used statistical model of impulsive noise, whose main parameters
include the overlapping factor A and the background-to-impulsive-noise power
ratio ω. When the related parameters satisfy the following conditions:

β j = e−A A j

j !
σ2
j = j/A + ω

1 + ω
, Jm → ∞,

(2.7)

the Middleton’s Class A distribution can be derived from the Gaussian mixture
model. In the Middleton’s Class A-Poisson model, the arrival rate and the occur-
rence locations of the impulsive noise follow the Poisson distribution described
by Eq. (2.6).

(3) Bursty block-sparse model [35]: The impulsive noise in practical systems might
be occurring in clusters or in blocks in the form of bursty clusters at some
concentrated locations, which can be modeled by a bursty block-sparse model.
Assuming that only a small portion of the received OFDM symbol is influenced
by the impulsive noise, and they will be gathering in groups at some impulse
blocks. Therefore, the occurrence frequency of the impulses in the bursty block-
sparse model is in between two extreme cases, namely, the impulsive noise with
independent and identical distribution and the long duration impulsive noise
affecting the whole OFDM symbol. The bursty block-sparse model can be rep-
resented as

z = [
zT [1]

︷ ︸︸ ︷
z0, . . . , zD−1, . . . ,

zT [p]
︷ ︸︸ ︷
zN−D, . . . , zN−1]T (2.8)
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where the length of the impulse block is D, andwithin the sub-vector groups z[ j]
formed by each impulse block, only q � p sub-vectors have nonzero Euclidean
norm (i.e. �2 norm).

TheMiddleton’s Class A-Poisson model among the impulsive noise models men-
tioned above accurately expresses the time domain bursting and sparse characteristics
of the impulsive noise, which is relatively better consistent with the probabilistic and
statistical characteristics of the impulsive noise commonly seen in practical broad-
band communication systems. It is also more applicable for different systems and
different channel conditions [39, 53]. In literature, this model is mostly adopted for
analysis, research and experiments, so it is also adopted in this thesis. Specifically, in
the OFDM block transmission system model described in Sect. 2.1.1 in this chapter,
the impulsive noise component in the i thOFDMsymbol (2.1) can be represented by a
length-N vector zi = [zi,0, zi,1, . . . zi,N−1]T . In most literature and also in this thesis,
the modeling of the impulsive noise is conducted in the complex baseband modules,
namely using the equivalent complex baseband model. In order to make it more con-
venient for the analysis and research of digital signal processing, the receiver only
needs to consider the baseband digital domain processing and does not need to con-
sider the analog signal in front of the analog-to-digital converter. The related digital
baseband algorithms are conducted for the baseband digital signal, which is targeting
at eliminating the impulsive noise and facilitating the succeeding digital demodula-
tion and decoding. The most fundamental characteristic of the impulsive noise is the
sparsity. The support is defined as Πi = {

j
∣∣zi, j �= 0 , j = 0, 1, . . . , N − 1

}
, and

the sparsity level is defined as K = |Πi |. The INR of the impulsive noise is denoted
by γIN, which is given in detail by

γIN = E

{∑

j∈Πi

|zi, j |2/K
}

/σ2
w (2.9)

where PIN = ∑
j∈Πi

|zi, j |2/K is the average power of the impulsive noise, and σ2
w

is the power of the background AWGN. In the Middleton’s Class A-Poisson model,
the characteristics of the instantaneous amplitude and the random occurrence of the
impulsive noise can be empirically modeled in literature. As described previously,
the distribution of the instantaneous amplitude is given by (2.7), and the probability
distribution of the occurrence is given by (2.6).

The time domain signal data of the impulsive noise that is tested in practical
experiment fields was provided in the report [34]. In this report, the measurement
data of the impulsive noise generated by the central air conditioner formed a randomly
sparse model. Thus, it can be observed that the nonzero elements of the impulsive
noise are randomly distributed in different time samples. The measurement data of
the impulsive noise generated by the dishes washing machine formed a block-sparse
model. It can be observed that the impulses occur in groups and clusters at random
locations. The theoretical and simulation model of the impulsive noise mentioned
above is illustrated in Fig. 2.9, where the horizontal axis is the time domain OFDM
samples with each OFDM symbol having N = 1024 time domain samples. The
vertical axis denotes the time domain normalized amplitude of the impulsive noise.
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Fig. 2.9 Theoretical and simulation model of the impulsive noise in the OFDM system

It can be observed from the figure that the sparsity level of the impulsive noise is
K = 15, which implies that there are 15 impulses randomly occurring in this OFDM
symbol.

2.4 Fundamentals of Sparse Recovery Theory

The theory of sparse recovery is one of the recently emerging signal processing
theories, which is aimed at the processing of the signals with some specific sparse
properties in a certain domain, and the detection, estimation and reconstruction of
the sparse signals are of interest. The efficiency of the conventional signal processing
methods is limited by the Shannon-Nyquist sampling theorem [54]. The accuracy
of signal estimation is also limited when the available sampling data are insuffi-
cient [28]. The limitation of the conventional signal processing methods is overcome
by the emerging theory and technology of sparse signal processing. The problem
of sparse signal reconstruction can be modeled based on the sparse recovery theory.
Making use of the highly efficient and robust algorithms of sparse recovery, the target
of significantly improving the accuracy of sparse signal recovery can be achieved
in the condition of the sampling data amount far less than conventional require-
ments. Therefore, the theory and technology of sparse recovery have drawn plenty
of attention from many areas in both academia and industry, including digital image
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processing, radar signal detection, and communication and information systems, etc.
The theory of sparse recovery mainly includes the compressed sensing theory, the
structured compressed sensing theory, and the sparse Bayesian learning theory, etc.
The fundamentals of the theories will be briefly discussed on in this section.

2.4.1 Compressed Sensing and Sparse Recovery

The compressed sensing (CS) theory was proposed by D. Donoho, E. Candes and J.
Romberg et al., in 2006, which was applied in the area of digital image processing at
first to conduct image compression, sampling and sparse recovery [10, 18]. Themoti-
vation and aims of compressed sensing is to make use of the inherent sparse structure
of the signal to reduce the required sampling rate or data amount for accurate sig-
nal recovery. After the compressed sensing theory was proposed, it has drawn great
attention from the academia, and extended to the areas of communication signal pro-
cessing, medical signal processing, radar signal processing, etc. In the area of signal
processing, the essence of the compressed sensing theory is the accurate solution of
the under-determined linear inverse problem. The model of linear inverse problems
include three categories, i.e. under-determined, over-determined and regular linear
inverse problems [57], which is represented as follows

y = �x (2.10)

where y ∈ C
M is a measurement vector or a known vector that can be obtained in

some certain manner, x ∈ C
N is the unknown vector to be estimated,� ∈ C

M×N is a
certain known observationmatrix or representationmatrix.WhenM > N , Eq. (2.10)
forms a “over-determined” linear inverse problem, which can be regarded as a linear
equations set with the number of unknown variables greater than that of the equa-
tions. When the equations are independent of each other, there does not exist any
solution that satisfies the linear equations set accurately (i.e. making all the equations
consistent). However, there exists an approximate solution in the perspective of least
squares (LS) [57]. When M = N , Eq. (2.10) forms a regular linear inverse problem,
which can be regarded as a linear equations set with the number of unknown vari-
ables equal to that of the equations.When the coefficients matrix� is row full ranked
(nontrivial), there exists and only exists one solution for x. When M < N , Eq. (2.10)
forms an “under-determined” linear inverse problem, which can be regarded as an
equations set with the number of unknown variables smaller than that of the equa-
tions. Usually in conventional theories of signal processing and linear algebra, this
kind of under-determined linear inverse problem has no accurate solution, because
there exist infinite number of different solutions that can satisfy Eq. (2.10).

Different from the conventional signal processing theory, the compressed sensing
theory shows that the under-determined linear inverse problem is invertible, i.e. the
unknown vector x with the sparsity level of K (which can be denoted by a K -sparse
vector) can be accurately and stably recovered, when the following conditions are
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satisfied [10, 18, 19]: (i) the unknownvector is K -sparse. (ii) the observationmatrix is
diverse (the correlation between the columns of the observationmatrix is low), which
satisfies the (K , δ)-restricted isometry property (RIP) condition. (iii) the number of
the measurement data M satisfies:

M = O(K log(N/K )) (2.11)

where the sparsity is defined as:

Definition 2.1 (sparsity) Vector x ∈ C
N is called K-sparse, K � N , if ∃ a certain

set of indices Ω ⊂ {1, . . . , N } such that |Ω| ≤ K and xΩ �= 0, x{1,...,N }−Ω = 0. The
sparsity of the vector x is K . The support (the set of the indices of the nonzero
elements) is denoted by supp (x), and supp (x) = Ω .

The RIP condition is defined as:

Definition 2.2 (RIP) The matrix � ∈ C
m×N is recognized to be satisfying the

(K , δK )-RIP condition with the parameter of (K , δK ) (K ≤ m, 0 ≤ δK ≤ 1), if for
all the sets of indices Ω ⊂ {1, . . . , N }, |Ω| ≤ K , and for all the q ∈ C

|Ω|, it holds
that

(1 − δK ) ‖q‖22 ≤ ‖�Ωq‖22 ≤ (1 + δK ) ‖q‖22 (2.12)

When the three conditions above are satisfied, it can also be implied that the
unknown vector x can be linearly represented by the K vectors (also known as the
“sparse atoms”) from the vectors group (dictionary) formed by the column vectors
of the observation matrix�. If the three conditions above are satisfied, to reconstruct
the unknown sparse vector is equivalent to finding the sparse linear representation of
the measurement vector using the given dictionary (the columns of the observation
matrix), whose method is to solve the following �0 norm minimization problem:

(P0) : min
x∈CN

‖x‖0, s.t. y = �x (2.13)

where �0 norm‖x‖0 is the number of nonzero elements in the vector x. In order to
solve this problem, intuitively the most sparse vector of x should be found, such
that the compressed sensing relation y = �x is satisfied. Since this problem has a
solution space of combinatorial scale to search from, it is an NP-hard problem which
is difficult to track the solution of. However, by making use of convex relaxation, the
original problem can be relaxed to the �1 norm minimization problem:

(P1) : min
x∈CN

‖x‖1, s.t. y = �x (2.14)

where �0 norm‖x‖0 refers to the summation of all the elements in the vector of x.
The �1 norm minimization problem can be solved by convex optimization methods.
Basis pursuit (BP) is a commonly applied method, which turns the original �0 norm
minimization problem into an �1 norm minimization problem by convex relaxation.
The BP method can further convert it to a linear programming problem equivalently,
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of which the accurate solution can be derived when the observation matrix satisfies
the RIP condition. Moreover, in the presence of background noise, the accuracy of
the solution of the BP method has been theoretically guaranteed [10].

Another commonly applied method is the compressed sensing based greedy algo-
rithms. Based on the idea of solving the �0 norm minimization problem, the target
of finding the unknown vector with the smallest number of nonzero elements can
be achieved by greedy iterative approach. In each iteration, the greedy strategy is
conducted to select one or more atoms from the remaining atoms that are most likely
to be included in the ground-truth support, and add them to the final support. Through
several iterations, the optimal solution can be derived. The accuracy of the solution
of the compressed sensing based greedy algorithms is also theoretically guaran-
teed by theoretical bounds [62]. The commonly adopted compressed sensing based
greedy algorithms include OMP (Orthogonal Matching Pursuit) [61], SP (Subspace
Pursuit) [15], CoSaMP (Compressed Sampling Matching Pursuit) [43], and SAMP
(Sparsity Adaptive Matching Pursuit) [17], etc.

2.4.2 Structured Compressed Sensing Theory

The theory of structured compressed sensing is an extended theory of the compressed
sensing theory. The structured compressed sensing theory is focused on the structural
property of the unknown vector, and improving the performance of the classical
compressed sensing methods by making use of it.

Firstly, the structured compressed sensing theory studies the joint structural prop-
erty of the unknown vectors in the scenario of multiple measurements, i.e. the multi-
ple measurement vectors (MMV) problem. The MMV problem is widely applied in
many areas, including medical brain MRI imaging analysis, array processing, sparse
channel equalization, cognitive radio, andmultiple channel communications, etc. The
characteristic of theMMV problem is that the inherent structure of the unknown data
is needed, such as the unknown jointly sparse matrix composed of multiple unknown
sparse vectors, to conduct joint signal reconstruction, which is also a typical theo-
retical model and problem representation of structured compressed sensing [8, 20].
Different from the single measurement vector (SMV) problem as in the conventional
compressed sensing framework, the target of solving the MMV problem is to simul-
taneously reconstruct a group of D vectors {x j }Dj=1 that share the same support Ω ,
rather than only reconstruct a single sparse vector x. Rearranging the vectors group
{x j }Dj=1 in column forms the jointly sparse matrix X. Since each vector shares the
same support, the number of nonzero rows in the unknown jointly sparse matrix is
K when the number of nonzero elements of each unknown sparse vector is K . The
MMV problem framework can be represented as:

Y = [
y1y2 · · · yD

] = �X (2.15)
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where Y is the multi-dimensional measurement matrix composed of the multi-
ple measurement vectors in column, and X = [x1x2 · · · xD] is the unknown multi-
dimensional jointly sparse matrix.

It has been proved that, in order to reconstruct an unknown K -sparse vector,
the requirement of the length of the measurement vector M can be reduced from
M = O(K log(N/K )) (a typical value is 2K ) in the single-dimensional SMV case
to M ≥ K + 1 in theMMV framework [20]. In the framework of theMMV problem
based on the structured compressed sensing theory, the amount of the measurement
data required for recovering D jointly sparse unknown vectors (i.e. the unknown
jointly sparse matrix) is MD. Hence, the total amount of the required measurement
vectors, i.e. (K + 1)D, is significantly reduced compared with the amount of 2K D
when solving the SMV problem vector-by-vector for the D unknown vectors in the
conventional compressed sensing methods [20].

The solutions of theMMV problem in literature mainly include the following two
approaches:

(1) Convex relaxation optimization methods: in the MMV framework, the com-
pressed sensing problem (2.14) is extended to the mixed matrix normminimiza-
tion problem, i.e. the mixed �p,q -norm minimization problem, as represented
by:

(P0,q) : min
X∈CN×D

‖X‖0,q , s.t. Y = �X (2.16)

where the mixed �p,q norm of a matrix is defined as:

‖X‖p,q =
(

∑

m

∥∥(XT )m
∥∥q

p

)1/q

(2.17)

where (XT )m denotes the m-th row of X. Similarly, the mixed �0,q norm is a
nonconvex function, so the problem (2.18) is an NP-hard one, which cannot be
solved. By convex relaxing, it can be turned to a mixed �p,q norm minimization
problem (p, q ≥ 1), and then it can be solved using convex optimizationmethods
as:

(Pp,q) : min
X∈CN×D

‖X‖p,q , s.t. Y = �X (2.18)

where usually in the convex relaxation p = 1, q = 2 is preferably chosen as the
mixed norm for efficient solution [11, 22].

(2) Structured compressed sensing greedy algorithms: similar to the classical com-
pressed sensing algorithms, the structured compressed sensing algorithms are
also based on the greedy idea in multiple iterations. In each itearation, the cur-
rently optimal common support of X is selected and appended into the test
support, and the optimal solution is gradually converged to. What is different
from the classical compressed sensing greedy algorithms is that, in each itera-
tion of the structured compressed sensing algorithm, the criterion that decides
the currently optimal support to be appended comes from the contribution of
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the multi-dimensional projection of the multi-dimensional measurement matrix
and the multi-dimensional residue matrix on the dictionary atoms, rather than
the single dimensional measurement vector and residue error vector as in the
classical compressed sensing algorithm. Thus the accuracy of the algorithm can
be effectively improved, and the required amount of the measurement vector in
each dimension can be reduced [62]. State of the art commonly applied struc-
tured compressed sensing algorithms include Simultaneous OMP (S-OMP) [62]
and OMP-MMV [11], etc.

Furthermore, based on the structured compressed sensing theory, in the framework
of finite union of subspaces (FUS), the corresponding structured reconstructionmeth-
ods can be derived bymaking use of the additional constraints and structural property
of the unknown vector. A typical additional structural property of the unknown vector
is its block sparse property, which is defined as:

Definition 2.3 (Block Sparsity) A vector x ∈ C
N is regarded as K-block-sparse on

the block partition of Γ = {d1, . . . , dNB}, if the sub-block x[i] is nonzero for at most
K different indices i , where N = ∑NB

i=1 di , the number of sub-blocks is NB, and the
length of the i th sub-block x[i] is di . Then it can be derived that:

x = [x1 . . . xd1︸ ︷︷ ︸
x[1]T

, . . . , xN−dNB+1 . . . xN
︸ ︷︷ ︸

x[NB]T
]T . (2.19)

When the unknown vector satisfies the block sparse property, it can be solved by
the block sparse recovery algorithms. Definition 2.3 implies that, when di = 1,∀i ,
block sparsity will degrade to the common sparsity. Based on the definition of block
sparsity, the mixed �2/�1 norm of the block sparse vector x on the block partition
Γ = {d1, . . . , dNB} is given by the following equation:

‖x‖2,Γ =
NB∑

i=1

‖x[i]‖2. (2.20)

where the term of ‖x‖2,Γ denotes the summation of the power of all the sub-blocks of
the block sparse vector x. When the unknown vector x is block sparse, the condition
on which the problem of block sparse recovery y = �x can be solved is extended to
the block-RIP condition, as defined by:

Definition 2.4 (block-RIP) A matrix � ∈ C
M×N is recognized to have the block-

RIP property with the block-RIP constant of 0 ≤ δ(B)
K ≤ 1 on the block partition of

Γ = {d1, . . . , dNB}, if ∀ K -block-sparse vector x ∈ C
N on the block partition Γ , it

holds that
(1 − δ(B)

K ) ‖x‖22 ≤ ‖�x‖22 ≤ (1 + δ(B)
K ) ‖x‖22 . (2.21)

The major difference between block-RIP condition and common RIP condition
(see Definition2.2) is that the condition holds for any K -block-sparse vector x ∈ C

N

on the block partition Γ .
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It is revealed by the structured compressed sensing theory that, when the obser-
vation matrix satisfies the block-RIP condition, similar to the solution to the MMV
problem, the convex relaxation optimization methods and the block sparse greedy
algorithms can be utilized to recover the block sparse vector [20]. To exploit the con-
vex relaxation optimization method, the following mixed �2/�1 norm minimization
problem should be solved [22]:

arg min
x∈CN

‖x‖2,Γ , s.t. y = �x (2.22)

Utilizing the block sparse greedy algorithms, such as block-OMP (BOMP) and
block-CoSaMP, etc. [6, 21], the unknown block sparse vector can be iteratively
solved.

2.4.3 Sparse Bayesian Learning Theory

The sparse Bayesian learning (SBL) theory was first proposed by Tipping in 2001,
which was applied in the area of machine learning at first, and then extended to
the area of sparse signal processing [58]. Compared with the compressed sensing
methods, the sparse Bayesian learning methods are more capable of achieving the
globally most sparse solution, and the requirements on the correlation property of
the columns of the observation matrix is relatively loose. Hence, it has drawn wide
research attention [67, 68]. The sparse Bayesian learning theory is aimed at solving
the linear inverse problemof theunknownsparse vector in the presenceof background
noise:

y = �x + w (2.23)

where x ∈ C
N is the unknown sparse vector to be estimated. y ∈ C

M is the measure-
ment vector or known vector that can be obtained in some way. � ∈ C

M×N a known
observation matrix or representation matrix.w is the background noise vector. In the
framework of sparse Bayesian learning, assuming that the prior distribution of each
element of the unknown vector x follows a zero-mean Gaussian distribution:

p(xi ; γi ) ∼ N(0, γi ), i = 1, . . . , N (2.24)

where γi is the variance of the Gaussian distribution. In the framework of sparse
Bayesian learning, it is assumed that γi is unknown but deterministic parameter
(rather than random variable), which is estimated through the sparse Bayesian learn-
ing based algorithms. The background noise is assumed to follow Gaussian distri-
bution, i.e.

p(w; ε) ∼ N(0, εI) (2.25)
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where εI is the covariance matrix of the Gaussian variable. The sparse Bayesian
learning theory is focused on estimating the unknown parameters γi and ε through
the sparse Bayesian learning based iterative algorithms, which is the key of the sparse
Bayesian learning methods:

In the process of iterative learning, most of the parameters γi will approach zero,
and the sparse Bayesian learning algorithms will force them to be zero by threshold
decision. Then, the elements xi corresponding to these are also forced to be zero, and
only a few γi are remained, which ensures that the sparse Bayesian learning iterations
will converge to a sparse solution [58]. Through adopting the Type II Maximum
Likelihood (ML) method in the iteration process, all the unknown parameters are
estimated finally. Afterwards, the posterior distribution, which is also a Gaussian
one, of xi can be derived based on the Bayesian criterion. The expectation of this
very distribution is the maximum a posterior (MAP) estimation of the unknown
vector x based on the Bayesian rule [68].

Furthermore, exploiting the block sparse property of the unknown vectors, Zhang
et al. extended the sparse Bayesian learning theory to the block sparse Bayesian
learning (BSBL) theory [71]. In the framework of block sparse Bayesian learning, in
order to solve the problem (2.23), the block sparse property of the unknown vector
x can be exploited, i.e.

x = [x1, . . . xd1︸ ︷︷ ︸
xT1

, . . . xdg−1+1, . . . xdg︸ ︷︷ ︸
xTg

]T , (2.26)

where the size of each sub-block di is not necessarily identical. In all the g sub-
blocks, only Kb(Kb � g) ones are nonzero. Equation (2.26) is the block sparse
representation of the unknown vector. In the framework of block sparse Bayesian
learning, the prior distribution of each sub-block xi ∈ C

di is assumed to follow a
parametric multi-dimensional joint Gaussian distribution:

p(xi ; γi ,Bi ) ∼ N(0, γiBi ), i = 1, . . . , g, (2.27)

whereBi andγi are unknownanddeterministic parameters. Theblock sparse property
of the vector x is determined by the non-negative parameter γi . If γi is nonzero, it
means that the i th sub-block is nonzero.

In the learning process of block sparse Bayesian learning, similarly, based on
the principle of automatic relevance, most of the parameters {γi }i will gradually
approach zero, leading to the block sparse property of the solution [71].

Compared with sparse Bayesian learning, the key of the block sparse Bayesian
learning theory is to make use of the intra block correlation of the sub-blocks, i.e.
exploiting the intra block correlation (IBC) matrixBi , which can improve the perfor-
mance of the recovery of block sparse unknownvectors. The IBCmatrix is denoted by
Bi ∈ C

di×di , which is a positive definitematrix and represents the inherent correlation
structure of the i th sub-block. Before the learning iterations of block sparse Bayesian
learning, the IBC matrix Bi can be initialized by the covariance matrix, and then
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updated and optimized through the block sparse Bayesian learning iteration process.
With the assumption that each sub-block is uncorrelatedwith each other, the prior dis-
tribution of the unknown vector x can be represented as p(x; {γi ,Bi }i ) ∼ N(0, 	0),
where the prior covariance matrix of x is

	0 = diag{γ1B1, . . . , γgBg}. (2.28)

Assuming that the background noise also follows a Gaussian distribution (2.25),
then the posterior distribution of x based on the Bayesian rule is given by

p
(
x|y; ε, {γi ,Bi }gi=1

) = N(µx , 	x ), (2.29)

where
µx = 	0�

T
(
εI + �	0�

T
)−1

y, (2.30)

	x =
(

	−1
0 + 1

ε
�T�

)−1

. (2.31)

The unknown parameters ε, {γi ,Bi }gi=1 can be estimated based on the Type-
II maximum likelihood criterion through the core of the BSBL framework, i.e.
the algorithm of learning the unknown parameters. Afterwards, the MAP estima-
tion of the unknown vector x is given by x̂ = µx , which is given in detail by Eq.
(2.30) [58, 71].
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Chapter 3
Synchronization Frame Design for NBI
Mitigation

Abstract Synchronization has an important impact on the system performance of
broadband communication systems. In particular, OFDM systems are very sensi-
tive to the accuracy of synchronization. In the presence of narrowband interference,
the performance of frame synchronization and carrier synchronization is severely
influenced. The conventional synchronization frame structure and synchronization
algorithms are not designed for mitigating the narrowband interference, resulting in
serious performance loss of synchronization in the presence of narrowband interfer-
ence. Hence, the problem of accurate and efficient synchronization in the presence of
narrowband interference is the first utmost important problem to be solved to improve
the system performance of broadband communication systems. In this chapter, the
design of the OFDM preamble synchronization frame structure for effective narrow-
band interference mitigation is devised. Efficient and robust algorithms of receiver
side frame synchronization and carrier recovery are studied. Besides, the method of
frame header signalling transmission robust to the narrowband interference is inves-
tigated. Through these studies, the disadvantage of the conventional synchronization
methods is overcome, and the synchronization performance of the OFDM system in
the presence of narrowband interference is guaranteed. This research will provide
basis technical support for the improvement of the overall system performance of the
broadband communication systems in the presence of narrowband interference, and
provide performance guarantee in the perspective of synchronization for the research
of this thesis.

3.1 Introduction

3.1.1 Problem Description and Related Research

Due to its high transmission efficiency, simple implementation and especially the
good performance to overcome frequency selectivity, the OFDM technique has been
adopted as an effective physical layer modulation technique in many different broad-
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band communication systems and standards, including the power line communication
system, wireless local area network (WLAN), and digital video broadcasting (DVB),
etc. However, the propagation channel of the OFDM system, including wired and
wireless channels, tend to suffer from severe channel condition, noise, interference,
and high attenuation, such as the narrowband interference and impulsive noise, which
brings great challenge to the performance of OFDM systems, including synchroniza-
tion, decoding, and demapping, etc.

In OFDM systems, a reliable and efficient communication relies on good syn-
chronization performance, which has been investigated for long [1, 3, 5, 6]. Several
methods have been proposed for preamble design and synchronization for OFDM
systems. In literature [1], the classical sliding auto-correlation (SAC) method was
proposed based on the cyclic prefix (CP). In [6], Schmidl proposed a preamble struc-
ture having two identical parts by using only even carriers in the frequency domain,
which has been adopted into WLAN-based standards IEEE 802.11g and WMAN-
based standards IEEE 802.16e. However, the SAC of this preamble produces a broad
plateau around the correct timing position, whichwould cause ambiguitywhen deter-
mining the best start sample point, especially when the timing offset is beyond the
scope of the length of CP so that the following operation cannot recover the right
timing position. To solve this problem, Minn proposed a time-domain structure like
[AA − A − A] to reduce the plateau and sharpen the correlation peak [5]. However,
the correlation result in Minn’s method also introduces several sub-peaks, which
might cause high false detection probability when the signal-to-noise ratio (SNR) of
the channel is relatively low.

Furthermore, there is usually severe NBI in OFDM system propagation channels,
which has a serious impact on communication reliability and synchronization. How-
ever, the above three synchronization methods could be severely deteriorated by NBI
environments [2, 4]. Current methods for synchronization under NBI are not appli-
cable and not effective. For instance, in the field tested indoor power line channel,
the detrimental impacts of the NBI on the synchronization performance have been
given in literature [3]. To solve this problem, it is in desperate need to propose an
effective preamble design and corresponding synchronization method, which is also
the main content in this chapter.

Besides, OFDM systems usually support different symbol constellation types and
channel coding rates in order tomeet different quality-of-service (QoS) requirements.
Therefore, the transmission parameter signaling (TPS) can facilitate the succeeding
channel estimation, and is critical for the receiver to demodulate the received data
correctly. In the existing commercialized systems such as IEEE 802.11g and IEEE
802.16e, the TPS is transmitted separately following the preamble. After the timing
and frequency synchronization have been accomplished, the receiver could then
move to decode the signaling part. If the TPS can be integrated into the sub-carriers
corresponding to the preamble, the process to obtain the TPS can be independent of
the timing synchronization. Since the TPS information carried by the preamble does
not occupy resources, the spectral efficiency can be significantly improved.
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3.1.2 Research Aims and Problems

Concerning about the problembackgroundmentioned above and the disadvantages of
the current research, this chapter will focus on the solution of the scientific problem 1
in this thesis, i.e. how to overcome the severe impacts of the NBI on the synchroniza-
tion performance of the receiver. Through investigating the research content includ-
ing the optimized design of the synchronization frame structure for NBI mitigation
and the efficient and robust synchronization algorithms at the receiver, the research
aim of designing an optimized synchronization frame structure that can effectively
improve the NBImitigation performance and the efficient synchronization algorithm
will be reached. More specifically, the major contribution of this chapter is twofold
as follows:

• An OFDM based preamble design with the improved time domain structure is
proposed, which has the advantages of both Schmidl’s and Minn’s methods. More
importantly, a novel scrambling operation is applied to the cyclic extension of
the time domain preamble OFDM symbol to mitigate the impact of the NBI on
synchronization.

• Two identical training sequences are designed, which is distributed alternately
in the active sub-carriers to achieve diversity gain under the frequency-selective
fading channels. The relative distance between the two training sequences could
be varied in order to indicate several bits of signaling information for the receiver
to acquire the basic transmission parameters quickly.

3.2 Signal Model

The OFDM symbol is generated by an N -point inverse fast Fourier transform (IFFT)
of the modulated data symbols {Xk}, as given by

xn = 1√
N

N−1∑

k=0

Xk · e j 2πN nk . (3.1)

Considering the channel delay spread, additive white Gaussian noise (AWGN),
carrier frequency offset (CFO) and NBI, the received signal is modeled as

rn =
Lh−1∑

l=0

hl · xn−n0−l · e j2πn fc + I0 · e j2πn fNB + νn, (3.2)

where n0, fc and νn are the unknown symbol arrival time (i.e. the accurate timing
position to be estimated at the receiver), the CFO and AWGN, respectively. {hl}
is the channel impulse response (CIR), which is modeled by Lh discrete weighted
impulses. I0 is the amplitude of the NBI at the frequency point fNB. The CFO is
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Fig. 3.1 Conventional
design of OFDM preamble

usually normalized by the sub-carrier spacing 1/N , i.e., fc = k0/N + ffrc, where
k0 is an integer and ffrc is the residual fractional part of CFO.

The task of the synchronization process is to determine the timing position and
estimate CFO without any knowledge of prior channel state information. To achieve
this goal, Schmidl et al. [6] andMinn et al. [5] proposed some state of the art methods.
Specifically, to this end, Schmidl proposed a preamble structure having two identical
parts as illustrated in Fig. 3.1a by using only even carriers in the frequency domain [6].
The SAC operation for timing and frequency synchronization is based on the two
cyclic parts ‘B’, which could provide higher robustness than common CP-OFDM
symbols.However, the SACof such preamblewill produce a broad plateau around the
correct timing position due to the insertion of CP. The plateau would cause ambiguity
when determining the best timing sample point.

To reduce the plateau, Minn proposed a novel time-domain structure like [A A −
A − A], as illustrated in Fig. 3.1b [5]. With the deliberate design of two opposite
parts, Minn’s method could sharpen the correlation peak compared to Schmidl’s
method. However, the correlation in Minn’s method introduces several sub-peaks,
which might cause high false detection probability when the SNR is low.

Considering an NBI at the frequency point fNB, the SAC result at the expected
correct timing position of n

′
0 based on the conventional SAC operation on the two

identical parts is given as (ignore the noise and channel terms for simplicity) is given
by

Rc,n
′
0
=

Lc−1∑
l=0

rn′
0+l · r∗

n
′
0+l+Nc

=
Lc−1∑
l=0

(
xl + I0e j2π fNBl

) · (xl + I0e j2π fNB(l+Nc)
)∗

=
Lc−1∑
l=0

(|xl |2 + I0xle− j2π fNB(l+Nc)

+I0x∗
l e

j2π fNBl + I 20 e
− j2π fNBNc

)

≈
Lc−1∑
l=0

|xl |2+Lc · I 20 e− j2π fNBNc

, (3.3)

where Lc and Nc denote the length of the identical parts and the correlation lag,
(·)∗ denotes the complex conjugation. Since {xl} and {e j2π fNBl} are non-coherent, the
rest terms in (3.3) are eliminated after sum averaging, which can be neglected com-
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pared with the SAC component of the preamble |xl |2 and the major NBI component
Lc I 20 e

− j2π fNBNc . It is observed from (3.3) that the unpredictable NBI might deteri-
orate the correlation peak and thus degrade the detection performance. In order to
solve the problems of the state of the art methods, this chapter designs an optimized
preamble in particular, and propose the corresponding synchronization algorithm to
improve the performance of synchronization against the NBI impact.

3.3 Synchronization Frame Structure Design for NBI
Mitigation

The proposed preamble is composed of a length-N OFDM symbol with its two
cyclic extensions, as illustrated in Fig. 3.2. In the frequency domain, a pair of train-
ing sequences are alternatively inserted in the {4k + 1} and {4k + 3} indexed sub-
carriers. The training sequence in the {4k + 1} sub-carriers is located at the fixed
position (i.e. it is configured as the reference initial phase for the pseudo random
sequence), while the training sequence in the {4k + 3} sub-carriers is cyclically right
shifted by ΔL to form the frequency domain sequence of the preamble {Yk}N−1

k=0 as
given by ⎧

⎨

⎩

Y4k+1 = ck, k = 0, 1, · · · , L − 1
Y4k+3 = c(k−ΔL) mod L , k = 0, 1, · · · , L − 1
Yk = 0,

, (3.4)

where ck is the length-L (L<N/4) pseudo-random training sequencewith good auto-
correlation property. mod denotes the modular operation. The cyclical shift length
ΔL could be varied in order to indicate different signaling information. There are
L choices in total for the shift length corresponding to log2L bits of signaling. For
the sake of fairness, all the preamble designs and the corresponding synchronization
algorithms, including both the proposed algorithms and the state of the art ones
engaged in this chapter, are compared in the same condition of identical preamble
length.

Afterwards, the active sub-carriers in (3.4) are then differentially encoded and
transformed to the time domain by N -point IFFT operation defined in (3.1). Since
only odd sub-carriers are used, the time-domain OFDM symbol is divided into two
opposite parts, denoted as ‘−A’ and ‘A’ in Fig. 3.2. The last half part ‘A’ is copied
to the front as CP and also copied to the rear multiplying with a scrambling sequence
(−1)n to form the ‘S(A)’ part. Then, the transmitted time-domain preamble signal
{pn}2N−1

n=0 is thus represented as

pn =
⎧
⎨

⎩

xn+N/2, 0 ≤ n < N/2
xn−N/2, N/2 ≤ n < 3N/2
(−1)n · xn−N , 3N/2 ≤ n < 2N

, (3.5)
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Fig. 3.2 Proposed OFDM preamble design

where {xn}N−1
n=0 denotes the timedomain length-N OFDMsymbol generated by the N -

point IFFT operation, as illustrated by the part of [−AA] in Fig. 3.2. The scrambling
operation could effectively reduce the impact of the NBI. The superior performance
of the proposed method in timing synchronization, carrier recovery and signalling
detection compared with the conventional Schmidl’s and Minn’s methods will be
further discussed in the following section.

3.4 Timing and Fractional CFO Synchronization

The timing algorithm adopts the cyclic properties of the proposed preamble, where
three cyclic parts are observed and used for SACs:

R1,n =
N/2−1∑

l=0

(−1)(n+l)r∗
n+l · rn+l−N/2, (3.6)
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Fig. 3.3 The process of the
proposed time domain SAC
based timing and carrier
synchronization algorithm

R2,n =
N/2−1∑

l=0

(−1)(n+l)r∗
n+l · rn+l−N , (3.7)

R3,n =
N/2−1∑

l=0

(−1)(n+l)r∗
n+l · rn+l−3N/2. (3.8)

Themultiplicationwith (−1)n in the summationof (3.6)–(3.8) is thede-scrambling
operation between the three front parts and the last part ‘S(A)’ of the preamble
in Fig. 3.2. Finally, the above three correlation results are multiplied together to
strengthen the correlation peak,

Rc,n = −R∗
1,n · R2,n · R3,n. (3.9)

The process of the proposed time domain SAC based timing and carrier synchro-
nization algorithm is illustrated in Fig. 3.3. According to the diagram and the SAC
calculation methods given in (3.6)–(3.8), it can be observed that the theoretically
desired timing position n0 is the first sample of the ‘S(A)’ part, as illustrated in
Fig. 3.2.

Unlike the conventional SACmethods, a de-scrambling operation (−1)n is firstly
applied to the received signal. Since the summations in (3.6)–(3.8) could be imple-
mented with recursive method [6], the complexity of the proposed algorithm is low.
Moreover, the correlation operations here are approximately 50% more than those
in Minn’s method with the same preamble length, since three pairs of correlation
are calculated in the proposed method while only two pairs are needed in Minn’s
method.

The correlation peak of Rc,n indicates the estimated timing position n̂0 in the
preamble and the fractional CFO f̂frc can also be obtained through the phase of the
peak,

n̂0 = argmax
n

{∣∣Rc,n

∣∣} , (3.10)
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Fig. 3.4 The comparison of the timing correlation peaks of the three synchronization methods

f̂frc = arg
(
Rc,n

)

2πN

∣∣∣∣∣
n=n̂0

, (3.11)

where argmax {·} denotes the set of variables that maximize the objective function,
and arg (·) denotes the phase of a complex number.

Simulation examples of the SAC for Schmidl’s, Minn’s and the proposedmethods
without channel noise are illustrated in Fig. 3.4. A broad plateau with the duration of
CP is observed in Schmidl’s method, while four sub-peaks about one-fourth height of
the main peak are introduced in Minn’s method. It is noted that the proposed method
could avoid either plateau or sub-peaks and obtain even sharper peak than Minn’s
method.

Considering an NBI at the frequency point fNB, the auto-correlation result at the
correct timing position n0 derived by the branch R1 in (3.6) after the de-scrambling
operation is given as,

R1,n0
=

N/2−1∑

l=0
(−1)l

(
(−1)l xl + I0e

j2π fNBl
)∗

·
(
xl + I0e

j2π fNB(l−N/2)
)

=
N/2−1∑

l=0

(∣∣xl
∣∣2 + I0x

∗
l e

j2π fNB(l−N/2)

+(−1)l I0xl e
− j2π fNBl + (−1)l I20 e

− j2π fNBN/2
)

≈
N/2−1∑

l=0

∣∣xl
∣∣2

(3.12)
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where the cross terms are mitigated and eliminated after de-scrambling and sum
averaging, since theNBI and the preamble are noncoherent signals. It is shown byEq.
(3.12) that, due to the de-scrambling operation, the NBI component
(−1)l I 20 e

− j2π fNBN/2 will be eliminated after sum averaging. Hence, the SAC result
of R1,n reaches its maximum peak at the desired timing position n0. Similarly, the
SAC branch results of R2,n and R3,n in Eqs. (3.13) and (3.14) at the desired correct
timing position are given respectively by

R2,n0
≈ −

N/2−1∑

l=0

|xl |2, (3.13)

R3,n0
≈

N/2−1∑

l=0

|xl |2. (3.14)

Hence, R2,n and R3,n also reach their maximum peak value at the desired timing
position n0. Finally, the aggregated SAC result Rc,n provided by Eq. (3.9) is free
from the contamination of the NBI, and also reaches its maximum peak value at the
desired timing position n0. Therefore, the detected timing position n̂0 estimated by
Eq. (3.10) at the receiver is the very accurate timing position n0. The proposed timing
synchronization method is robust to the NBI.

Besides, the proposed method can be easily extended to multipath fading chan-
nels, in which the mechanism of NBI mitigation given by Eqs. (3.12) and (3.3) still
effectively holds. The detailed analysis is provided in Sect. 3.6.

3.5 Integer CFO Estimation and Signaling Detection with
NBI

After the timing synchronization is accomplished, the received OFDM symbol is
compensated with the estimated fractional CFO estimated by Eq. (3.11) and then
transformed into frequency domain by N -point FFT operation. The received active
carriers are denoted as

Ŷ (d)
k = Y (d)

k−k0
Hk−k0e

− j 2πN Δn·k + N · I0 · δk−kNB + Vk, (3.15)

where Y (d)
k is the transmitted active carrier after differential encoding operation,

while Hk and Vk are the channel frequency response and the frequency domain noise
term. δk is the Kronecker-delta function (the function value is 1 only if k = 0, and 0
otherwise). kNB is the sub-carrier index at the frequency point fNB. Δn is the timing
error which causes a phase rotation of the active carriers. It is noted from (3.22) that
the integer part of CFO k0 leads to a shift of all carriers.
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Fig. 3.5 Frequency-domain correlation results between the transmitted sequences with different
CFOs and the local sequence

The NBI could be easily removed in the frequency domain by setting the carriers
with excessively large power to zero. After that, a differential decoding operation is
applied to the received active carries and yields

Zk = Ŷ (d)
k · Ŷ (d)∗

k−2

= Hk−k0H
∗
k−k0−2 · Yk−k0e

j 2πN 2Δn + Ṽk

≈ ∣∣Hk−k0

∣∣2Yk−k0e
j 2πN 2Δn + Ṽk

, (3.16)

where Ṽk is the sum of residual noise terms. The approximation in (3.16) holds
when the adjacent sub-carriers are closely similar in the frequency-selective fading
channels.

Due to the differential decoding operation, the phase rotation caused by the timing
error is canceled, leaving only a fixed phase offset. Therefore, the proposed method
is also robust to timing errors.

The integer CFO and the signaling information could be simultaneously detected
by the cross correlation between the received differentially decoded sub-carriers and
the local training sequence, i.e.,
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Rd,k =

L−1∑
l=0

Z(k+4l) mod 4L · c∗
l

L−1∑
l=0

∣∣∣Ŷ(k+4l) mod 4L

∣∣∣
2

, 0 ≤ k < N . (3.17)

The correlation in (3.17) is expected to generate two peaks, as illustrated in
Fig. 3.5. The integer CFO could be estimated through the shift of the first peak
from its reference position when CFO=0, while the signaling is inferred from the
distance between those two peaks. Specifically, the signaling parameter ΔL can be
derived by the distance between the two peaks generated by the correlation opera-
tion in (3.17) with the same CFO, as illustrated in Fig. 3.5, where the distance is
(4ΔL + 2).

3.6 Performance Analysis of the Algorithms

Let us consider the computational complexity of the proposed synchronization
method and compare it with that of the conventional Minn’s method. Note that
the comparison is done under the same preamble length for both methods, i.e. 2N
according to Sect. 3.3. For both methods, the main consumption of computational
complexity goes to the part of the calculation of SAC. Usually, the computational
complexity can be evaluated by the quantity of additions and multiplications, given
in detail as follows:

For the conventional Minn’s method [5], there are two SAC windows for the
positive preamble part and negative preamble part, respectively, with each being
of N in length, as illustrated in Fig. 3.1b. The calculation begins when the first
nonzero entry of the preamble falls into the previous positive SAC window, and ends
when the last nonzero entry of the preamble leaves away from the latter negative
SAC window. Hence, with the total preamble length being 2N , the SAC operation
during the synchronization of the Minn’s method requires T (M)

mul = 2.5 N times of
multiplications and T (M)

add = 10 N times of additions. Thus the total computational
complexity of Minn’s method is in the order of O(N ).

For the proposed method, as described in Sect. 3.4, there are three SAC windows
R1,n , R2,n , and R3,n , with each being of length-N . The calculation of SAC begins
when the first nonzero entry of the preamble falls into the R3,n SACwindow, and ends
when the last nonzero entry of the preamble leaves away from the R1,n SACwindow.
Hence, with the total preamble length also being 2N , the SAC operation during the
synchronization of the proposedmethod requires T (P)

mul = 9N times of multiplications
and T (P)

add = 18N times of additions in total. Thus the total computational complexity
of the proposed method is also in the order of O(N ).

Although there is a moderate complexity increase to the proposed method due to
more correlation and multiplication operations, both the proposed and conventional
methods have a computational complexity in the order of O(N ). Hence, the cost of
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calculation resource is in the same order and the proposed method is applicable for
practical system implementation.

Considering the effectiveness of the proposed synchronization algorithm in mul-
tipath fading channels, it can be proved that the proposed synchronization method
is also applicable for multipath fading channels. The mechanism of NBI mitigation
described by Eqs. (3.12) and (3.3) still holds. The proposition and the proof are
provided in detail as follows.

Proposition 3.1 The proposed synchronization method is effective for multipath
fading channels, i.e., the mechanism of NBI mitigation described by Eqs. (3.12) and
(3.3) still holds.

Proof First, we look at the SAC window R1,n at the desired timing position n0 as
given by (3.12). Taking the multi-path fading channel condition into consideration,
the SAC result is derived as

R1,n0 =
N/2−1∑
l=0

(−1)lr∗
n0+l ·rn0+l−N/2

=
N/2−1∑
l=0

(−1)l
[
Lh−1∑
k=0

hk · (−1)l−k xl−k + I0 exp( j2π fNBl)

]∗
·

[
Lh−1∑
m=0

hm · xl−m + I0 exp ( j2π fNB(l − N/2))

]

=
N/2−1∑
l=0

[
(−1)l

(
Lh−1∑
k=0

hk · (−1)l−k xl−k

)∗ (Lh−1∑
m=0

hm · xl−m

)

+ (−1)l
(

Lh−1∑
k=0

hk · (−1)l−k xl−k

)∗
I0 exp ( j2π fNB(l − N/2))

+ (−1)l
(

Lh−1∑
m=0

hm · xl−m

)
I0 exp(− j2π fNBl)

+(−1)l I 20 exp(− j2π fNBN/2)︸ ︷︷ ︸
NBI

⎤

⎦

≈
N/2−1∑
l=0

Lh−1∑
k=0

Lh−1∑
m=0

(−1)kh∗
khmx

∗
l−k xl−m,

(3.18)

where the cross terms between the NBI and the preamble sequence can still be
eliminated by sum averaging and de-scrambling as they can be in the AWGN channel
shown by (3.12), because they are incoherent signals. The NBI component as pointed
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out in (3.18) above is also eliminated through de-scrambling and sum averaging as
well. Hence, the SAC result of R1,n yields the peak value as given by (3.18) at the
desired timing position n0, which is free from the impacts of the NBI.

Similarly, we have

R2,n ≈ −
N/2−1∑

l=0

Lh−1∑

k=0

Lh−1∑

m=0

(−1)kh∗
khmx

∗
l−k xl−m (3.19)

R3,n ≈
N/2−1∑

l=0

Lh−1∑

k=0

Lh−1∑

m=0

(−1)kh∗
khmx

∗
l−k xl−m (3.20)

Therefore, all the three SAC results are free from the impacts of the NBI, making
the final peak value R3,n̂0 immune to the NBI, so the estimated timing position n̂0
accurately matches the desired timing position n0 in the presence of the NBI under
the multi-path channel.

The analysis for the contamination of the NBI upon the conventional methods
as given by (3.3) can be extended to multi-path channels through similar reason-
ing. Considering multi-path fading channel, the SAC result Rc,n of the conventional
methods at the desired timing position n

′
0 is given by

Rc,n
′
0

=
Lc−1∑
l=0

r
n

′
0+l

·r∗
n

′
0+l−Nc

=
Lc−1∑
l=0

[
Lh−1∑
m=0

hm · xl−m + I0 exp( j2π fNBl)

]
·
[
Lh−1∑
k=0

hk · xl−k + I0 exp ( j2π fNB(l + Nc))

]∗

=
Lc−1∑
l=0

[(
Lh−1∑
k=0

hk · xl−k

)∗ (
Lh−1∑
m=0

hm · xl−m

)
+
(
Lh−1∑
k=0

hk · xl−k

)∗
I0 exp ( j2π fNBl)

+
(
Lh−1∑
m=0

hm · xl−m

)
I0 exp (− j2π fNB(l + Nc)) + I 20 exp(− j2π fNBNc)︸ ︷︷ ︸

NBI

⎤

⎥⎦

≈
N/2−1∑
l=0

⎛

⎜⎝
Lh−1∑
k=0

Lh−1∑
m=0

h∗
khmx

∗
l−k xl−m + I 20 exp(− j2π fNBNc)︸ ︷︷ ︸

NBI

⎞

⎟⎠.

(3.21)

From (3.21), it can be noted that, although the cross terms between the NBI and
the preamble sequences are eliminated through sum averaging, the NBI component
as pointed out in (3.21) above is remained in the SAC result because there is no
scrambling to eliminate it. Hence, under the multi-path fading channel, the remained
NBI component will cause serious impacts on the peak value, so the conventional
timing synchronization method will be seriously affected, which is similar to the
result for the AWGN channel described by (3.3).
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3.7 Simulation Results and Discussions

In this section, computer simulations are implemented to evaluate and compare the
performance of the conventional and the proposed preamble and synchronization
methods in the presence of the NBI under different channel conditions. As claimed
in previous sections, note that all the methods are simulated with the same preamble
length for fair comparison. The simulation setup is configured in a typical power
line communications transmission system, and the simulation parameters are given
in Table 3.1. The length of training sequences is chosen to be 192, and could be used
to indicate at least 7-bit of signaling information. A multipath power line communi-
cations channel model [7] with NBI is adopted to evaluate the detection algorithm in
power line transmission and reception scenarios. The parameter profile of the power
line channel is listed in Table 3.2. An NBI with the power of −12 dB compared to
the average signal power is also introduced in the simulations.

Firstly, the detection performance of the preamble is evaluated by the false prob-
ability and the missed probability of the SAC peak detection. The false probabilities
of Minn’s method and the proposed method are compared in Fig. 3.6 when the
missed probability is required at a level of 10−3. The false detection probability of
the proposed preamble is improved by about 4dB compared to Minn’s method in
both AWGN and PLC channels when there is no NBI, with the cost of more corre-
lation and multiplication operations than Minn’s method. When the −12dB NBI is
considered (marked with dashed lines in Fig. 3.6), it is noted that Minn’s method
degrades more than 1 dB in AWGN channel and more than 4 dB in the PLC channel,
whereas the proposed method is much less affected by the NBI.

Table 3.1 Simulation parameter

Parameter Value

Carrier frequency 6 6MHz

Bandwidth 8 8MHz

Symbol rate 7.56 M Symbol/s

FFT size 1024

Length of TS 192

Symbol duration 270.9 us

CFO 30 kHz

NBI power −12 dB

Table 3.2 PLC channel parameter profile

Path Index Distance di (m) Gain gi

1 200 0.64 k 1.0

2 222.4 0.38 a0(s/m) 0

3 244.8 −0.15 a1(s/m) 7.8 × 10−10

4 267.5 0.05
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Fig. 3.6 False probability of preamble detection in AWGN and PLC channels when the missed
probability is around 10−3

Concerning the impact of the introduction of NBI on timing detection perfor-
mance, simulation results of the SAC for Minn’s and the proposed methods under
the −12dB NBI in the power line channel are illustrated in Fig. 3.7 in compari-
son with those in Fig. 3.4. The timing correlation peak in Minn’s method under the
−12dB NBI is much smaller than that without NBI, as is illustrated in Fig. 3.4.
Furthermore, the sub-peaks of Minn’s method are higher and the central peak is not
as sharp as that without NBI, which is much likely to cause timing detection errors.
However, the peak is hardly affected by the −12dB NBI in the proposed method,
thus achieving as good performance of timing detection as that without NBI.

The false probabilities of the integer CFO estimation and signaling detection are
depicted in Fig. 3.8. From Figs. 3.5 and 3.8, it’s observed that both integer CFO and
signaling could be well estimated if the preamble is detected. It should be pointed out
that, only if both peaks are detected then the signaling could be decoded correctly.
Therefore, the false probability of signaling detection Pf,Sig and the false probability
of integer CFO estimation Pf,IntCFO approximate the following equation,

Pf,Sig = 1 − (1 − Pf,IntCFO)2. (3.22)

The simulation results in Fig. 3.8 are aligned with the above analysis.
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3.8 Conclusion

In this chapter, an OFDM-based preamble has been designed for improving timing
and frequency synchronization as well as robust signaling information transmission
in OFDM systems contaminated by NBI. Compared to conventional Schmidl’s and
Minn’s methods, the proposed preamble could achieve better timing synchronization
performancewith amoderate cost of complexity.With a simple scrambling operation,
the proposed preamble could effectively combat against the narrowband interference,
which is prevailing in wired and wireless channels. Furthermore, by using the pro-
posed sub-carrier pattern, the preamble could simultaneously convey several bits of
signaling for the receiver to acquire the basic transmission parameters quickly. The
proposed preamble design can be further applied to various communication systems
suffering from the NBI.
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Chapter 4
Optimal Time Frequency Interleaving
with NBI and TIN

Abstract As described in Chap. 2, in order to get rid of the time and frequency
bursting errors or deep fading in communication systems, it is necessary to design
interleavers and deinterleavers. The conventional interleaving methods have many
disadvantages. For example, the design is complicated. It is required to re-design a
corresponding interleaving scheme for each coding and modulation parameter, so
the adaptability and flexibility are quite limited. The state of the art methods can-
not take time and frequency interleaving into account simultaneously, so they cannot
suppress the time domain and frequency domain bursting errors simultaneously. Con-
ventional bit or symbol interleaving patterns have no theoretical guarantee for the
optimal performance, so it cannot ensure that the optimal scheme is devised and the
maximum time and frequency diversity gains are achieved. In order to overcome the
disadvantages of the conventional methods, this chapter is focused on the research
idea of providing time and frequency diversity gains to suppress the time and fre-
quency bursting noise and interference. The optimal time and frequency combined
interleaving scheme in the presence of narrowband interference and impulsive noise
is proposed, for which the theoretical analysis and guarantee are provided. Firstly,
the scheme to optimize the interleaving parameters that maximize time diversity
gain is proposed. Then, the symbol interleaving block cyclic shifting technique is
proposed to maximize the frequency diversity gain. In this way, the time and fre-
quency diversity gains are maximized, and the time and frequency bursting errors are
effectively suppressed. Meanwhile, the interleaving performance and the decoding
performance are significantly improved in the presence of both narrowband inter-
ference and impulsive noise. The research in this chapter will provide theoretical
basis and feasible technical routines for the interleaving schemes in broadband com-
munication systems in the severe channel condition with complicated narrowband
interference and impulsive noise.
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4.1 Introduction

4.1.1 Problem Description and Related Research

Orthogonal frequency division multiplexing (OFDM) technique is widely adopted
in various communication systems, including PLC systems, the digital television
terrestrial broadcasting (DTTB) systems, and the cellular wireless communication
systems, etc. The OFDM technique divides the entire bandwidth into many parallel
narrow bands which can provide the higher-spectrum efficiency as well as better
capability to handle the multi-path effect. Frequency-selectivity can be well miti-
gated using the OFDM technique, nevertheless the narrowband interference (NBI)
and time-domain impulsive noise (TIN) prevailing the channel should be specially
taken into consideration since they can both cause severe degradation on the system
performance, which has drawn much research attention [3, 6, 13].

Interleaving is aimed at providing diversity in time, frequency and/or spatial
domain, and has been adopted in the many various broadband transmission systems
since the channel conditions are so poor that more diversity is beneficial to the system
performance. Several interleaving schemes to improve the performance of different
communication systems have been investigated [4, 9, 12]. Wang and Kobayashi
proposed a method to design an interleaver with practical size for turbo codes [12].
Literature [9] investigated an adaptive interleaved beamforming approach for broad-
band MIMO/OFDM systems in which beamforming is adaptively interleaved in the
spatial domain to achieve performance improvements over conventional adaptive
antenna array based OFDM systems in wireless channels. In broadcasting systems,
such as the prevailing second generation terrestrial digital video broadcasting stan-
dard (DVB-T2), interleaving is adopted to ensure better performance under the severe
propagation environment [4]. However, these interleavingmethods are not optimized
for mitigating the performance degradation due to special impairments, such as TIN
and NBI.

For the purpose of reducing the impact of impulse noise in OFDM systems, sev-
eral methods have been proposed [1, 2]. An interleaving scheme performed post
the inverse discrete Fourier transform (IDFT) can achieve better performance under
TIN [1]. However, the method is very sensitive to the QAM order and will suffer
from remarkable degradation in 64-QAM or higher-order QAM constellations. The
performance of the coded OFDM system and the impact of the length of the adopted
bit interleaver on coding performance are analyzed by Amirshahi in [2]. The afore-
mentioned methods are not specifically designed or optimized for mitigating NBI
impairments.

In order to dealwith the impairments due toNBI, anOFDMsystemusing convolu-
tional coding with an interleaver designed for channels under narrowband and impul-
sive noise is described in [10] with bit interleaving rather than symbol interleaving
proposed, and the interleaver is specially designed for systems using convolutional
coding and BPSK modulation only. This constrains its application and performance
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in other systems, and there is no experimental or simulation results provided in the
paper to show the performance.

Consequently, the current research is not aimed at the severe propagation envi-
ronment in the presence of both the narrowband interference and impulsive noise,
and has not given an interleaving scheme that can provide the optimal time and fre-
quency diversity gains. Hence, the complicated and severe noise and interference
cannot be effectively suppressed, resulting in the limitation of the system perfor-
mance. Moreover, the state of the art interleaving schemes are faced with a series of
challenges such as the high design complexity, low applicability and low flexibility,
and no theoretically optimal guarantee, etc. Thus, it is in desperate need to investigate
and design a new, universally applicable and optimal time and frequency combined
interleaving technique for the multi-mode coded modulation OFDM systems.

4.1.2 Research Aims and Problems

As far as the problem background and the disadvantages of the current research
mentioned above are concerned, this chapter is devoted to solving the scientific
problem 2 in this thesis, i.e. how to improve the performance of the time and fre-
quency interleaving scheme in the environment in the presence of both impulsive
noise and narrowband interference. The optimal time and frequency combined inter-
leaving scheme in the presence of narrowband interference and impulsive noise, the
strategy of interleaving parameter optimization that maximizes the time diversity
gain, and the symbol interleaving block cyclic shifting technique that maximizes
the frequency diversity gain, are investigated as the technical routines. Then, the
theoretically maximum time and frequency diversity gains will be simultaneously
achieved, and the capability of suppressing narrowband interference and impulsive
noise for the coded block transmission systems will be improved. More specifically,
the major contribution of this chapter is as follows:

• Based on the proposed two theoretical criteria, the optimal time and frequency
interleaving schemes are proposed, in order to suppress the narrowband interfer-
ence and impulsive noise in broadband communication systems. Based on the
proposed two criteria, the design of the optimal interleaver is guided in theory,
which is able to significantly improve the time and frequency diversity. One of
the criteria is satisfied by optimizing the distribution of the OFDM data block in
the forward error correction (FEC) codewords. The other criterion is satisfied by
optimizing the distribution of the OFDM sub-carriers in the FEC codewords.

• Basedon the theoretical optimization criteria, the block interleaverwith the optimal
interleaving size is investigated and proposed as the time interleaving scheme. A
novel frequency interleaving scheme based on the technique of cyclic row shifting
in sub-matrix is proposed. The proposed interleaving process in this thesis is at
the data symbol level rather than the bit level, which makes it easier to achieve
higher effectiveness with lower implementation complexity.
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4.2 System Model

The OFDM systemmodel used for the analysis in this chapter is depicted in Fig. 4.1.
This system diagram is consistent with the OFDM block transmission system archi-
tecture illustrated in Fig. 2.1 in Chap. 2, and it is simplified to be focused on the
major modules of interest in this chapter. The source bit stream {bk} is passing
through the encoder and generates forward error correction (FEC) codewords {el}
with the length of Lb, where the low density parity check (LDPC) code is adopted
as the FEC code. Bit-to-symbol mapping is performed by M-QAM constellation,
which produces complex data symbols {ct }. The data symbols are then interleaved in
the block interleaver, which is adopted as a time and/or frequency interleaver, with
IR rows and IC columns. Afterwards, the pilots are inserted, and combined with the
interleaved data symbols to form the OFDM block in the frequency domain. The
number of data sub-carriers in an OFDM block is N . The frequency interleaving is
performed before the OFDM block data is processed by the IDFT module to obtain
the time-domain OFDM symbol xi . The OFDM symbols are then transmitted over
the multipath fading channel deteriorated by both NBI and TIN. The received signal
yi at the receiver can be expressed as

yi = hi � xi + ei + zi + wi (4.1)

where ei = [ei,0, ei,1, . . . ei,N−1]T denotes the NBI signal corresponding to the i-
th received time domain OFDM symbol, zi = [zi,0, zi,1, . . . zi,N−1]T denotes the
impulsive noise corresponding to the i-th received time domain OFDM symbol,
hi = [hi,0, hi,1, . . . hi,L−1]T denotes the channel impulse response (CIR) of the mul-
tipath channel with the maximum delay spread of L .� denotes the convolution oper-
ation. wi = [wi,0, wi,1, . . . wi,N−1]T is the background noise in the channel, which
is usually modeled as additive white Gaussian noise (AWGN) with zero mean and
variance of σ 2

w.
Finally, the receiver performs the inverse operations of the transmitter in a reversed

order, and obtains the transmitted bits {bk}.

Fig. 4.1 The coded OFDM system model with an interleaver
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The compound BLGN interferer model described in detail in Chap. 2 is adopted
as the narrowband interference model (refer to Sect. 2.3.1 for detail). TheMiddleton-
Poisson model described in detail in Chap. 2 is adopted as the impulsive noise model
(refer to Sect. 2.3.2 for detail). The notations and expressions are consistent with
those defined in Chap. 2, so they are omitted in this chapter. The time and frequency
interleaving method proposed in this thesis is nonparametric, but the transmission
environment in the presence of both NBI and TIN can be simulated by the statistical
model of noises and interferences, and the effectiveness of the proposed method can
be verified.

4.3 Design of Optimal Time-Frequency Joint Interleaving
Method

As for the conventional block interleaving scheme, data symbols are written row-
wise into the block interleaver with IR rows and IC columns, and then read column-
wise out to form the OFDM blocks. The conventional block interleaving is time
interleaving, aiming at providing time diversity and the mitigation of TIN. Time-
domain burst errors could be dispersed into several different FEC codewords to
reduce the probability of decoding errors by block interleaving.

It is crucial to choose an appropriate block size for a block interleaver to achieve
better anti-TIN capability for a certain system. The row number IR is usually referred
to as the interleaving depth, while the column number IC is the interleaving width.
If the block size is not specially designed for OFDM systems in the presence of
TIN, the performance will degrade greatly. Meanwhile, in the presence of NBI, the
conventional block interleaving scheme may have a serious drawback in sub-carrier
allocation of LDPC codewords.

Another conventional interleaver, i.e. the random bit interleaver, distributes the
bits among several codewords into different time slots and sub-carriers. The design
of a bit interleaver is also aimed at providing larger time/frequency diversity, which is
a fundamental idea of the proposed scheme in this chapter. However, in the presence
of TIN and NBI, a good random bit interleaver is very difficult to design in practice,
and one specific bit interleaver is not robust and is likely to degrade in different
constellations, interleaving depths or transmission modes.

In order to solve the problem of the conventional interleaving schemes, in this
chapter, we propose two theoretical criteria for improving and maximizing the
time diversity and frequency diversity, respectively, and the optimized interleaver
is designed to combat against both TIN and NBI according to the two criteria.
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4.3.1 Interleaving with Maximizing Time Diversity

Firstly, for better anti-TIN capability, we propose Criterion 1 as the criterion for
choosing the optimized block size for the block interleaver as time interleaving.
Under this criterion, the time diversity of the codedOFDMblock transmission system
is maximized.

Criterion 1. TheMaximum Independent OFDMBlock (MIOB) Criterion: to increase
the number of different independent OFDM blocks for one FEC codeword.

Since the TIN bursts occur in groups and will ruin the data symbols of the OFDM
block when they occur, the OFDM blocks should be average distributed in different
codewords. If the allocation of OFDM blocks for one specific codeword is not aver-
age, e.g. the number of different OFDM blocks for a specific codeword is smaller
and the number of data symbols of the TIN deteriorated OFDM block is larger on
average, the impairments caused by TIN are more concentrated in this codeword,
resulting in higher probability of decoding errors.

Therefore, the number of different OFDM blocks for one FEC codeword, i.e. the
parameter of independent OFDM block (IOB) number NI OB , should be increased to
improve the anti-TINcapability.With the increase of IOBsmapped to each codeword,
the possibility of unsuccessful decoding due to the concentration of TIN bursts is
decreased.Moreover, we propose a time-domainmerit factor ξT as a general indicator
of NI OB in one codeword to measure the anti-TIN capability of the interleaving
schemes quantitatively as

ξT = 1

LC

LC−1∑

n=0

NIOB(n)

min

{
IR · IC
N

, Lsym

} (4.2)

where Lsym , LC and NI OB(n) denote the number of data symbols in each LDPC
codeword, the number of LDPC codewords in the interleaver, and the number of
IOBs in the nth LDPC codeword, respectively. Hence ξT is the average of the ratio
of NI OB(n) to its theoretically maximum value min

{
IR · IC/N , Lsym

}
.

To satisfy Criterion 1, the design of the block size can be concluded as an opti-
mization problem as

opt : max
IR ,IC

{ξT } (4.3)

To optimize (4.3), intuitively we should make sure that each LDPC codeword
occupies as many IOBs as possible. After the optimization of the problem given
in (4.3), we can obtain the optimized interleaving block size design as given by,

IC = Lb

p · log2 (M)
= Lsym/p (4.4)
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IR = δ · L{N , Lsym}/IC (4.5)

where L{·, ·} is the least common multiple operator, and Lb denotes the number of
bits in a codeword. The parameter p is optional and is usually set to a small prime
number, such as 2, 3, 5, etc. Eq. (4.5) ensures that the proposed interleaver contains
integer number of OFDM blocks and integer number of LDPC codes. The total
interleaving delay is measured by the number of data symbols in the interleaver given
by IR · IC = δ · L{N , Lsym}, where δ is an integer that can be adjusted according to
the acceptable transmission delay.

Using the proposed block size in (4.4) and (4.5), the parameter of NI OB and
the anti-TIN capability of the block interleaver will be optimized. Equation (4.4)
assures that each LDPC codeword occupies exactly p rows in the interleaver, which
makes it possible for each codeword to be mapped to all the OFDM blocks without
loss. Meanwhile, from (4.5) it can be deduced that each OFDM block occupies one
column or more if N ≥ IR , which is equivalent to

G{Lsym, N } ≥ p (4.6)

where G{·, ·} is the greatest common divisor operator. Recall that we have set p as a
small prime number. The reason is that when p is set as a small prime number, the
parameter Lsym and N specified in G.hn or other OFDM systems are large enough to
contain p as a common divisor. In this condition, it is easy to satisfy (4.6).

Hence each LDPC codeword will contain the components from all the OFDM
blocks in the interleaver, which is the optimized status in the perspective of TINmiti-
gation and it is implemented based onCriterion 1. On the contrary, with conventional
block size, each LDPC codeword is much likely to occupy less than one row, or each
OFDM block is much likely to occupy less than one column. This means NI OB of
the LDPC codewords are smaller, leading to poorer performance under TIN.

4.3.2 Interleaving with Maximum Frequency Diversity

Afterwards,Criterion 2 is proposed as the criterion to design the optimized frequency
interleaving scheme for better anti-NBI capability, with the constraint of Criterion 1
to ensure the optimal anti-TIN capability. Hence based on both the two criteria, both
the time and frequency diversity of the OFDM system can be maximized.

Criterion 2. The Maximum Independent Sub-Carrier (MISC) Criterion: to increase
the number of different independent OFDM sub-carriers mapped to the data symbols
in one FEC codeword.

The reason to set up Criterion 2 is similar to that of Criterion 1. If the allocation
of sub-carriers of one codeword is uneven, e.g. the number of different sub-carriers
for a specific codeword is smaller and the number of data symbols mapped to the
NBI impacted sub-carrier is larger on average, the impairments caused by NBI are
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more concentrated in this codeword, leading to the decoding errors even though the
average signal-to-noise ratio is high enough to decode other codewords correctly.

Hence the number of different sub-carriers mapped to the data symbols of each
codeword, i.e., the parameter of independent sub-carrier (ISC) number NI SC , should
be increased in order to distribute the NBI-contaminated sub-carriers in more code-
words. Allocation of sub-carriers of the data symbols in one FEC codeword is better
scattered and more average when NI SC is larger, which would lead to more robust
anti-NBI performance. To quantitatively evaluate the anti-NBI capability of different
interleaving schemes and facilitate the frequency interleaving design based on Crite-
rion 2, we propose another frequency-domain merit factor ξF as a general indicator
of NI SC in one codeword, which is given by

ξF = 1

LC

LC−1∑

n=0

NI SC(n)

min{N , Lsym} (4.7)

where NI SC(n) is the number of ISCs of the nth LDPC codeword. ξF can be regarded
as the average of the ratio ofNI SC(n) to its theoreticalmaximumvaluemin{N , Lsym},
which can be achieved under ideally average sub-carrier distribution.

The design of the frequency interleaving scheme to meet Criterion 2 can be also
concluded as an optimization problem described by,

opt : max

{
ξF

∣∣∣∣IC = Lsym

p
, IR = δ · L{N , Lsym}

IC

}
(4.8)

The constraints in (4.8) are set by (4.4) and (4.5) to ensure that the anti-TIN
capability derived previously based on Criterion 1 will not be affected during the
optimization process of ξF . To solve the problem described in (4.8), from an intuitive
perspective of view, we need to make sure that the data symbols of each LDPC
codeword are mapped to as many ISCs as possible. Hence, we propose a novel
frequency interleaving scheme using block interleaver as shown in Fig. 4.2. Firstly,
data symbols are written row-wise into the block interleaver. The interleaving matrix
is divided into several sub-matrices by column, each having the same number of
columns. The number of sub-matrices S is optional and can be any divisor of IC .
The basic concept of the proposed interleaving scheme is to perform a novel row
shifting in sub-matrix operation in the block interleaver. Assuming that C(r) denotes
the r th sub-matrix and C = [C(0),C(1), . . . ,C(S−1)] represents the whole block matrix,
the row shifting in sub-matrix operation is to shift the rows of sub-matrix C(r)(r =
0, 1, . . . , S − 1) cyclically down by fr rows to produce the shifted new sub-matrix C̃

(r)

, which is expressed by

c̃
(r)

i = c
(r)

j , j = (i + IR − fr ) mod IR, 0 ≤ i, j < IR (4.9)

where c
(r)

j and c̃
(r)

i denote the j th and i th rows of C(r) and C̃
(r) , respectively. The

cyclic shifting quantity (i.e. the numbers of rows to be shifted) for each sub-matrix
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Fig. 4.2 The proposed combined time frequency interleaving scheme

can be any integer. To simplify the calculation, fr can be given by

fr = p · r, 0 ≤ r < S (4.10)

where p is decided by (4.4). After the row shifting in sub-matrix operation, the
derived new block matrix C̃ is read column-wise out to form the OFDM blocks that
are processed by the sub-carrier mapping later.

Let us compare the anti-NBI capabilities between the conventional block inter-
leaving scheme and the proposed frequency interleaving scheme. For the conven-
tional scheme, we define every L{IR, N } data symbols in the block interleaver as a
“cyclic unit”, which contains integer number of columns and OFDM blocks. Data
symbols of each cyclic unit would be mapped to the sub-carriers with the same pat-
tern repeatedly, since the mapping patterns of all cyclic units are the same. Hence
the allocation of sub-carriers to a specific codeword in the other cyclic units is the
same as in the first one, which provides no additional contribution to NI SC .

Different from the conventional scheme, in the proposed scheme, since each cyclic
unit can be treated as a sub-matrix, each sub-matrix is cyclically shifted down by
different number of rows defined by (4.10) before forming OFDM blocks. Thus, the
patterns of the sub-carriers mapped to the data symbols in a specific codeword within
different sub-matrices are different and not repeated. From these analyses above and
(4.10), it is obvious that the proposed scheme can achieve the optimized frequency
merit factor ξF for (4.8). Therefore, NI SC of a codeword in the proposed scheme
is much larger than that in the conventional scheme, leading to a better anti-NBI
capability. Since the row shifting in sub-matrix operation has the effect of scattering
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the patterns of data symbols mapping to sub-carriers, the operation can be regarded
as frequency interleaving. Consequently the proposed scheme is a combined time-
frequency interleaving.

According to the two proposed criteria, the optimal time-frequency interleaver is
designed with largest time and frequency diversity. This goal is achieved through the
two optimization problems aimed at combatting against TIN and NBI, respectively.
By utilizing both the time and frequency interleaving, we can significantly improve
the anti-NBI and anti-TIN capabilities of broadband coded OFDM systems, such
as G.hn system using LDPC coding studied in this work. Experimental simulations
are carried out in different channel interference environments with the parameters
specified in G.hn power line communications standard based on LDPC code and
OFDMmodulation to show the performance improvements of the proposed scheme
in the next section.

4.4 Performance Analysis of the Algorithms

First of all, we investigate the time and frequency theoretical merit factors of different
interleaving schemes to compare the theoretical anti-TIN and anti-NBI performance
of different schemes. The computation of the merit factors of the proposed Criterion
1, the proposed Criterion 1 & 2, the conventional block interleaving and random
bit interleaving schemes are listed in Table 4.1 with LDPC length Lb = 8640 and
data sub-carrier number N = 256, which is specified in the PLC G.hn system [5].
The column and row numbers of the interleaver are also given in Table 4.1, which
shows that the conventional block interleaving and random interleaving schemes
have the same interleaving delay with that of the proposed scheme in both 16QAM
and 64QAM modulations. The interleaving delay for the proposed scheme and the
benchmarks for comparison are fixed to make an effective and fair comparison. It is
noticed from the data listed in Table 4.1 that, ξT of the proposed Criterion 1 scheme

Table 4.1 Evaluation with theoretical time and merit factors for different schemes

Schemes QAM
order

ξT ξF IR IC ITLV
delay

S1. Criterion 1 & 2 16 1 1 240 432 103680

S2. Criterion 1 16 1 0.3125 240 432 103680

S3. Block ITLV 16 0.5500 0.3125 480 216 103680

S4. Random ITLV 16 0.7134 0.8269 – – 103680

S1. Criterion 1 & 2 64 1 1 120 288 34560

S2. Criterion 1 64 1 0.6250 120 288 34560

S3. Block ITLV 64 0.5667 0.6250 480 72 34560

S4. Random ITLV 64 0.7268 0.8640 – – 34560
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is much larger than that of the conventional block and random interleaving schemes,
and ξF of the proposed Criterion 1 & 2 scheme is also significantly larger than those
of the conventional block and random interleaving schemes in both QAM modes.
It is quantitatively indicated from the data in Table 4.1 that, the anti-TIN and anti-
NBI capabilities of the proposed schemes meeting Criterion 1 and Criterion 2 are
remarkably better than those of its counterparts. According to the theoretical merit
factors ξT and ξF , both the maximum time and frequency diversities can be achieved
using the proposed Criterion 1 & 2 interleaving scheme since both ξT and ξF reach
their maximum theoretical value of one. Due to these analyzes, it is verified that the
maximum time-frequency diversity can be achieved using the proposed scheme.

Furthermore, it can be verified the performance is guaranteed or improved under
multi-path fading channels. The performance against multi-path fading can be quan-
titativelymeasured by the “duo-distance”, which is commonly used in literature [12].
The definition of the duo-distance includes the interleaving duo-distance d1 and the
de-interleaving duo-distance d2. The interleaving duo-distance d1 of a pair of adjacent
data symbols at the input of the interleaver is defined as the distance of these two data
symbols at the output of the interleaver. Similarly, the de-interleaving duo-distance
d2 of a pair of adjacent data symbols at the output of the interleaver is defined as the
distance of these two data symbols at the input of the interleaver. The duo-distances
d1 and d2 should bemade as large as possible in order to lower the correlation between
the interleaver input sequence and the output sequence, and this will disperse the data
symbols of one codeword into scattered frequencies and scattered time slots, leading
to better performance under time-selective and frequency-selective fading channels.

The duo-distances d1 and d2 of the proposed Criterion 1 & 2 interleaving scheme
and the conventional block interleaving scheme are given in Table 4.2. It is noted
from the results that the average duo-distances d̄1 and d̄2 of the proposed interleaving
scheme are both significantly larger than those of the conventional block interleav-
ing scheme, and the minimum duo-distances d1,min and d2,min are the same with
those of the conventional scheme, which explicitly indicates that the data symbols
of the proposed interleaving scheme are thoroughly dispersed in both the time and
frequency dimensions. Hence the performance of the proposed interleaving scheme

Table 4.2 Duo-distances of the proposed and conventional interleaving schemes

IR IC QAM Order Proposed ITLV Block ITLV

240 432 16 d̄1 = 477.89 d̄1 = 289.76

d1,min = 240 d1,min = 240

d̄2 = 859.74 d̄2 = 578.31

d2,min = 432 d2,min = 432

120 288 64 d̄1 = 238.18 d̄1 = 127.92

d1,min = 120 d1,min = 120

d̄2 = 570.43 d̄2 = 351.66

d1,min = 288 d1,min = 288
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can be guaranteed and is even better than the conventional block interleaving under
multi-path fading channels.

Based on the fact that the merit factors ξT and ξF are optimized and the large
duo-distances d1 and d2 are guaranteed at the same time, it can be concluded theo-
retically that the proposed Criterion 1 & 2 interleaving scheme is able to achieve the
optimal anti-NBI and anti-TIN capabilities and the maximum time-frequency diver-
sity under both AWGN and multi-path fading channels, with guaranteed interleaving
performance under frequency-selective channels.

4.5 Simulation Results and Discussions

Simulations of the proposed Criterion 1, Criterion 1 & 2 schemes and the con-
ventional block interleaving and random bit interleaving schemes with the same
interleaving delay are performed in the G.hn PLC system as a typical scenario. The
LDPC code with code length of Lb = 8640 and code rate of 0.5 is adopted. The
number of data sub-carriers is N = 256 [5]. The relevant simulation parameters are
listed in Table 4.3. The signal-to-interference ratio (SIR) is defined as the power ratio
between the signal of interest and the narrowband interference. The delay control
parameter in Eq. (4.5) is configured as δ = 3, and it is identical for the proposed
scheme and the benchmarks to fix the interleaving delay for fair comparison. The
AWGN channel and a multi-path PLC channel model [14] with NBI and TIN are
adopted to evaluate the effectiveness of the schemes. The detailed parameters of the
PLC multi-path channel are given in [14]. Non-ideal channel estimation is used at
the receiver in the simulations. The SIR and the sparsity level K of the NBI for
different different QAM orders are given in Table 4.3. All the N data sub-carriers are
used to transmit data in simulations. As is described in Chap. 2, the occurrence of
the impulsive noise has the bursting block-sparse property, and the arrival rate of the

Table 4.3 Simulation Parameters

Schemes IR IC QAM order NBI
parameters

TIN
parameters

Proposed 240 432 16 K = 5 A = 0.15

Block ITLV 480 216 SIR= −2.9 dB Ω = 0.02

Random ITLV – –

Proposed 120 288 64 K = 4 A = 0.1

Block ITLV 480 72 SIR= -2.7 dB Ω = 0.01

Random ITLV – –
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Fig. 4.3 BER performance of interleaving schemes under AWGN channel with both NBI and TIN

impulsive noise bursts is described by a Poisson point process (PPP) with a medium
rate parameter of λ = 50/s [11]. The instantaneous amplitude of the impulsive noise
is modeled by the Middleton’s Class A distribution [7] with the parameters of A and
Ω that are also given in Table 4.3.

The simulation results of the BER performance of different interleaving schemes
under the AWGN channel with different interferences are depicted in Figs. 4.3,
4.4 and 4.5, respectively. It can be noted from Fig. 4.3 that using the 16QAM and
64QAMmodulations under theAWGNchannelwith bothNBI andTIN, the proposed
two schemes can achieve more than 2 dB and 1 dB gain compared to those of
the conventional block interleaving and random interleaving schemes, respectively.
Results in Fig. 4.3 indicate that the proposed two criteria and the optimized interleaver
designed according to them have remarkable advantages over the counterparts.
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Fig. 4.4 BER performance of interleaving schemes under AWGN channel with only NBI

In Fig. 4.4, it is shown by the simulation results that under the AWGN channel
with only NBI, the proposed Criterion 1 & 2 scheme is the best among the three
schemes, with more than 1dB gain in 16QAMmodulation and 0.7dB gain in 64QAM
modulation. This verifies the effectiveness of Criterion 2 and the row shifting in sub-
matrix operation in improving the anti-NBI capability, since the other two schemes
are not designed based on Criterion 2. From the previous theoretical analysis and
the quantitative analysis in Table 4.1, the merit factor ξF of the proposed Criterion
1 & 2 scheme is the best among all the three schemes, which indicates that it has the
best anti-NBI capability, and it is also verified by the simulation results in Fig. 4.4.

The anti-TIN capability is also verified from Fig. 4.5, where it is shown by the
simulation results that, both the proposed Criterion 1 and the proposed Criterion 1
& 2 schemes achieve more than 1dB gain at the BER of 10−5 in 64QAM, and 0.3dB
gain in 16QAM compared with that of conventional block interleaving. Since the
theoretical time merit factor ξT of the conventional block interleaving is the poorest
in Table 4.1, it is proved by the simulation results that the anti-TIN capability can be
greatly improved by designing the interleaver block size according to Criterion 1.

The simulation results of the system BER performance of different interleaving
schemes under the PLC multi-path channel are also depicted in Figs. 4.6, 4.7 and
4.8, respectively. Similarly, it is observed from the simulation results in Fig. 4.6 that,
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Fig. 4.5 BER performance of interleaving schemes under AWGN channel with only TIN

when considering non-ideal practical channel estimation, the proposed two schemes
can achieve more than 4 dB and 2 dB gain over the block interleaving and random
interleaving schemes, respectively, at the BER of 10−4 under the PLC multi-path
fading channel with both NBI and TIN in 16QAM and 64QAM. It can be also
noted from the simulation results that if the ideal channel knowledge is available
at the receiver, the proposed interleaving scheme has a slightly larger gain over
its counterparts compared to the case with non-ideal practical channel estimation
at the receiver. However, if non-ideal channel estimation is adopted in practice,
the proposed optimization criteria still work well and significantly outperforms its
counterparts.

It can also be noted from the simulation results in Fig. 4.7 that, the proposed
scheme outperforms the conventional block interleaving scheme by more than 3dB
and 4dB, respectively, in 16QAM and 64QAM at the target BER of 10−4, which
indicates that the proposed scheme is capable of mitigating NBI impacts effectively
under frequency-selective fading channels. The anti-TIN capability can be also ver-
ified through Fig. 4.8, where the BER performance of the proposed scheme outper-
forms the conventional block interleaving scheme by more than 2.4dB and 3.7dB,
respectively, in 16QAM and 64QAM at the BER of 10−4.
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Fig. 4.6 BER performance of interleaving schemes under PLC channel with both NBI and TIN

The simulation results above are all consistent with the theoretical analysis
described previously. The simulation results are also in accordance with the quanti-
tative analysis of the merit factors ξT and ξF in Table 4.1 and the duo-distances d1
and d2 in Table 4.2, which proves not only the validity of the proposed two criteria
but also the effectiveness and robustness of the optimal interleaving scheme designed
based on them.

4.6 Conclusion

In this chapter, an optimized time-frequency interleaving scheme is proposed, which
employs the block size optimization to improve the anti-TIN capability, and a simple
row shifting in sub-matrix operation to optimize the performance in the presence
of NBI. Two theoretical criteria to maximize the time and frequency diversity are
set up to facilitate and guide the optimization process. Through both the quantitative
analysis and the simulation results, it is derived that the proposed schemes can achieve
better anti-NBI and anti-TIN capabilities compared with the conventional scheme
with shorter interleaving delay and less complexity. The proposed scheme is expected
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Fig. 4.7 BER performance of interleaving schemes under PLC channel with only NBI

to provide a simple, applicable, efficient and robust interleaving method for coded
OFDM-based block transmission systems to combat against NBI and TIN in prac-
tice, which is theoretically applicable to other channel environments contaminated
by NBI and/or TIN. The research outcomes are published in a journal paper in IEEE
Transactions on Power Delivery and in a conference paper in IEEE International
Conference on Communications. The proposed optimal time frequency combined
interleaving technique has been adopted by the next generation digital terrestrial mul-
timedia broadcasting advanced standards (DTMB-A) [8], and the core technology
has been patented. The proposed theory and techniques can provide a technological
support of the interleaving technique with anti-NBI and anti-TIN capability for the
next generation broadband wireless multimedia transmission systems.
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Fig. 4.8 BER performance of interleaving schemes under PLC channel with only TIN
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Chapter 5
Sparse Recovery Based NBI Cancelation

Abstract As described in Chap.1, the conventional methods of NBI mitigation in
the state-of-the-art research cannot accurately estimate the NBI signal. The “pas-
sive” approach of suppressing the NBI makes it difficult to completely eliminate the
impacts of the NBI on the system performance. Hence, it is necessary to find the
theory and technology capable of accurately reconstructing the NBI. Making use of
the naturally sparse property of the NBI signal in the frequency domain, and based
on the newly emerged sparse recovery theory, this chapter will investigate and pro-
pose the compressed sensing based and structured compressed sensing basedmethod
of NBI differential measuring and sparse recovery, the efficient multi-dimensional
compressed sensing based recovery algorithm, the sparse Bayesian learning based
recovery algorithm, etc, in order to solve the scientific problem that the NBI is
difficult to estimate and cannot be completely eliminated. The technical challenge
of accurate sparse signal recovery in complicated and severe conditions, such as
intensive background noise, insufficient measurement data, large sparsity level, low
interference-to-noise ratio, etc, will be overcome. A new theoretical framework of
sparse recovery for proactive NBI reconstruction is formulated in this chapter, which
provides a new approach and theoretical and technical support for breaking the bot-
tleneck of the system performance using the conventional methods and essentially
improving the performance of the broadband communication system.

5.1 Introduction

5.1.1 Problem Description and Related Research

The state-of-the-art research on the conventional methods of NBI mitigation mainly
include three basic aspects, i.e. receiver-side frequency domain estimation and mit-
igation, transmitter-side time domain filtering and receiver-side time domain equal-
ization, and transmitter-side orthogonal coding andmitigation. There has been plenty
of research on this problem, which is presented in detail in Chap. 1. The state-of-
the-art conventional methods of NBI mitigation have a lot of drawbacks, such as
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unstable performance of NBI mitigation, data loss, unrealistic assumptions, unappli-
cable to practical systems, high complexity, and complicated implementation, etc.
The motivation and idea of most of the current methods are to “passively” mitigate
or combat against the impact of the NBI, which has a fundamental limit and is unable
to effectively and accurately estimate the NBI signal. Neither can the NBI signal be
accurately estimated in practical system channel conditions, which makes it impos-
sible to completely eliminate the impact of the NBI and avoid the limitation of the
system performance subject to the NBI influence. Therefore, it is in desperate need
that we should investigate a series of accurate, stable and efficient NBI mitigation
and cancellation methods for practical system applications, and formulate a proac-
tive and accurate theoretical and technical framework of NBI recovery. To eliminate
the impact of the NBI on the system is the key to breaking out the bottleneck of the
broadband communication system.

In order to overcome the constraint of the conventional methods, the recently
emerged sparse signal processing theory, i.e. the compressed sensing theory, can be
introduced to the problemofNBI estimation.As described inChap. 2, it is revealed by
the compressed sensing theory that, the high-dimensional unknown sparse vector can
be accurately reconstructed froma low-dimensionalmeasurement vector using sparse
recovery methods and compressed sensing algorithms in the presence of background
noise [1, 2]. The condition in which the compressed sensing theory can be applied is
that the unknownhigh-dimensional vector should be of sparsity, and themeasurement
matrix should satisfy the uncorrelation, i.e. the restricted isometry property (RIP),
and the measurement data amount should satisfy the quantitative condition given by
Eq. (2.11). For the problem of NBI estimation, according to the definition of the NBI,
the NBI has natural sparsity in the frequency domain, hence it satisfies the sparse
requirement of the unknown vector. Therefore, we only need to try to obtain an
NBI measurement vector satisfying a certain data amount condition by some means
in a certain domain. Then through the mathematical and physical relations we can
design a reasonable, efficient and uncorrelated measurement matrix to formulate the
theoretical model of the NBI sparse measurement and recovery. In this way, the NBI
can be accurately reconstructed by applying theoretically the compressed sensing and
sparse recovery theory and technology. Upon this basis, we can further optimize the
compressed sensing reconstruction algorithm to achieve a better recovery accuracy
and algorithm efficiency.

However, the research of NBI mitigation is still mainly concentrated on conven-
tionalmethods. The state of the art sparse recovery basedNBI estimationmethods are
insufficient. Theonly related researchmainly includes three aspects, i.e. the null space
measuring method, the zero pilot measuring method, and the signal-interference
combined sparse method. However, these methods have a series of drawbacks, as
explained in detail below:

Null space measuring method: A. Gomma proposed the NBI estimation method
based on null space measuring in 2011 for the ZP-OFDM system. Firstly the null
space matrix of the known channel matrix is calculated. Then the received signal is
multiplied by the null spacematrix to eliminate the data signal component in the trans-
mitted signal to obtain the NBI measurement data and formulate the measurement
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model. Finally the NBI is estimated by the compressed sensing based algorithm [3,
4]. The drawback is that, this method requires the ideal channel matrix to be known
at the receiver, which is difficult in practical systems and unable to be applied. Since
the null space matrix with high correlation is inevitably introduced to the observa-
tion matrix, the RIP of the observation matrix is poor, so the recovery accuracy of
the compressed sensing algorithm is low. In order to obtain the NBI measurement
vector, the null space matrix is required to be calculated, so it requires to calculate
the pseudo-inverse of a high-dimensional matrix, which costs very high algorithm
complexity.

Zero pilot measuring method: This method is to transmit zero pilots in the time
domain on purpose, which can become the measurement vector of the NBI at the
receiver. S. Alawsh proposed an NBI sparse recovery method in the discrete cosine
transform domain for ultra wide band systems in 2013, which makes use of the time
domain zero pilots for measuring [5, 6]. A. Ali proposed a Bayesian sparse recovery
method for SC-FDMA systems, which makes use of the time domain zero pilots for
measuring [7]. These methods exploited the sparsity of the NBI in a certain domain,
and regarded the time domain zero pilots (or also known as time domain null pilots) as
the sparse measurement data for NBI estimation. The drawback of these methods is
that, additional dedicated resources, i.e. the transmitted time domain zero pilots, are
required to obtain the measurement data for NBI recovery, which costs a lot of time
and frequency domain resources and makes the spectral efficiency and the system
throughput degrade seriously. Thus it is not suitable for practical implementation.

Signal-interference combined sparse method: M. Duarte proposed a detection
method of the chirp signal in the presence of NBI, which makes use of the sparse
representation property of the signal of interest, i.e. the chirp signal, and formulate
the sparse recovery model combining the signal of interest and the NBI to conduct
combined signal and interference estimation [8]. J. Zhang proposed an echo signal
detection method for ultra wide band targets in 2012, which exploited the sparsity of
the echo signal of the UWB system target in the waveform matching dictionary, and
conducted combined NBI sparse estimation [9]. The drawback is that, this method
is only applicable for the communication system whose signal of interest has sparse
property in a specific domain and can be jointly sparse represented with the NBI,
such as the above mentioned chirp signal system and the UWB target echo system.
It is not applicable for other common broadband signals such as the OFDM sig-
nal, so the applicable range is too narrow and not adaptive to the major broadband
communication systems.

Consequently, the current research of the sparse recovery theory based NBI esti-
mation is quite insufficient and in great need. The related current research has a
series of drawbacks, including poor applicability, no theoretical guarantee, high cost
of additional resources. Hence, we need to investigate efficient, applicable and well
theoretically guaranteed NBI reconstruction techniques based on sparse recovery
theory.
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5.1.2 Research Aims and Problems

In order to break the limitation of the conventional NBI mitigation methods, such
as “passive” mitigation, and overcome the problems of the current sparse recovery
methods, such as the low applicability and high resource cost, this chapter studies
proactiveNBI reconstruction based on compressed sensing,multi-dimensional struc-
tured compressed sensing and sparse Bayesian learning theories. We will investigate
spectrum-efficient and low-complexity sparse NBI measurement and reconstruction
model, and propose accurate NBI reconstruction and cancellation algorithms based
on sparse recovery theory. In this way, the bottleneck of the conventional methods
can be broken through. The theoretical bound of the NBI estimation accuracy can be
approached, and the performance of the broadband OFDM transmission system in
the presence of the NBI can be significantly improved. Specifically, the contributions
of this chapter are summarized as follows:

• A temporal differential measuring (TDM) method for NBI measurement is pro-
posed, which does not rely on channel estimation. The pseudo-random (PN)
sequences between signal frames or the repeated training sequences in the pream-
ble are exploited to conduct the TDM operation with low complexity to obtain
the NBI measurement vector. The partial Fourier transform matrix is adopted as
the observation matrix to formulate the NBI reconstruction problem model based
on compressed sensing. The algorithm of prior aided sparsity adaptive matching
pursuit (PA-SAMP) is proposed, which effectively improves the NBI recovery
efficiency and accuracy in severe conditions.

• Based on the temporal and spatial correlation of the NBI, the spatial multiple
differential measuring (SMDM) method is proposed, which combines the differ-
ential measured data in multiple receive antennas, and formulate the NBI recon-
struction problem framework in MIMO systems based on time-space domain
two-dimensional structured compressed sensing. A structured compressed sensing
based efficient greedy algorithm, i.e. structured SAMP (S-SAMP), is proposed to
achieve higher recovery efficiency and robustness compared with classical com-
pressed sensing algorithms.

• The block sparse Bayesian learning (BSBL) theory is introduced to the problem
of NBI estimation. Aimed at the block sparse NBI signal with frequency offset
in the extended case, and exploiting the CP-OFDM frame structure to obtain the
differential measurement data of the NBI, the framework of the sparse Bayesian
learning based NBI estimation problem is formulated. Based on the block partition
estimation, the partition estimated block sparse Bayesian learning (PE-BSBL)
algorithm is proposed. By fully utilizing the intra block correlation, the informative
BSBL (I-BSBL) algorithm is proposed, which further optimizes the accuracy of
Bayesian parametric learning and sparse recovery.



5.2 System Model 103

5.2 System Model

(1) Frequency domain sparse NBI model
According to the NBI definition given in literature, as described in Chap.2, to see
it quantitatively, the bandwidth occupied by the frequency domain nonzero entries
of the NBI is no more than 5% that of the OFDM working bandwidth [10, 11].
Specifically in the OFDM system, the ratio between the number of the nonzero
entries in the frequency domain NBI signal ẽi = [

ẽi,0, ẽi,1, . . . , ẽi,N−1
]T

and the
OFDM sub-carrier number N is nomore than 5%.We continue to apply the notations
of NBI models and parameters in Chap. 2, and the sparsity level is K = |Ωi | where
K/N ≤ 5%.

In the theoretical framework of sparse recovery, it is required that the unknown
high-dimensional signal should satisfy sparse property. Thus it can be known that,
the dimension of the frequency domain NBI signal is N , which belongs to a high-
dimensional unknown signal, while the sparsity level is sufficiently small, so it satis-
fies the “sparse property” condition of the signal required by the compressed sensing
and sparse recovery theory. We only need to design a compressed sensing obser-
vation matrix with good RIP property, and seek for efficient method to obtain NBI
measurement data. Then, the theoretical and technical framework of NBI sparse
recovery can be formulated, and the sparse recovery algorithm can be designed to
conduct accurate NBI reconstruction.

The NBI model adopted in this chapter is the same as the compound band-limited
Gaussian noise (BLGN) interferer model described in Chap.2 [4, 12, 13], and the
definitions of the related parameters are also adopted, such as the sparsity level K ,
the support Ωi , and the interference-to-noise ratio γNB, etc.

(2) Temporal and spatial correlation of the NBI
It is shown by the related research literature, communication standards and realistic
channel measurement data that, the NBI signal usually has two basic characteristics,
i.e. temporal correlation and spatial correlation. The techniques proposed in this
chapter will also make full use of the temporal and spatial correlation of the NBI to
formulate the framework of NBI measurement and sparse recovery.

Firstly, the temporal correlation of the NBI is that, within the duration of the
received adjacent OFDM symbols, the support (the set of the locations of the nonzero
entries of the frequency domainNBI) of theNBI signal keeps invariant, and the ampli-
tude of the frequency domain nonzero entries also keeps invariant (i.e. the magnitude
of the complex nonzero entries keeps invariant, and phase offset is probable), which
is given by

Ωi = Ωi+1 (5.1)

|ẽi,k | = |ẽi+1,k |, k = 0, 1, . . . , N − 1 (5.2)

whereΩi corresponds to the support of the NBI signal at the i-th frame OFDM sym-
bol. ẽi,k is the amplitude of sub-carrier k corresponding to the i-th frame frequency
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domain NBI signal. For the support of the NBI, as described in Chap.1, the NBI sig-
nal in broadband communication systems usually comes from the servicesworking at
a relatively fixed frequency, such as the licensed broadcasting service (analog broad-
casting and television broadcasting [14, 15]), narrowband wireless service (such
as bluetooth [16]), unreasonable spectrum allocation [17], amateur wireless signal
[18], narrowband radiation of electric devices (microwave oven, personal comput-
ers, etc) [19, 20], the narrowband internet-of-things (NB-IoT) signal occupying the
LTE/LTE-A bands [21, 22], etc. The nonzero entries of these frequency domain NBI
are usually located in some fixed frequencies, so it can be reasonably assumed that
the NBI signal is located in the same OFDM sub-carriers within the duration of
adjacent OFDM symbols in broadband communication systems.

As for the amplitude, it can be shown by standards and field tests that, the coher-
ence time of the NBI signal is typically longer than that of the received broadband
OFDM symbol, so that the amplitude of the NBI signal can be regarded as invari-
ant over the OFDM symbol. Typically, according to the field tests and experimental
observations in real house/apartments, the NBI interferer source signal has a band-
width of around 50–5000 Hz, resulting in a coherence time of around 200 µs–20 ms
[23]. The supportive data are provided in detail [23], where it is reported that in
many cases, during the mains cycle of alternating current (20 ms), the NBI signal is
stationary and its levels do not change based on the field test [23]. As another exam-
ple, among the frequencies and bands of radio amateur signals in Italy, most of them
have the bandwidth of 200, 500 and 2700 Hz, which implies that the NBI generated
by radio amateur ingress will be static over 370 µs–5 ms [24]. Considering about
the NBI generated by NB-IoT signals, the typical duration of one NB-IoT symbol is
in the range of 90–350 µs (OFDM/SC-FDMA modulated, with sub-carrier spacing
of 3.75kHz/15kHz, including the guard interval) according to the specifications of
NB-IoT [21, 22].

Compared with the relatively long duration of the coherence time of the NBI,
the existing broadband transmission systems specify transmission frames (OFDM
symbols) with much shorter duration. For instance, the longest CP-OFDM symbol
duration (including the guard interval and the IFFT period) of theWLAN andWAVE
system specified in the IEEE 802.11n and IEEE 802.11p standards, is 3.2 µs for the
channel spacing of 5MHz (seeTable18-5 in [25, 26] for detail). For theLTE-Asignal,
the duration of one OFDM symbol (with sub-carrier spacing of 15kHz, including the
cyclic prefix) is less than 72µs according to the LTE-A standards [27, 28]. Therefore,
it is shown that the coherence time of NBI is normally longer than that of the OFDM
symbol, which implies that the amplitude of NBI can be considered static over the
OFDM symbol.

Secondly, the spatial correlation of the NBI is that, the support of the frequency
domain NBI signals at different receive antennas in MIMO systems is assumed to
be identical, i.e. the frequency domain NBI signal shares the same sparse pattern,
which is represented by

Ωi,(1) = Ωi,(2) = · · · = Ωi,(Nr ) = Ωi (5.3)
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where Nr is the number of MIMO receive antennas, Ωi,(r), r = 1, . . . Nr denotes
the support of the frequency domain NBI signal corresponding to the i-th frame
OFDM symbol at the r -th receive antenna. Due to the spatial correlation of the
NBI, the locations of the nonzero entries of the frequency domain NBI signals at
different receive antennas are identical, while the amplitude might be different. The
reason why the NBI signal has the property of spatial correlation is that, the distance
between different receive antennas in MIMO systems is sufficiently small, such
that the frequency points the NBI is located in are closely related with each other.
Specifically, the first reason why the support is identical is that, the distance between
different receive antennas is much smaller than the distance between the NBI signal
and the receive antenna array, which makes the NBI interferers affecting different
receive antennas to be the same, i.e. there will not be an NBI interferer that only
interferes with part of the receive antennas. Secondly, since the carrier frequency
of the signal of interest is usually much higher than the bandwidth of the NBI,
i.e. the radio frequency sampling interval of the signal of interest is much smaller
than the coherence time of the NBI, so the time difference for the same NBI signal
to reach different receive antennas is much smaller than the time needed for the
baseband signal of the NBI interferer to change. Hence, as is commonly agreed,
different receive antennas will all suffer from the NBI signal from the same source
and frequency locations, with the number of the NBI interferers and their frequency
locations to be the same. On the other hand, the reason why the amplitude might be
different is that, the channel fading and the front end gain of the receive antenna of
different receive antennas are usually different, so the amplitude of the received NBI
signal might be different although their frequency locations are the same.

5.3 Compressed Sensing Based NBI Reconstruction

In this section, the proposed method of compressed sensing theory based NBI recon-
struction will be introduced. Making use of the repeated training sequences in the
preamble or the guard interval between frames to conduct temporal differential mea-
suring of the NBI, the compressed sensing measurement model using the partial
Fourier transform matrix as the observation matrix will be formulated. The opti-
mized compressed sensing greedy algorithms are proposed to accurately reconstruct
the NBI signal.

5.3.1 System Model of Frame Structure

In broadcasting systems and other various communication systems, repeated training
sequences are utilized in the preamble or the prefix of each payload frame for con-
stellation demapping, channel estimation, synchronization or as guard interval. For
example, in broadcasting systems such as DTMB standard using the TDS-OFDM
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Fig. 5.1 Repeated PN training sequences between TDS-OFDM frames in DTMB system

technology in multi-carrier mode as shown in Fig. 5.1, repeated training sequences
are used as guard intervals of OFDM data blocks.

We take TDS-OFDM inDTMB as shown in Fig. 5.1 as a typical example of multi-
carrier systemswithout loss of generality. The i-th symbol si = [

cT xTi
]T

consists of

the constant training sequence c = [
c0, c1, . . . , cM−1

]T
of length M and the follow-

ing OFDM data block xi = [
xi,0, xi,1, . . . , xi,N−1

]T
of length N , where the training

sequences for different symbols are identical [29]. Then the transmitted signal passes
through the multi-path fading channel with the CIR of hi = [

hi,0, hi,1, . . . , hi,L−1
]T

of length L in the presence of NBI ẽi and AWGN zi , and the received time-domain
training sequences yi = [

yi,0, yi,1, . . . , yi,M−1
]T

at the receiver can be denoted by

yi = �Mhi + FM ẽi + zi , (5.4)

where the training sequence component at the receiver is denoted by �Mhi , with the
matrix �M ∈ C

M×L given by

�M =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

c0 xi−1,N−1 xi−1,N−2 · · · xi−1,N−L+1

c1 c0 xi−1,N−1 · · · xi−1,N−L+2

c2 c1 c0 · · · xi−1,N−L+3
...

...
...

. . .
...

cL−2 cL−3 cL−4 · · · xi−1,N−1

cL−1 cL−2 cL−3 · · · c0
cL cL−1 cL−2 · · · c1
...

...
...

. . .
...

cM−1 cM−2 cM−3 · · · cM−L

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

, (5.5)

where the partial inverse Fourier transform matrix FM ∈ C
M×N is composed of the

first M rows of the complete N × N inverse Fourier transform matrix FN which is
given by

FM = 1√
N

[βββ0 βββ1 · · · βββN−1], (5.6)
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where the n-th element of βββk is exp( j2πkn/N ), n = 0, 1, . . . , M − 1. The entries
{xi−1,n}N−1

n=N−L+1 in Eq. (5.5) represent the last L − 1 samples of the (i − 1)-thOFDM
data block xi−1, which causes inter-block interference (IBI) on the current i-th train-
ing sequence. Since the (i − 1)-th OFDM data block xi−1 only causes IBI on the first
L − 1 samples of the i-th received training sequence yi , the last G = M − L + 1
samples of yi will form the IBI-free region qi = [

yi,L−1, yi,L , . . . , yi,M−1
]T
.

The IBI-free region exists in practical systems because a common rule for system
design is to configure the guard interval length M to be larger than the maximum
channel delay spread L in the worst case to avoid IBI between OFDM data blocks, so
L is usually smaller than M in practice, i.e., L < M . For instance, both the DTMB
standard [29] based on TDS-OFDM and the DVB-T2 standard [30] based on cyclic
prefixed OFDM (CP-OFDM) obey this rule. Moreover, the guard interval length M
is much larger than the actual CIR length L in practical scenarios such as urban
areas, because M should be configured to work well in the worst case such as in
mountain areas where there are long channel delays [31]. Even in the extreme case
where L = M , the training sequence length can be extended a little to provide the
IBI-free region [29].

Hence, the two IBI-free regions at the end of the two adjacent received training
sequences can be rewritten as

qi = �Ghi + FG ẽi + wi , (5.7)

qi+1 = �Ghi+1 + FG ẽi+1 + wi+1, (5.8)

where qi and qi+1 consist of the last G elements of yi and yi+1, respectively, while
FG is theG × N observation matrix composed of the lastG rows of FM . The AWGN
vectors related to the two IBI-free regions are denoted bywi andwi+1 with zeromean
and the variance of σ2.

Usually, when the channel is not varying so fast, the CIR for adjacent symbols
keeps approximately invariant, i.e. hi ≈ hi+1 = h, since the distance between the
two symbols is sufficiently small so that the duration is within the channel coherence
time. The linear convolution between the training sequence and the CIR is denoted
by �Gh, in which �G is a G × L Toeplitz matrix given by

�G =

⎡

⎢⎢⎢
⎣

cL−1 cL−2 cL−3 · · · c0
cL cL−1 cL−2 · · · c1
...

...
...

. . .
...

cM−1 cM−2 cM−3 · · · cM−L

⎤

⎥⎥⎥
⎦

. (5.9)

The frequency-domain NBI vectors corresponding to the two IBI-free regions are
denoted by ẽi = [

ẽi,0, ẽi,1, . . . , ẽi,N−1
]T

and ẽi+1 = [ẽi+1,0, ẽi+1,1, . . . , ẽi+1,N−1]T ,
respectively. As describe before, the NBI has temporal correlation, i.e. the amplitude
of the nonzero entries of the frequency domain NBI signal within the duration of
adjacent OFDM symbols keeps invariant. It can be observed that the time-domain
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NBI vector at the (i + 1)-th training sequence ei+1 equals the time-domain NBI vec-
tor at the i-th training sequence ei delayed by Δl samples, where Δl = M + N is
the distance between the two training sequences. Hence, the frequency-domain NBI
vector at the (i + 1)-th training sequence ẽi+1 should be ẽi with a phase shift, i.e.,
ẽi+1,k = ẽi,k exp( j2πkΔl/N ), k = 0, 1, . . . N − 1. This relation of the frequency-
domain NBI vectors at adjacent training sequences facilitates the differential mea-
suring of the NBI, which will be explained shortly in the following sections.

Another typical case is applying the repeated training sequences in the preamble,
such as the preamble in the power line communications (PLC) systems specified by
the ITU-T G.hn standards [32]. In various PLC systems and many other communi-
cation systems, repeated training sequences are utilized in the preamble or the prefix
of each payload frame for signaling transmission, channel estimation, synchroniza-
tion or as guard interval. The following payload data is the OFDM data blocks. In
the G.hn PLC system as shown in Fig. 5.2, the preamble consists of T1 = 2T0 + 1
known repeated training sequences, where T0 is an integer not less than 3. Each
training sequence is denoted by c = [

c0, c1, . . . , cM0−1
]T

where M0 = N/8. There-

fore, the preamble is represented as p = [
cT cT . . . cT

]T
. Apart from the first training

sequence, we divide the rest of the preamble into two parts: the 2nd to the (T0 + 1)th
training sequences are defined as the “front part” of the transmitted preamble denoted
by p1, and the (T0 + 1)th to the (2T0 + 1)th training sequences are defined as the
“end part” of the transmitted preamble denoted by p2. Thus both the front and the
end parts are of length M = T0M0. The reason for the definition of the two parts
is to facilitate the differential measuring of the NBI signal, which will shortly be
explained in the following section.

Then the transmitted signal passes through the multipath PLC channel [33] with
the channel impulse response (CIR) of h = [

h0, h1, . . . , hL−1
]T

in the presence of
NBI, and the time-domain preamble at the receiver contains the received (2T0 + 1)
repeated training sequences. The first received training sequence can be treated as
the guard interval to avoid inter-block-interference due to the channel delay spread.
The CIR h for the front part and the end part keeps approximately invariant since the
distance M between the two parts is sufficiently small so that no significant changes

Fig. 5.2 The received repeated training sequences in the preamble of the G.hn PLC system utilized
for CS-based differential measuring NBI cancellation
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for the CIR come about between them. Therefore, the received front part q1 and end
part q2, are respectively denoted by

q1 = �h + FM ẽ1 + w1 (5.10)

q2 = �h + FM ẽ2 + w2 (5.11)

where the frequency-domainNBI vectors at the front part and the end part are denoted
by ẽ1 = [

ẽ10, ẽ
1
1, . . . , ẽ

1
N−1

]T
and ẽ2 = [

ẽ20, ẽ
2
1, . . . , ẽ

2
N−1

]T
, respectively. The partial

inverse Fourier transform matrix is defined by Eq. (5.6). Similarly, due to the tem-
poral correlation of the NBI, it can be observed that the time-domain NBI vector
of the end part e2 equals the time-domain NBI vector of the front part e1 delayed
by Δl samples, where Δl = M is the distance between the front part and the end
part. Hence the frequency-domain NBI vector of the end part ẽ2 should be ẽ1 with
a phase shift, i.e., ẽ2k = ẽ1k exp( j2πkΔl/N ), k = 0, 1, . . . N − 1. The additive white
Gaussian noise (AWGN) is denoted by the vector w1 and w2 with each entry hav-
ing zero mean and variance of σ2

w. The linear convolution between the T0 training
sequences of the transmitted front/end part and the CIR is denoted by �h, in which
� is a M × L Toeplitz matrix given by

� =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

c0 cM0−1 cM0−2 · · ·
c1 c0 cM0−1 · · ·
...

...
...

. . .

cM0−1 cM0−2 cM0−3 · · ·

cM0−L+1

cM0−L+2
...

cM0−L

c0 cM0−1 cM0−2 · · ·
...

...
...

. . .

cM0−1 cM0−2 cM0−3 · · ·

cM0−L+1
...

cM0−L

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

M×L

. (5.12)

5.3.2 Temporal Differential Measuring

In order to introduce the compressed sensing based methods, according to the com-
pressed sensing based framework of solving the under-determined linear inverse
problem described in Sect. 2.4.1 in Chap.2, we should first of all formulate the com-
pressed sensing problem model given in Eq. (2.10). Formulating the problem model
in (2.10) requires two aspects: one is that the measurement vector of the NBI to be
reconstructed should be obtained. The other is that the observation matrix satisfying
the sparse measurement relationship should be designed. The problem in Eq. (2.10)
describes a noiseless case. In practical systems, there is background noise, which is
usually modeled by AWGN. Then the corresponding compressed sensing problem
model is extended to

y = �x + w (5.13)
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where y ∈ C
M is the measurement vector of the NBI that can be obtained in a

certain manner. x ∈ C
N is the unknown high-dimensional vector to be estimated.

� ∈ C
M×N is a certain kind of known observation matrix or representation matrix.w

is the backgroundAWGNvector, whereM < N . The compressed sensing theory has
proved that, when the three conditions described in Sect. 2.4.1 are satisfied, i.e. when
the unknown vector is sparse, the observation matrix satisfies the RIP condition, and
the number of measurement data satisfies the requirement in Eq. (2.11), the under-
determined linear inverse problem in Eq. (5.13) can be solved by solving the �0-norm
minimization problemwith noise and its convex relaxed version. The unknown sparse
signal x can be accurately recovered from the measurement vector y, with the error
constrained in the range of the variance w [1, 2, 34]. Using the notations of the NBI
model given in Sect. 2.3.1,when x in Eq. (5.13) is the unknownhigh-dimensionalNBI
signal component ẽi , y is the NBI measurement vector that can be obtained in some
manner at the receiver, and � is the observation matrix designed correspondingly,
the compressed sensing based model of NBI measurement and reconstruction can
be formulated and efficiently solved.

How to obtain the above mentioned measurement vector of the NBI and design
the corresponding observation matrix to formulate the compressed sensing based
model of NBI measurement, is one of the key problems to be solved in this chapter.
It is noteworthy that, the NBI measurement vector in Eq. (5.13) can only contain
the NBI component and the power constrained background noise component, but
cannot contain the component of the training sequence or the signal of interest.
This is because the intensity of the training sequence or the signal of interest is
relatively high and they will have a severe impact on the accurate measuring of the
NBI component, so they should be eliminated first.

Firstly, for the digital terrestrial multimedia broadcasting systems utilizing the
TDS-OFDM frame structure, we can make use of the identical PN sequences in the
guard interval between the signal frames to conduct the temporal differential mea-
suring (TDM) operation to obtain the time domain differential measurement vector
of the NBI for reconstructing the frequency domain high-dimensional unknown NBI
vector. The model of the TDS-OFDM frame structure has been given in Sect. 5.3.1,
as shown in Fig. 5.1.

It is noted from (5.7) and (5.8) that the training sequence component �Gh is
supposed to be nulled out in order to acquire the measurement vector, which contains
the NBI component affected by AWGN only. Unlike the conventional null space
method that utilizes the null space to acquire the measurement vector [4], a novel
compressed sensing based differential measuring (CSDM) method is proposed to
obtain the measurement vector of the NBI. The proposed CSDM method acquires
the measurement vector Δqi simply by subtracting (5.8) from (5.7), i.e. through the
differential operation between the IBI-free regions of the adjacent received training
sequences, which yields the compressed sensing measurement equation

Δqi = FGΔẽi + Δwi , (5.14)
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where Δqi = qi − qi+1,Δwi = wi − wi+1 and the NBI differential vector Δẽi ∈
C

N is denoted as

Δẽi = ẽi − ẽi+1 = [
Δẽi,0,Δẽi,1, . . . , Δẽi,N−1

]T
, (5.15)

where the entries of the NBI differential vector are given by

Δẽi,k = ẽi,k(1 − exp( j
2π

N
k · Δl)), k = 0, 1, . . . , N − 1. (5.16)

In the CS framework, with the measurement vectorΔqi , the unknown sparse NBI
differential vectorΔẽi will be reconstructed after solving (5.14) using the compressed
sensing algorithms [2], whichwill be discussed shortly in the following contents. Due
to the time-domain correlation of the NBI, the duration of each symbol is sufficiently
small so that the NBI is assumed to be quasi-static within adjacent symbols. Hence,
the NBI estimation at the training sequence can be used to obtain the NBI of the
subsequent OFDM data block in the same symbol without loss of accuracy, which
will also be presented in the following sections.

Solving the under-determined compressed sensing measurement Eq. (5.14)
acquired through the proposed CSDM approach is equivalent to solving the con-
vex relaxed optimization problem given by

min
Δẽi∈CN

‖Δẽi‖1, s.t.‖Δqi − FGΔẽi‖2 ≤ ε (5.17)

where ε is the bound of the �2 constraint due to the AWGN Δwi in (5.14), and ε is
set according to the AWGN distribution [34]. The problem (5.17) can be efficiently
solved using classical compressed sensing greedy algorithms, such as the subspace
pursuit (SP) [35] and SAMP [36]. Since the realistic NBI model is variable and
unknown at the receiver, and the algorithms of SP and SAMP that require the infor-
mation of the sparsity level to be known are no longer applicable, we adopt SAMP
which does not require the sparsity level to be known. However, the performance
of the classical algorithm of SAMP is constrained in severe conditions and needs
improving. This chapter will improve the recovery accuracy and robustness of the
classical SAMP algorithm in severe conditions by utilizing the prior information
of the support of the NBI estimated from some consecutive received symbols as
the auxiliary input information for the algorithm iterations. The proposed improved
algorithms will be described in detail in the following contents.

Secondly, for the bursting transmission system utilizing repeated training
sequences in the preamble such as the PLC system and WLAN system, the method
described above can also be applied. The repeated training sequences in the pream-
ble can be exploited to conduct the temporal differential measuring operation to
obtain the measurement vector for compressed sensing based NBI recovery. We take
the preamble structure of the PLC system specified by the ITU-T G.hn standards
described in Sect. 5.3.1 as shown in Fig. 5.2.
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In order to obtain the differential measurement vector of the NBI, it is noted
from (5.10) and (5.11) that we should null out the training sequence component �h
in order to acquire the measurement vector including the NBI component affected
by only AWGN. Similar to the description in the previous contents, the proposed
CSDM method acquires the measurement vector Δq simply by subtracting (5.11)
from (5.10), i.e. through the differential operation between the front part and the end
part of the received preamble, which generates the CS measurement equation

Δq = FMΔẽ + Δw (5.18)

where Δq = q1 − q2,Δw = w1 − w2 and the NBI differential vector Δẽ ∈ C
N is

denoted by
Δẽ = ẽ1 − ẽ2 = [

Δẽ0,Δẽ1, . . . , ΔẽN−1

]T
(5.19)

where the entries of the NBI differential vector are given by

Δẽk = ẽ1k(1 − e
j2πkΔl

N ), k = 0, 1, . . . , N − 1. (5.20)

With the measurement vector, the unknown NBI differential vector Δẽ can be
reconstructed after solving the CS Eq. (5.18). Due to the burst transmission in the
PLC system, the duration of each transmission frame is sufficiently small so that the
frequency and the amplitude of the NBI signal is assumed to be quasi-static during
the current frame. Hence the NBI estimate at the preamble can be used to obtain
the NBI signals at the subsequent OFDM data blocks without significant loss of
accuracy.

Similarly, solving the under-determined compressed sensing measurement
Eq. (5.18) acquired through the proposed CSDM approach is equivalent to solving
the convex relaxed optimization problem given by

min
Δẽ∈CN

‖Δẽ‖1, s.t.‖Δq − FMΔẽ‖2 ≤ ε (5.21)

where ε is the bound of the �2 constraint due to theAWGNΔw, which is set according
to the AWGN distribution. The problem (5.21) can also be efficiently solved by
using classical compressed sensing greedy algorithms, such as the SP and SAMP
algorithms. Since the realistic NBI model is variable and unknown at the receiver,
we still adopt SAMP which does not require the sparsity level to be known.

5.3.3 Compressed Sensing Based Reconstruction Algorithm

As described in the previous section, the compressed sensing problems (5.17) and
(5.21) can be efficiently solved using the greedy algorithms. The performance of NBI
reconstruction relies on the accurate result of the compressed sensing algorithm. If
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we can obtain the partial information of the support of the NBI in advance as the prior
information, the iteration process of the compressed sensing based greedy algorithm
can be facilitated and the performance of the classical compressed sensing based
algorithms in severe conditions can be effectively improved.

Now we take the DTMB system as an example to introduce the method of acquir-
ing the partial information of the support utilized in this work. According to the
temporal correlation of the NBI, the NBI supports corresponding to D consecutive
symbols share the same sparse pattern. Hence, the priori information of the partial
NBI support Γ0 at the i-th symbol can be jointly acquired through the superposition
of the following D differential measured NBI vectors, which is given by

Γ0 = {k
∣∣∣∣∣∣

i+D−1∑

j=i

∣∣Δq̃ j,k

∣∣2 > ηth , k = 0, . . . N − 1}, (5.22)

whereΔq̃i = [
Δq̃i,0,Δq̃i,1, . . . , Δq̃i,N−1

]
is the N -point DFT ofΔqi , and the power

threshold ηth used to determine the partial support of the NBI is given by

ηth = α

N

N−1∑

k=0

i+D−1∑

j=i

∣
∣Δq̃ j,k

∣
∣2, (5.23)

where α is a coefficient that can be configured proportional to the INR in different
scenarios.

The partial NBI support priori can be correctly obtained through (5.22), since
the superposition of the NBI vectors of the consecutive symbols will increase the
equivalent INR of the NBI significantly. The reason is that the powers of the NBI
components at each nonzero entry are linearly accumulated and strengthened due
to the joint time-domain correlation of the NBI support, while the superposition of
the power of the background AWGN follows chi-square distribution, which results
in significant increment of the power of NBI components compared with that of
AWGN. Furthermore, through the joint acquisition of D consecutive NBI signals in
the frequencydomain, the spectral leakagedue to theDFToperation of the differential
measured signal Δqi will be relieved, which improves the definition of the NBI
components in the power spectrum.

With the aid of the partial NBI support priori, the prior aided SAMP (PA-SAMP)
algorithm is proposed. The pseudo-code of the proposed PA-SAMP algorithm is
summarized in Algorithm 1. The inputs of Algorithm 1 is the priori partial support
Γ0, the initial sparsity level K0 = |Γ0|, the measurement vectorΔqi , the observation
matrix� = FG , and the iteration step size δs that could be adjusted according to NBI
strength and occurrence probability. During the iterations that may be composed of
multiple iteration stages, the testing sparsity level for the current stage is T , which is
increased by the step size δs with the switching of the stages. The output ofAlgorithm
1 is the final output support Γ f and the recovered NBI differential vector Δêi s.t.
Δêi

∣∣
Γ f

= �
†
Γ f

Δqi , Δêi
∣∣
Γ c

f
= 0.
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From Algorithm 1, one is able to observe that the prior information of partial
NBI support is utilized at the beginning of the algorithm to reduce the complexity
of the total compressed sensing iterations compared with that without the aid of the
prior information. During the iteration process, the prior information is also made
good use of to improve the accuracy of the temporary support estimation in each
iteration, and to reduce the computational complexity.Due to the introduction of prior
partial support, the proposed PA-SAMP algorithm outperforms classical compressed
sensing algorithms and ensures robust and accurateNBI recovery, especially in severe
conditions whereby the INR is too low or the IBI-free region is too short due to long
channel delay.

As shown in Algorithm 1, PA-SAMP differs from SAMPmainly in the following
three aspects:

• Complexity:With the aid of the prior partial support, the initialization of PA-SAMP
is optimized to reduce computational complexity comparedwith SAMP.The initial
support is set asΓ0 in PA-SAMP instead of an empty set ∅ used in SAMP, while the
initial NBI differential vector is approximated as Δê0i

∣∣
Γ0

← �
†
Γ0

Δqi instead of a
zero vector adopted in SAMP, and the initial residue vector r0 ← Δqi − �Δê0i
is utilized in PA-SAMP to replace its counterpart r0 ← 0 in SAMP. The testing
sparsity level T is initialized as T ← δs + K0 in PA-SAMP instead of T ← δs in
SAMP. With K0 nonzero entries acquired from prior information, actually there
are only K − K0 remaining nonzero entries to be recovered. Hence, the average
number of total iterations is reduced from K in SAMP to K − K0 in PA-SAMP,
which reduces computational and time complexity.

• Accuracy: The priori aided initialization in PA-SAMP is more accurate than the
trivial initialization in SAMP. In each iteration of PA-SAMP, only (T − K0) new
entries are necessarily identified in the preliminary test and merged with the previ-
ous temporary final list, while the K0 initial entries acquired fromprior information
are remained in the candidate list in the first iteration. This makes the iterations
of PA-SAMP more efficient than those of SAMP, whereby all the T entries are
identified in each iteration. Moreover, during the stage switching, the testing spar-
sity level is changed to T ← K0 + j × δs instead of T ← j × δs in SAMP. This
makes it possible to adopt smaller step size δs in PA-SAMP, which leads to more
accurate estimation of the actual sparsity level K than that in SAMP. Meanwhile,
the convergence rate of the iterations is also improved since the testing sparsity
level starts much closer to the actual one.

• Adaptivity: Since in different channel conditions the prior inputs of PA-SAMP
vary accordingly, and the contributions of the prior information will significantly
facilitate the accurate NBI recovery especially when the sparsity level becomes
large, the proposed algorithm of PA-SAMP is very adaptive to the variant sparsity
level K . It is also robust to the variation of INR, the length of the IBI-free region
G, and the number of consecutive symbols D for prior information acquisition,
etc.
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Algorithm 1 Prior Aided Sparsity Adaptive Matching Pursuit (PA-SAMP) for NBI
Recovery
Input:

1) measurement vector Δqi
2) observation matrix � = FG
3) prior partial support Γ0 initial sparsity level K0 = |Γ0|
4) iteration step δs
Initialization:

1: Δê0i
∣
∣
Γ0

← �
†
Γ0

Δqi , r0 ← Δqi − �Δê0i ,
2: T ← δs + K0, k ← 1, j ← 1

Iterations:
3: repeat
4: Sk ← max(�H rk−1, T − K0) {preliminary test}
5: Ck ← Γk−1 ∪ Sk {candidate list generation}
6: Γt ← max(�†

Ck
Δqi , T ) {temporary final list}

7: Δêki
∣
∣
Γt

← �
†
Γt

Δqi , Δêki
∣
∣
Γ c
t

← 0

8: r ← Δqi − �Γt
�

†
Γt

Δqi {residue calculation}
9: if ‖r‖2 ≥ ‖rk−1‖2 then
10: j ← j + 1, T ← K0 + j × δs {stage switching}
11: else
12: Γk ← Γt , rk ← r
13: k ← k + 1 {same stage, next iteration}
14: end if
15: until ‖r‖2 < ε
Output:

1) final output support Γ f

2) recovered NBI differential vector Δêi s.t. Δêi
∣
∣
Γ f

= �
†
Γ f

Δqi , Δêi
∣
∣
Γ c

f
= 0

In common cases, as described above, the prior partial NBI support is accurately
acquired based on the time-domain support correlation of D consecutive symbols.
Accurate prior partial support facilitates the CSDM process with PA-SAMP and
improves the NBI recovery performance. On the other hand, even in the extreme
case where the NBI support changes so fast that the partial support acquired from
several consecutive symbols is not accurate enough, NBI reconstruction can be also
implemented from only one measurement vector based on the proposed CSDM
method using conventional SAMP algorithm without the aid of the prior informa-
tion. In this chapter, the NBI reconstruction method based on SAMP without prior
information is also given as a complementary approach, which will be compared
with the PA-SAMP approach in the following simulations.

After reconstructing the NBI signal using the PA-SAMP algorithm, the estima-
tion accuracy can be further refined, and the elements estimated in error can be
excluded. Since the sparsity level is variable and unknown, the final output support
Γ f of PA-SAMP described in Algorithm 1might include some false positions whose
amplitude is significantly lower than the NBI, which should be refined to achieve
better performance. The threshold-based support adjustment method is proposed in
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order to further improve the support estimation accuracy of PA-SAMP. The refined
support Γth includes the entries whose norms are larger than the given threshold

λth = β log

(
P̂e
σ2

)

· P̂e, (5.24)

where P̂e = (1/N )
∑N−1

k=0

∣∣Δêi,k
∣∣2 is the estimated NBI average power with Δêi,k

being the k-th entry of Δêi . (P̂e/σ2) is the estimated INR, and β is a coefficient
which can be set properly according to different scenarios. The entries whose norms
are larger than the threshold are much more likely to be the true NBI entries and
should thus be retained. Therefore, the refined support is given by

Γth =
{
k
∣∣∣
∣∣Δêi,k

∣∣2 > λth , k = 0, 1, . . . , N − 1
}

. (5.25)

Afterwards, the recovered NBI differential vector Δêi of PA-SAMP can be then
updated at the refined support Γth such that Δêi

∣∣
Γth

= �
†
Γth

Δqi and Δêi
∣∣
Γ c
th

= 0.
Furthermore, the NBI values at the refined support can be more accurate through

least squares (LS) estimation, which is implemented by solving

min
Δêi∈CN

∥∥Δqi − �Δêi
∥∥
2, (5.26)

where � = FGB, and B is the N × N diagonal selection matrix whose elements
bk,k = 1 for k ∈ Γth and zero otherwise. After solving the LS problem, the recovered
NBI differential vector is given by

Δêi = B�†Δqi . (5.27)

The final step is to conduct the actual NBI signal cancellation at the location of
the OFDM data block. As shown in Fig. 5.1, in TDS-OFDM systems, the original
frequency-domainNBI vector ẽi at the i-th PN training sequence can be reconstructed
from the recovered NBI differential vector Δêi according to (5.16) by

ẽi,k = Δêi,k/(1 − exp( j
2πkΔl

N
)), k = 0, 1, . . . , N − 1. (5.28)

Then, the frequency-domain NBI vector corresponding to the i-th OFDM data
block ẽDi = [

ẽDi,0, ẽ
D
i,1, . . . , ẽ

D
i,N−1

]T
is similarly obtained by

ẽDi,k = ẽi,k · exp( j2πkΔd/N ), k = 0, 1, . . . , N − 1, (5.29)

where Δd = M is the distance between the i-th PN training sequence and the i-th
OFDM data block. Then the NBI can be eliminated from the received OFDM data
block for the successive process.
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The compressed sensing problem model (5.18) and (5.21) formulated by differ-
ential measurement of the preamble in the PLC system as shown in Fig. 5.2 can also
be solved using the compressed sensing recovery algorithm PA-SAMP based on the
differential measurement of the PN sequences similar to theDTMB system described
above. By utilizing the multiple repeated training sequences in the preamble of the
PLC system, the prior information of the NBI partial support can be obtained by
the method similar to Eq. (5.22). With the aid of the prior information and based on
the input of the measurement vector and the observation matrix, the NBI differential
vector Δê corresponding to the preamble in Eq. (5.18) can be accurately recovered
using the PA-SAMP algorithm. Similarly, the recovered NBI differential vector can
be further refined by the threshold detection based adjusting method and the LS
method.

Afterwards, the original frequency-domain NBI vector ẽ1 at the front part of the
preamble as shown in Fig. 5.2 can be recovered according to (5.20) by

ẽ1k = Δêk/(1 − e j 2πN k·Δl), k = 0, 1, . . . , N − 1. (5.30)

Finally, the frequency-domain NBI vector corresponding to the OFDMdata block
ẽDi = [

ẽDi,0, ẽ
D
i,1, . . . , ẽ

D
i,N−1

]T
of the payload is similarly obtained by

ẽDi,k = ẽ1k · exp( j2πkΔdi/N ), k = 0, 1, . . . , N − 1, (5.31)

where Δdi is the distance between the i-th OFDM block and the front part of the
preamble. Then the NBI signal can be eliminated from the received OFDM data
block for better performance of the successive process.

5.3.4 Simulation Results and Discussions

In this section, the simulation results and discussions of the proposed compressed
sensing based NBI recovery algorithms in the DTMB and PLC systems are reported.
The major metrics for simulations include the process of NBI recovery, the mean
square error (MSE) of the NBI estimation, the recovery probability of the NBI recon-
struction, and the system bit error rate (BER) of different schemes, etc. According
to the DTMB and ITU-T G.hn standards, the simulation parameters of the digital
terrestrial multimedia broadcasting system and the broadband power line commu-
nication system are listed in Table5.1 [29, 32, 37]. The channel parameters of the
ITU-R Vehicular-B multipath channel are listed in Table5.2 [38], and the channel
parameters of the multipath PLC channel are listed in Table 3.2 [33]. The model
of the NBI signal is consistent with that presented in Sect. 2.3.1, i.e. the compound
BLGN interferer source model. In the DTMB system, the number of TDS-OFDM
symbols utilized to acquire the prior information of the partial support is D = 4. In
the PLC system, the number of the repeated training sequences included in the front
part and latter part of the preamble is T0 = 3.
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Table 5.1 Simulation parameters of compressed sensing based NBI recovery

OFDM
sub-carrier
number

Training
sequence
length

Constellation
mapping

LDPC code
length

Code rate Channel

DTMB
sytem [29]

N = 3780 M = 595 64QAM 7488 0.6 Vehicular-B
channel [38]

PLC system
[32]

N = 1024 M0 = 128 64QAM 8640 0.5 PLC
channel [33]

Table 5.2 ITU-R Vehicular-B multipath channel parameters [38]

Multipath index Relative delay (ns) Average power (dB)

1 0 −2.5

2 300 0

3 8 900 −12.8

4 12 900 −10.0

5 17 100 −25.2

6 20 000 −16.0

The simulation results of the overall process of the compressed sensing based
NBI reconstruction in the DTMB system and PLC system are shown in Figs. 5.3
and 5.4, respectively. The parameters are configured as follows. The INR of the NBI
is 30 dB. The sparsity level of the DTMB system is K = 15. The sparsity level
of the PLC system is K = 18. During the process of recovery, firstly, the partial
support is obtained based on the threshold ηth given by Eq. (5.23), where α = 8.0 is
adopted as the parameter. Then, the compressed sensing basedNBI recoverymodel is
formulated using the proposed temporal differential measuring method, and the NBI
signal is recovered using the PA-SAMP algorithm. The obtained support is further
refined by the threshold λth given by the Eq. (5.24), where β = 3.0 is adopted as
the parameter. Consequently, the final recovered realistic NBI can be obtained. The
simulation results have shown that, the finally estimated NBI is accurately matching
the realistic NBI signal.

The MSE performance of the compressed sensing based NBI recovery algorithm
in DTMB system and PLC system is reported in Figs. 5.5 and 5.6, respectively. The
sparsity level inDTMBsystem is configured as K = 10 or K = 20,while the sparsity
level in the PLC system is set as K = 18, 24, 36. The MSE performance of the PA-
SAMP algorithm in the framework of the proposed temporal differential measuring
and the classical SAMP algorithm in the DTMB system is compared, and the results
are reported in Fig. 5.5. The Cramér-Rao lower bound (CRLB) of the estimation
is 2σ2

w · (K/G) [39], which is also depicted as a benchmark for comparison. The
theoretical derivation of the CRLB is given in detail in the performance evaluation
in Sect. 5.6. It is revealed by the simulation results in Fig. 5.5 that, the proposed PA-
SAMP algorithm reaches the targetMSE of 10−3 at INR = 26.8 and 33.7 dBwith the
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Fig. 5.3 Compressed
sensing based temporal
differential measuring and
PA-SAMP algorithm enabled
NBI recovery in DTMB
system

Fig. 5.4 Compressed
sensing based temporal
differential measuring and
PA-SAMP algorithm enabled
NBI recovery in PLC system

sparsity level of K = 10 and K = 20, respectively, which outperforms the classical
SAMP algorithm by approximately 2.0 dB. Meanwhile, it is observed that with the
increase of INR, the MSE performance of the proposed method is approaching the
theoretical CRLB. Figure5.6 shows the MSE performance of the proposed temporal
differentialmeasuringmethod alongwith thePA-SAMPalgorithm,whose theoretical
CRLB is 2σ2

w · (K/M), and it is also depicted as a benchmark for comparison. Apart
from these, the simulation results of the conventional compressed sensing estimation
method based on null space measuring [4] is provided for comparison, too. It can
be observed from the simulation results that, the proposed method reaches the target
MSE of 10−3 at INR = 27.5 and 34.8 dB with the sparsity level of K = 24 and
K = 36, respectively, and the MSE performance of the proposed method is also
approaching the theoretical CRLB with the increase of INR. It is also verified by
the simulation results that, the proposed method has a significant advantage over
the conventional null space method in the accuracy of NBI recovery with different
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Fig. 5.5 MSE performance
of compressed sensing
temporal differential
measuring based PA-SAMP
and SAMP algorithms for
NBI recovery in DTMB
system

Fig. 5.6 MSE performance
of compressed sensing
temporal differential
measuring based PA-SAMP
algorithm and conventional
null space measuring method
for NBI recovery in PLC
system

sparsity levels. The simulation results above have validated the high accuracy of the
proposed compressed sensing based NBI recovery method.

The simulation results of the success probability of the compressed sensing based
NBI recovery in the DTMB system and the PLC system are reported in Figs. 5.7
and 5.8, respectively. The INR of the NBI is 30 dB. The recovery probability of
the proposed temporal differential measuring method along with the PA-SAMP and
classical SAMP algorithms with different sparsity levels is illustrated in Fig. 5.7,
which is evaluated in theAWGNchannel and the ITUVehicular-Bmultipath channel.

In the realistic simulations, the recovery probability is calculated over 103 number
of simulations, in which the frequency of accurate NBI recovery is regarded as the
success recovery probability [35]. It is shown by the simulation results that, the
proposed PA-SAMP algorithm is able to reach a recovery probability of 0.90 at the
sparsity level of 23 in both the AWGN and Vehicular-B channels. It has verified
that, the proposed temporal differential measuring method along with the PA-SAMP
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Fig. 5.7 Successful
recovery probability of
compressed sensing temporal
differential measuring based
PA-SAMP and SAMP
algorithms in DTMB system

algorithm is able tomake use of the only small number of measurement data obtained
from the IBI-free region, and accurately recover the NBI signal with a relatively large
sparsity level, with the aid of the prior information of the partial support. From the
gap between the curves of PA-SAMP and SAMP in the simulation results, it is shown
that the proposed compressed sensing greedy algorithm PA-SAMP is able to make
full use of the prior information and accurately reconstruct the NBI signal with a
relatively large sparsity level.

Apart from this, it is also shown by the simulation results that, the performance
of the conventional SAMP algorithm is significantly degraded in multipath chan-
nel compared with the AWGN channel because the IBI-free region available for
measurement data in multipath channels is shorter. On the other hand, the proposed
PA-SAMP algorithm is hardly affected by the multipath fading with the aid of the
prior information, so it is insensitive to the channel conditions.

The recovery probability of the proposed temporal differential measuring method
and the conventional null space method [4] in the AWGN and PLC channels in the
PLC system is reported in Fig. 5.8. It is observed from the simulation results that, the
proposed temporal differential measuring based PA-SAMP algorithm is able to reach
a successful recovery probability of 0.98 at the sparsity level of up to 25 in both the
AWGN and PLC channels, and it has a significant advantage over the conventional
null space measuring method [4] in supporting to recover large sparsity levels.

Moreover, the simulation results show that the sparsity level successfully recov-
eredby the conventionalmethod in thePLCmultipath channel is significantly reduced
compared with that in the AWGN channel, but the sparsity level supported by the
proposed method is almost invariant in the two different channels. It is revealed by
the simulation results that, the proposed method is able to obtain a small number of
NBImeasurement data from the preamble of the PLC system, and accurately recover
the NBI signal with a relatively large sparsity level, and it is meanwhile insensitive
to the channel fading.
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Fig. 5.8 Successful
recovery probability of
compressed sensing temporal
differential measuring based
PA-SAMP and SAMP
algorithms in PLC system

Fig. 5.9 System bit error
rate of different NBI
mitigation and cancelation
schemes in Vehicular-B
channel in DTMB system

Fig. 5.10 System bit error
rate of different NBI
mitigation and cancelation
schemes in Vehicular-B
channel in PLC system
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The performance of the system bit error rate (BER) of various different NBI
mitigation and cancelation schemes for the DTMB system and the PLC system
is reported in Figs. 5.9 and 5.10, respectively. During the simulations of BER, the
receiver adopted the algorithm of independent demapping max-log-MAP (maxi-
mum a posteriori) [40]. The sum-product algorithm (SPA) was adopted as the LDPC
decoding method, where the maximum iteration number was set as 50. The INR of
the NBI is 30 dB. The sparsity level for the DTMB system and the PLC system is
K = 20 and K = 24, respectively.

TheBERperformance of the conventionalmethod of frequency threshold excision
(FTE) [41] and the conventional null space measuring based compressed sensing
estimation method [4] is also evaluated for comparison. Besides, the BER of the
system without the NBI is simulated as a benchmark. For the DTMB system, the
simulation parameters are listed in Table5.1.

The simulation results of the system BER using the proposed temporal measuring
method along with the PA-SAMP or SAMP algorithm for NBI recovery and can-
celation in the Vehicular-B multipath channel in the DTMB system are reported in
Fig. 5.9. It is shown by the simulation results that, the proposed temporal differential
measuring method along with the PA-SAMP algorithm has the SNR gain of 0.5 and
0.9 dB over the conventional null space measuring method and the conventional FTE
method, respectively, at the target BER of 10−4. The proposed method along with
the classical SAMP algorithm has the SNR degradation of 0.25 dB compared with
the proposed PA-SAMP algorithm, which is because the classical SAMP algorithm
does not make use of the prior information of the partial support. However, it still
has a significant gain over the conventional methods. Apart from this, the proposed
method along with the PA-SAMP algorithm has a performance very close to the
system BER without the NBI, with a gap of only 0.18 dB, which means that the
proposed method has good effectiveness in recovering and canceling the NBI and it
can significantly improve the system performance.

For the PLC system, the simulation parameters are also listed in Table5.1. In
the PLC multipath channel, the system BER performance of the proposed temporal
differential measuring method along with the PA-SAMP algorithm for NBI recovery
and cancelation is reported in Fig. 5.10. It is shown by the simulation results that, the
proposed method has an SNR gain of 0.70–85dB over the conventional null space
measuring method and the conventional FTE method at the target BER of 10−4.
Besides, the gap between the proposed method and the system without NBI is only
0.20 dB, which also indicates the effectiveness of the proposed NBI recovery and
cancelation method in the PLC system.

5.4 Structured Compressed Sensing Based NBI Recovery

The NBI recovery method based on classical compressed sensing theory does not
make full use of the spatial correlation of the NBI between different antennas in the
MIMO system, so the performance might be degraded in severe conditions such as
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insufficient measurement data and intensive background noise, etc. To fully exploit
the temporal and spatial correlation of the NBI, this section proposes the spatial mul-
tiple differential measuring (SMDM) method for NBI recovery in MIMO systems.
Firstly, the NBI signal model in MIMO systems is presented. Then the framework of
NBI recovery based on time-space domain two-dimensional structured compressed
sensing is formulated. Furthermore, the improved greedy algorithm of S-SAMP
based on structured compressed sensing is proposed to achieve a higher recovery
accuracy and robustness than classical compressed sensing algorithms.

5.4.1 NBI and Signal Models in MIMO Systems

In MIMO systems, repeated training sequences are adopted for synchronization and
channel estimation, such as in the preamble of the IEEE 802.11 series standards [25,
26]. Without loss of generality, the repeated training sequences specified by the
IEEE 802.11p standard [26] is adopted as an instance to demonstrate the mecha-
nism of the proposed method of spatial multiple differential measuring (SMDM),
which is illustrated in Fig. 5.11. Typically, a 2 × 2 MIMO system configured in the
IEEE 802.11p standard is investigated in this section, while the proposed scheme
is also applicable in arbitrary Nt × Nr MIMO systems. At each transmit antenna, a
group of DT identical training sequences are sent continuously, with each denoted
as c(t) = [c(t)

0 , c(t)
1 , . . . , c(t)

M−1]T for the t-th transmit antenna and having the identical
lengthM . All the Nt groups of training sequences are sent simultaneously at Nt trans-
mit antennas. After being transmitted over the Nt × Nr wirelessMIMO channel [42]
with the channel impulse response h(tr) = [h(tr)

0 , h(tr)
1 , . . . , h(tr)

L−1]T between the t-th
transmit antenna and r -th receive antenna where h(tr) is assumed to be invariant dur-
ing temporally adjacent training sequences [38], the received i-th training sequence
impacted by the NBI at the r -th receive antenna y(r)

i = [y(r)
i,0 , y(r)

i,1 , . . . , y(r)
i,M−1]T , i =

1, 2 . . . , DT , is given by

y(r)
i = FM ẽ

(r)
i + w(r)

i +
Nt∑

t=1

�(t)h(tr), (5.32)

where ẽ(r)
i denotes the frequency-domain NBI vector for the i-th training sequence

at the r -th receive antenna, andwi is the AWGN vector with zero mean and variance
of σ2. At the r -th receive antenna, the received training sequence components from
the Nt transmit antennas are denoted by

∑Nt
t=1 �(t)h(tr) in (5.32), with the matrix

�(t) ∈ C
M×L given by

�(t) =

⎡

⎢⎢⎢
⎣

c(t)
0 c(t)

M−1 c
(t)
M−2 · · ·

c(t)
1 c(t)

0 c(t)
M−1 · · ·

...
...

...
. . .

c(t)
M−1 c

(t)
M−2 c

(t)
M−3 · · ·

c(t)
M−L+1

c(t)
M−L+2

...

c(t)
M−L

⎤

⎥⎥⎥
⎦

M×L

. (5.33)
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Fig. 5.11 The two-dimensional structured compressed sensing basedNBI recovery throughSMDM
in MIMO systems

At each receive antenna, the received signal of the i-th training sequence is given
in the form of (5.32), including the superposition of the received Nt i-th training
sequences from Nt transmit antennas, the NBI signal, and the background AWGN.
The proposed SMDMmethodwill firstly acquire a one-dimensional differentialmea-
surement of the NBI exploiting the temporal correlation from each receive antenna,
and then fully utilize the spatial correlation of the NBI at the Nr receive antennas and
implement the multiple differential measuring of the NBI for the two-dimensional
SCS based NBI recovery, and finally obtain the NBI at each receive antenna through
the structured compressed sensing algorithm, which is described in detail in the
following section.

5.4.2 Spatial Multi-dimensional Differential Measuring

How to acquire the measurement matrix of the NBI with two-dimensional correla-
tions to build up the structured compressed sensing model is vital to NBI recovery.
In this section, we first propose the spatial multiple differential measuring method
to accomplish this task.

As has been described previously, according to the compressed sensing theory,
obtaining the measurement vector of the NBI signal is crucial for the compressed
sensing algorithms. It has been proved that using compressed sensing algorithms,
a sparse vector will be exactly recovered from measurement data sampled by a
rate lower than the Shannon-Nyquist sampling rate in the presence of power con-
strained background AWGN [34]. Nevertheless, the training sequences or data com-
ponents with much higher power than AWGN should be excluded to ensure the
effective recovery of the unknown sparse signal. This is a difficult task for conven-
tional schemes since the NBI signal is messed up with data or training sequences in
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both time and frequency domains and difficult to measure separately. To achieve this
goal, a novel temporal differentialmeasuringmethod has been proposed previously to
obtain the measurement vector simply by the differential operation between adjacent
received training sequences. For MIMO systems considered in this section, as illus-
trated in Fig. 5.11, the NBI differential measurement vectorΔy(r)

i for the r -th receive
antenna can be similarly acquired by subtracting y(r)

i+1 from y(r)
i given by (5.32) to

exclude the common received training sequence components
∑Nt

t=1 �(t)h(tr), which
yields the compressed sensing measurement equation as follows

Δy(r)
i = FMΔẽ(r)

i + Δw(r)
i , (5.34)

where Δy(r)
i = y(r)

i − y(r)
i+1,Δw(r)

i = w(r)
i − w(r)

i+1, the NBI differential vector at the

r -th receive antenna Δẽ(r)
i ∈ C

N is denoted as

Δẽ(r)
i = ẽ(r)

i − ẽ(r)
i+1 =

[
Δẽ(r)

i,0 ,Δẽ(r)
i,1 , . . . , Δẽ(r)

i,N−1

]T
. (5.35)

It is noted that the differential AWGN Δw(r)
i in (5.34) is the addition of two

AWGN variables with identical and independent distribution, which results in a new
AWGNvariablewith the power two times as the original background noise.However,
it has hardly any impact on the effectiveness of the proposed method. It is proved
in literature that it is highly probable to recover the sparse signal accurately in the
presence of the power constraint background noise [2, 34]. Besides, the power of
the practical NBI is much larger than that of AWGN in the frequency domain, which
leads to high INR and facilitates the recovery of the NBI. The simulation results are
also reported in the following content to show the effectiveness and accuracy of NBI
recovery in the presence of the background AWGN.

Due to its temporal correlation, the frequency locations and the magnitude of the
NBI signal keeps invariant during adjacent training sequences, and thus the time-
domain NBI vector at the (i + 1)-th training sequence e(r)

i+1 equals the time-domain

NBI vector at the i-th training sequence e(r)
i delayed by Δl samples, where Δl = M

is the distance between the two adjacent training sequences. Hence, the frequency-
domain NBI vector at the (i + 1)-th training sequence ẽ(r)

i+1 should be ẽ(r)
i with a

phase shift, i.e.,

ẽ(r)
i+1,k = ẽ(r)

i,k exp

(
j2πkΔl

N

)
, k = 0, 1, . . . , N − 1. (5.36)

Here, equation is the very temporal correlation of the NBI between adjacent
training sequences that facilitates the temporal differential measuring of the NBI
as well as the proposed SMDM framework. Consequently, the entries of the NBI
differential vector in (5.35) are given by
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Δẽ(r)
i,k = ẽ(r)

i,k

(
1 − exp

(
j2πkΔl

N

))
, k = 0, 1, . . . , N − 1. (5.37)

The unknown sparse NBI differential vector is estimated from only a one-
dimensional measurement vector by using compressed sensing algorithms in the
previous section. However, this approachmight suffer from large NBI sparsity levels,
strong background noise, and insufficient measurement data in severe circumstances.

In the proposed frameworkof two-dimensional structured compressed sensing and
SMDM, the spatial correlation as well as the temporal correlation of the NBI signal is
taken full advantage of to improve the stability of NBI recovery for MIMO systems.
Recall that one measurement vector at the i-th received training sequence given by
(5.34) is acquired for each receive antenna using the previously proposed temporal
differential measuringmethod. Now in the proposed SMDM framework, considering
the Nr measurement vectors at the i-th received training sequence from the Nr receive
antennas, with each having the form of the compressed sensing sparse measurement
model given by (5.34), we obtain the structured compressed sensing measurement
equation, i.e. the multiple measurement vectors (MMV) problem formulation, by
stacking all the measurement vectors into one matrix by column, as given by

ΔY =
[
Δy(1)

i ,Δy(2)
i , . . . , Δy(Nr )

i

]

M×Nr

= FMΔẼ + ΔW, (5.38)

where ΔẼ = [Δẽ(1)
i ,Δẽ(2)

i , . . . , Δẽ(Nr )
i ] are the spatially jointly sparse matrix of the

NBI whose columns share the same support Ω (i.e., NBI supports at the Nr receive
antennas are the same), while the values of the nonzero entries in the same row of
the matrix might be different from each other. ΔW = [Δw(1)

i ,Δw(2)
i , . . . , Δw(Nr )

i ]
is the corresponding AWGN matrix. Consequently, the mathematical model (5.38)
formulated by the proposed SMDM method complies with the newly developed
theory of structured compressed sensing [43, 44].

According to the structured compressed sensing theory, it is proved that the jointly
sparse vectorswithinΔẼ (the columnsofΔẼ)will be simultaneously recovered accu-
rately by solving the convex optimization problem (mixed �p,q -norm minimization
problem), which is deduced from the structured compressed sensing MMV problem
(5.38), as follows

ΔÊ = arg min
ΔẼ∈CN×Nr

∥∥∥ΔẼ
∥∥∥
p,q

, s.t.
∥∥∥ΔY − FMΔẼ

∥∥∥
q,q

≤ ε, (5.39)

where ε2 denotes the power constraint of the background AWGN ΔW, and the �p,q -
norm of the matrix ΔẼ is defined by

∥∥
∥ΔẼ

∥∥
∥
p,q

=
(
∑

m

∥∥
∥ΔẼm

∥∥
∥
q

p

)1/q

, (5.40)
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with ΔẼm being the m-th row of the matrix ΔẼ. Usually �1,2 norm is adopted as
the convex relaxation norm, which turns the original problem (5.39) into a convex
optimization problem to solve [44]. In this way, the problem (5.40) is turned into

ΔÊ = arg min
ΔẼ∈CN×Nr

∥∥∥ΔẼ
∥∥∥
1,2

, s.t.
∥∥∥ΔY − FMΔẼ

∥∥∥
2,2

≤ ε, (5.41)

where
ε = ‖ΔW‖2,2 = √

MNrσw. (5.42)

It is verified by theoretical analysis and proofs that, the existence of the solution
of the mixed �1,2-norm minimization problem (5.41) described above and the accu-
racy of the solution are guaranteed theoretically, this is presented in detail in the
performance analysis in Sect. 5.6.

Note that the previously proposed temporal differential measuring approach with-
out exploiting the spatial correlation can be regarded as a special case of the newly
proposed structured compressed sensing-based SMDM framework with Nr = 1 in
(5.38) and (5.39).

Greedy compressed sensing algorithms could be implemented to solve the one-
dimensional convex optimization problem (5.34) induced by the temporal differen-
tial measuring method, such as the classical SAMP algorithm dealing with sparse
recovery with unknown sparsity levels. Using the temporal differential measuring
method with the SAMP algorithm in the framework of the classical compressed
sensing theory, the NBI Δẽ(r)

i is recovered and canceled at each receive antenna
separately without cooperative reconstruction of NBI from multiple receive anten-
nas that exploits the spatial correlation inMIMO systems. However, since the SAMP
algorithm is aimed at the classical compressed sensing based recovery using only one-
dimensional measurement, it might become vulnerable and suffer from performance
degradation in severe conditions. In order to solve this problem, the spatial correla-
tion of the NBI is fully exploited to improve the stability and accuracy of SAMP for
theMIMO system. Under the two-dimensional structured compressed sensing based
SMDM framework, we propose the structured sparsity adaptive matching pursuit
(S-SAMP) algorithm to effectively solve the multi-dimensional convex optimization
problem in (5.39) and reconstruct the spatially jointly sparse matrix ΔẼ accurately.

5.4.3 Structured SAMP Algorithm

In order to solve the structured compressed sensing based NBI recovery problem
formulated by the SMDM method, an efficient improved structured compressed
sensing greedy algorithm is proposed in this section, i.e. S-SAMP. The pseudo-code
of the proposed S-SAMP is summarized inAlgorithm 1. The inputs of Algorithm 1
are the measurements matrix ΔY, the observation matrix � = FM , and the iteration
step size δ of the test sparsity level Kt . The iterations are composed of multiple
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stages, and Kt is increased by δ when the stage switches. The output of Algorithm 1
is the final output support Ω̂ and the recovered jointly sparse matrix ΔÊ of the NBI
s.t. ΔÊ|Ω̂ = �

†
Ω̂

ΔY,ΔÊ|Ω̂c = 0.
It is observed from Algorithm 1 that the spatial correlation of the NBI is fully

exploited in S-SAMP by summing up the values of Nr columns of the measure-
ment matrix ΔY to pick out the maximum Kt entries as the candidate support list
in each iteration, instead of picking from only one measurement vector in classi-
cal SAMP [36]. Under the two-dimensional structured compressed sensing based
SMDM framework, the S-SAMP algorithm takes full advantage of the spatial multi-
ple differential measurements to enhance the robustness of NBI recovery. Especially
in severe conditions with insufficient measurement data, large background noise
intensity, or higher sparsity levels, S-SAMP ensures better performance than clas-
sical compressed sensing algorithms, which is demonstrated by simulations in the
following section.

After the recovered spatially jointly sparse NBI matrix ΔÊ is obtained by the S-
SAMP algorithm, the NBI signals corresponding to the OFDM data blocks at all the
receive antennas can be recovered based on this. The r -th column of the recovered
jointly sparse matrix ΔÊ of the NBI is the recovered NBI differential vector Δê(r)

i
related to the r -th receive antenna in Eq. (5.34). Hence, according to (5.35) and
(5.37), the original frequency-domain NBI vector ẽ(r)

i associated to the i-th received
training sequence y(r)

i at the r -th receive antenna can be acquired from Δê(r)
i by

ẽ(r)
i,k = Δê(r)

i,k

/(
1 − exp

(
j2πkΔl

N

))
, k = 0, 1, . . . , N − 1. (5.43)

Finally, the frequency domain NBI vector ẽ
′(r)
n = [ẽ′(r)

n,0 , ẽ
′(r)
n,1 , . . . , ẽ

′(r)
n,N−1]T asso-

ciated to the received n-th OFDM symbol in the payload at the r -th receive antenna
is similarly acquired by

ẽ
′(r)
n,k = ẽ(r)

i,k · exp
(
j2πkΔdi,n

N

)
, k = 0, 1, . . . , N − 1, (5.44)

where {Δdi,n = (n − 1)F + (D − i + 1)M}D−1
i=2 is the distance between the i-th

received training sequence y(r)
i and the n-th OFDM symbol with the frame length

of F . Afterwards, the recovered NBI signal is canceled from the received OFDM
symbol for each of the Nr receive antennas.

Furthermore, apart from the structured compressed sensing based greedy algo-
rithms, themixed �1,2-normminimization problem (5.41) can be solved by vectoriza-
tion of the jointly sparsematrix by row, i.e. regarding each row of the unknown jointly
sparse matrix as a sub-block of high-dimensional block sparse unknown vector. In
this way, the original problem can be turned into another structured compressed sens-
ing framework, i.e. the block sparse recovery problem. Specifically, by vectorizing
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Algorithm 2 Structured Sparsity Adaptive Matching Pursuit (S-SAMP) for NBI
Recovery in the MIMO System
Input:

1) Measurements matrix ΔY
2) Observation matrix � = FM
3) Step size δ.
Initialization:

1: ΔÊ(0) ← 0N×Nr ; R(0) ← ΔY
2: Ω(0) ← ∅; Kt ← δ
3: k ← 1; j ← 1

Iterations:
4: repeat

5: v ∈ C
N s.t. vi =

Nr∑

j=1

∣∣
∣
(
�HR(k−1)

)
i, j

∣∣
∣

6: Sk ← Max{v, Kt } {Preliminary test}
7: Ck ← Ω(k−1) ∪ Sk {Make candidate list}

8: u ∈ C
|Ck | s.t. ui =

Nr∑

j=1

∣
∣
∣∣
(
�

†
Ck

ΔY
)

i, j

∣
∣
∣∣

9: Ωt ← Max{u, Kt } {Temporary final list}

10: ΔÊ(k)
∣
∣∣
Ωt

← �
†
Ωt

ΔY; ΔÊ(k)
∣
∣∣
Ωc

t

← 0

11: Rt ← ΔY − �Ωt
�

†
Ωt

ΔY {Compute residue}

12: if ‖Rt‖2,0 ≥ ∥∥R(k−1)
∥∥
2,0 then

13: T ← T + δ {Stage switching}
14: else
15: Ω(k) ← Ωt ; Ω̂ ← Ωt ; R(k) ← Rt
16: k ← k + 1 {Same stage, next iteration}
17: end if
18: until ‖Rt‖2,0 < ε2

Output:
1) Final output support Ω̂
2) Recovered spatially jointly sparse matrix ΔÊ, s.t.

ΔÊ
∣∣
∣
Ω̂

= �
†
Ω̂

ΔY, ΔÊ
∣∣
∣
Ω̂c

= 0

the Eq. (5.38), we have

vec
(
ΔYT

) = (
FM ⊗ INr

)
vec

(
ΔẼT

)
+ vec

(
ΔWT

)
(5.45)

where vec(ΔYT ) and vec(ΔẼT ) are the high-dimensional vectors obtained by vec-
torizing all the row vectors ofΔY andΔẼ, respectively. Let us define the block sparse

NBI vector as x
Δ= vec(ΔẼT ). During vectorization, the original observation matrix

FM is also turned into
(
FM ⊗ INr

)
correspondingly, where ⊗ denotes the Kronecker

product operation. Thus, the mixed �1,2-normminimization problem (5.41) has been
vectorized and turned into the mixed �2/�1-norm minimization problem as given by
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x̂ = arg min
x∈NNr

‖x‖2,1,

x = vec
(
ΔẼT

)
, x̂ = vec(ΔÊT ),

(5.46)

Γ = {d1, . . . , dNB}, NB = N , di = Nr ∀i, (5.47)

s.t.
∥
∥vec

(
ΔYT

) − (
FM ⊗ INr

)
x
∥
∥
2 ≤ ε, (5.48)

where x is the block sparse vector obtained by the vectorization of the rows of the
matrix ΔẼ. It can be known from the principle of vectorization that, the block parti-
tion is naturally generated based on the rows, which is denoted by Eq. (5.47), where
the number of sub-blocks is NB = N , and each sub-block x[i] represents the i-th
row of ΔẼ. The mixed �2/�1-norm ‖x‖2,1 is shown by Eq. (2.20). Furthermore, the
problem (5.46) can be solved using the block sparse solutions, such as the block
orthogonal matching pursuit (B-OMP) greedy algorithm, or the group LASSO con-
vex optimization solution [45].When the groupLASSOconvexoptimization solution
is adopted, the problem model is given by

min
NB∑

i=1

√
x[i]TKix[i] s. t. ‖y − �x‖2 ≤ ε, (5.49)

or its equivalent Lagrange relaxation form:

min

(
1

2
‖y − �x‖22 + λ

NB∑

i=1

√
xTi Kix[i]

)

, (5.50)

where the observation matrix � = FM , and �T
i � i or the identity matrix Ii can be

adopted as the kernelmatrixKi .� i denotes the sub-matrix formulated by the columns
of the sub-block x[i] corresponding to thematrix�.When the kernel matrix in (5.49)
is assigned by �T

i � i , the problem model of “kernel block group LASSO” can be
formulated as given by

min
NB∑

i=1

‖� ix[i]‖2 s. t. ‖y − �x‖2 ≤ ε. (5.51)

As a typical model of group LASSO problems, when the identity matrix Ii is
selected as the kernel matrix, the group LASSO problem based on the �2/�1-norm
minimization, i.e. the “block group LASSO” problem, can be formulated. Thus
the block sparse convex optimization algorithms can be utilized to solve it conve-
niently [45].
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5.4.4 Simulation Results and Discussions

The performance of the proposed two-dimensional structured compressed sensing
based SMDM method with the proposed S-SAMP algorithm for NBI recovery in
the wireless MIMO vehicular transmission systems specified by the IEEE 802.11p
WAVEstandard [26] is evaluated through simulations. Typically, the simulation setup
is configured according to the wireless access in vehicular environments MIMO
systems specified by the IEEE 802.11p standard [26], and the typical simulation
parameters are listed in Table5.3. TheOFDM sub-carrier number N = 64 and length
of each training sequence M = 16. The number of repeated training sequences sent
by each transmit antenna is DT = 5. The 2 × 2 MIMO or 4 × 4 MIMO multipath
channel model [42] and the ITU-R Vehicular-B multipath channel model [38] in the
presence of NBI are adopted. The parameters of the ITU-R Vehicular-B multipath
channel are listed in Table5.2 [38]. The low density parity check (LDPC) code with
code length of 1944 bits and code rate of 1/2 as well as the 64QAM modulation are
adopted. The compound BLGN interferers model in Sect. 2.3.1 is still adopted as the
NBI model.

The main evaluation metrics in the simulations contain the NBI recovery pro-
cess, the MSE of the NBI estimation, the correct recovery probability of the NBI
with different sparsity levels or measurement data amount, and the system BER
using different schemes, etc. Apart from the proposed SMDM method along with
the structured compressed sensing based S-SAMP algorithm in the 2 × 2 and 4 × 4
MIMO systems, the NBI recovery performance of the previously proposed classi-
cal compressed sensing based TDM method with the SAMP algorithm, which is
implemented at each receive antenna separately, is also evaluated using the same
MIMO system setup for comparison (as described in Section III.A, it is equivalent to
the NBI recovery process in the MISO or SISO system). Besides, the performance
of the conventional null space measuring method [4] along with the classical OMP
algorithm [46] is also evaluated as a comparison.

The performance of one realization of the NBI recovery using the proposed two-
dimensional structured compressed sensing based SMDM scheme with the S-SAMP
algorithm for the 2 × 2 MIMO wireless access in vehicular environments system is
illustrated in Fig. 5.12, when the sparsity level K = 8 and INR = 30 dB. Without
loss of generality, we investigate the actual and estimated NBI signals at one of
the receive antennas. The NBI at one certain receive antenna is recovered from the

Table 5.3 Simulation parameters of structured compressed sensing based NBI recovery in MIMO
system

System OFDM
sub-carrier
number

Training
sequence
length

Constellation
mapping

LDPC code
length

Code rate

WAVE
standard [26]

N = 64 M = 16 64QAM 1944 0.5
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Fig. 5.12 The performance
of one realization of NBI
recovery using the
two-dimensional structured
compressed sensing based
SMDM scheme with
S-SAMP

Fig. 5.13 The MSE of NBI
recovery versus INR for the
two-dimensional structured
compressed sensing based
SMDM scheme with
S-SAMP and the
one-dimensional compressed
sensing based TDM scheme
with SAMP for the 2 × 2
MIMO system

measurements matrix constituted by the differential measurements at Nr = 2 receive
antennas. The result in Fig. 5.12 implies that the NBI estimation precisely matches
the actual NBI signal.

TheMSE performance of NBI recovery is shown in Fig. 5.13. In the 2 × 2MIMO
wireless access in vehicular environments system, the SMDM schemewith S-SAMP
algorithm, and the previous proposed TDM scheme with SAMP algorithm are com-
pared, with the sparsity level K = 4 and K = 8. The theoretical Cramer-Rao lower
bound (CRLB) of 2σ2

w(K/M) is depicted as the benchmark. It is shown by the sim-
ulation results that, the proposed SMDM scheme with S-SAMP achieves the target
MSE of 10−3 with the INR of 17.5–24.6 dB at the sparsity level K = 4 and K = 8,
respectively, which has a 2.5 dB gain over the TDM method with SAMP. With the
increase of INR, the MSE of the SMDM method asymptotically approaches the
CRLB, verifying the recovery accuracy.
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Fig. 5.14 The NBI recovery
probability versus sparsity
level K for the
two-dimensional structured
compressed sensing based
SMDM S-SAMP and
one-dimensional compressed
sensing based temporal
differential measuring
SAMP schemes in the
MIMO system

The NBI recovery probability versus the sparsity level K is depicted in Fig. 5.14.
Similar to the previous section, the recovery probability is defined as the frequency
of successful NBI recovery, i.e. the frequency of MSE< 10−3, in a number 103 of
simulations. It is noted that the SMDM scheme with S-SAMP for 2 × 2 MIMO and
4 × 4 MIMO reaches a recovery probability of 0.9 at K > 7 and K > 10, respec-
tively, while the temporal differential measuring method along with the existing
SAMP algorithm and the null space method along with the classical OMP algorithm
achieves the successful recovery probability of 0.9 at the sparsity level of K > 3
and K > 2, respectively. The simulation results indicates that the proposed SMDM
method exploiting the spatial correlation can recover the NBI signal at larger sparsity
levels and is more robust against the variance of the sparsity level than the previous
proposed temporal differential measuring method with the SAMP algorithm in the
MIMO system.

To demonstrate the effects of different measurement vector length on the NBI
recovery performance, we assume that the length of each training sequence M
used as the measurement vector is variant in this case and simulate the correspond-
ing performance. In this way, the recovery probability of both the SMDM method
with S-SAMP and the temporal differential measuring method with SAMP versus
the measurement vector length M is illustrated in Fig. 5.15. It can be noted from
Fig. 5.15 that to reach the successful NBI recovery probability of 0.90, the 4 × 4
MIMO and 2 × 2 MIMO SMDM method with the S-SAMP algorithm only require
M = 9 and M = 11 measurement vector length (measurement samples), while
longer measurement vector M = 14 is required by the MISO/SISO temporal differ-
ential measuring method with the conventional SAMP algorithm. The conventional
null space measuring method along with the conventional OMP algorithm requires a
measurement vector length up toM = 20. It can be inferred that the proposed SMDM
method takes full advantage of the spatial correlation inMIMO systems based on the
structured compressed sensing theory, making the NBI easier to recover and cancel
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Fig. 5.15 The NBI recovery
probability versus
measurement vector length
M for the two-dimensional
structured compressed
sensing based SMDM
S-SAMP and
one-dimensional compressed
sensing based temporal
differential measuring
SAMP schemes in the
MIMO system

with lessmeasurement data. Hence, using the proposed SMDMmethod, shorter over-
head training sequence in the IEEE 802.11p standard specified preamble is needed
for NBI cancelation.

TheBERperformances of differentNBImitigation schemes over the 2 × 2MIMO
channel in the presence ofNBI are shown in Fig. 5.16, including the proposed SMDM
scheme with S-SAMP, as well as the conventional frequency threshold excision
method, the conventional null space measuring method along with the conventional
OMP algorithm, and the temporal differential measuring method with SAMP for
comparison. The ideal case without the NBI is depicted as a benchmark scheme.
The sparsity level of the NBI is K = 8, and the INR is 30 dB. In the simulations of
BER, the vertical Bell Labs layered space-time (V-BLAST) code is adopted, and the
data symbols sent by the transmit antennas are independent of each other [47]. The
receiver applies the independent demapping max-log-MAP algorithm [40]. The SPA
algorithm [48] is applied for LDPC decoding with the maximum iteration number of
50. It is observed from the simulation results in Fig. 5.16 that the proposed SMDM
method with S-SAMP outperforms the conventional null space measuring method
alongwith the conventionalOMPalgorithmand the conventional frequency threshold
excision method by approximately 0.7 dB and 0.9 dB, respectively, at the target BER
of 10−4 in the presence of the NBI with K = 8 and INR = 30 dB. With the aid
of the spatial correlation under the structured compressed sensing framework, the
SMDM method further achieves a 0.4 dB gain over the previous proposed temporal
differential measuringmethod.Moreover, the proposed SMDMmethod is only about
0.1 dB from the ideal curve without NBI, which demonstrates the accuracy and
effectiveness of NBI recovery for MIMO systems.
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Fig. 5.16 BER performance
comparison of different NBI
mitigation schemes for the
2 × 2 MIMO wireless
transmission system

5.5 Sparse Bayesian Learning Based NBI Recovery

For the NBI signal whose interferer frequencies have a frequency offset with respect
to the OFDM sub-carriers, considering the block sparse property of the NBI, the
sparsity level will significantly increase. The conventional compressed sensing based
NBI recoverymethods have limited performance, and thesemethods require to utilize
the training sequences for differential measuring. Hence, in this section, a block
sparse Bayesian learning based NBI recovery algorithm is proposed. The modeling
method of differential block sparse measurement and representation only using the
CP-OFDM frame structure without requiring the training sequences is proposed.
Making full use of the intra-block correlation of the block sparse NBI signal, the
estimation performance of the sparse Bayesian learning method is improved, and the
drawbacks of the conventional compressed sensing algorithms in the conditions of
large sparsity level and block sparse unknown signals, are overcome. The practical
NBI signal in CP-OFDM systems can be recovered accurately and efficiently. The
methods and techniques proposed in this section can be applied for the estimation
and cancelation of the NBI on the CP-OFDM based LTE/LTE-A signals from the
narrowband internet-of-things (NB-IoT), and the NBI recovery and cancelation in
smart grid communications, etc.

5.5.1 System Model

(1)CP-OFDM Signal Model in LTE-A System
This section takes the NBI generated by the NB-IoT signal on the CP-OFDM signal
in LTE-A systems as an instance to investigate and propose the block sparse Bayesian
learning based NBI recovery and estimation methods. As adopted in LTE-A stan-
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dards [27] as well as many other broadband transmission systems, the CP-OFDM
frame structure is composed of the length-V cyclic prefix (CP) and the length-N
OFDM block, as illustrated in Fig. 5.17. The parameter N is the number of sub-
carriers, and the CP part is the last V samples of its following OFDM block. After
being transmitted in the wireless multi-path fading channel with the channel impulse
response (CIR) hi = [

hi,0, hi,1, . . . , hi,L−1
]T

in the presence of NBI generated by

NB-IoT signal, the received i-th CP pi = [
pi,0, pi,1, . . . , pi,V−1

]T
before the i-th

received OFDM block xi in the LTE-A system is given by

pi = �CPhi + ei + wi , (5.52)

where ei = [
ei,0, ei,1, . . . , ei,V−1

]T
denotes the time-domain NBI vector when we

look at the CP part, and wi denotes the additive white Gaussian noise (AWGN)
vector with zero mean and variance of σ2

w, while the CP component at the receiver
is denoted by �CPhi , with the matrix �CP ∈ C

V×L given by

�CP =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

xi,N−V xi−1,N−1 xi−1,N−2 · · · xi−1,N−L+1

xi,N−V+1 xi,N−V xi−1,N−1 · · · xi−1,N−L+2

xi,N−V+2 xi,N−V+1 xi,N−V · · · xi−1,N−L+3
...

...
...

. . .
...

xi,N−V+L−2 xi,N−V+L−3 xi,N−V+L−4 · · · xi−1,N−1

xi,N−V+L−1 xi,N−V+L−2 xi,N−V+L−3 · · · xi,N−V

xi,N−V+L xi,N−V+L−1 xi,N−V+L−2 · · · xi,N−V+1
...

...
...

. . .
...

xi,N−1 xi,N−2 xi,N−3 · · · xi,N−L

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(5.53)

whose entries {xi−1,n}N−1
n=N−L+1 represent the last L − 1 samples of the (i − 1)-th

OFDM block xi−1, which causes inter-block-interference (IBI) on the current i-th
CP. Since the (i − 1)-th OFDMblock xi−1 only causes IBI on the first L − 1 samples
of the i-th CP, the last G = V − L + 1 samples of pi will form the IBI-free region
p

′
i = [

pi,L−1, pi,L , . . . , pi,V−1
]T
, i.e.,p

′
i = SG,Vpi , whereSG,V denotes the selection

matrix composed of the last G rows of the V × V identity matrix IV .
The IBI-free region exists in practical broadband transmission systems because

a common rule for system design is to configure the guard interval length V to be
much larger than the maximum channel delay spread L in the worst case to avoid
IBI between OFDM symbols, so L is usually smaller than V in practice, i.e., L < V .
For instance, all the IEEE 802.11n [25], the ITU-T G.hn [32], IEEE 802.11p [26],
and the 3GPP LTE-A [27] standards based on CP-OFDM obey this rule. Even if in
certain extreme cases when the channel delay spread is too long so that it exceeds the
guard interval length, the guard interval can be extended to a longer mode to ensure
the existence of IBI-free region, which is supported by various standards that have
extendable CP length modes [25–27]. Hence, the IBI-free region at the end of the
i-th CP can be rewritten as
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Fig. 5.17 Block sparse representation for block sparse Bayesian learning based NBI recovery
through temporal differential measuring method for CP-OFDM symbol in LTE-A systems

p
′
i = �

′
CPhi + e

′
i + w

′
i , (5.54)

wherep
′
i , e

′
i , andw

′
i consist of the lastG entries ofpi , ei , andwi in (5.52), respectively,

while �
′
CP ∈ C

G×L is composed of the last G rows of �CP and contains only the
entries in xi , i.e., �

′
CP = SG,V�CP. The duplicate of p

′
i at the end of the i-th OFDM

block xi is given by
p

′
Xi = �

′
CPhi + e

′
Xi + w

′
Xi , (5.55)

where e
′
Xi and w

′
Xi denote the length-G time-domain NBI and AWGN at the end of

the i-th OFDM block, respectively.

(2)Block Sparse NBI Model
In this section, we still use the NBI model described in Sect. 2.3.1, i.e. the compound
BLGN interferer model [12], and extend it to a more generalized block sparse NBI
model with frequency offset. Taking the NB-IoT signal in the LTE-A system as an
instance, the block sparsemodel of theNBI generated by other NBI interferer sources
can apply similarly. The NB-IoT signal working in-band in the LTE-A spectrum gen-
erates NBI to the receivers of LTE-A systems [21]. Firstly, the frequency offset is
not considered, so the classical purely sparse NBI model, i.e. the compound BLGN
model, can still be adopted. In the frequency domain at the receiver inLTE-A systems,
the generatedNBI associatedwith the i-th receivedOFDMblockor itsCPpart is com-
monly modeled by a superposition of tone interferers represented by a purely sparse
vector ẽi = [

ẽi,0, ẽi,1, . . . , ẽi,N−1
]T

with length N . Similarly, the time-domain NBI
signal corresponding to the CP in (5.52) is denoted by ei = [ei,0, ei,1, . . . , ei,V−1]T ,
which is related with the frequency-domain NBI vector by the Fourier transform
relation given by

ei,n =
∑

k∈Ωi

ẽi,k · exp( j2πkn
N

), n = 0, 1, . . . , V − 1, (5.56)
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whereΩi = {
k
∣∣ẽi,k �= 0 , k = 0, 1, . . . , N − 1

}
is the set of the locations of nonzero

entries, which is defined as the support. The definition of the support and the INR is
the same as that in Sect. 2.3.1.

Next, we extend the classical compound BLGN interferer model to the block
sparse NBI model with frequency offset [3, 49]. In practice, the spectral tone inter-
ferers of theNBI introducedby theNB-IoT signalmight not necessarily locate exactly
at the OFDM sub-carriers of the LTE-A system, which extends our NBI model to a
more general one [3]. In case there is an FO between the OFDM sub-carriers (i.e. the
DFT grid of the LTE-A system) and the NBI (i.e. the NB-IoT frequency locations),
each nonzero entry of the purely sparse NBI vector will spread out to a few adjacent
sub-carriers, making the frequency domain NBI vector ẽi of the i-th CP become a
block sparse vector ẽBi = [ẽBi,0, ẽBi,1, . . . , ẽBi,N−1]T given by

ẽBi = FH
N 	FOFN︸ ︷︷ ︸

CFO

ẽi , (5.57)

where ẽi is the purely sparse vector with few nonzero entries, and 	FO =
diag{1, exp( j2πα/N ), . . . , exp( j2πα(N − 1)/N )} is the FO matrix with the FO
modeled by a uniformly distributed variable α ∈ (−1/2, 1/2] [49]. Thus the time-
domain NBI vector associated with the IBI-free region of the i-th CP in (5.54) is

e
′
i = SG,NFN ẽBi , (5.58)

where SG,N denotes the selection matrix composed of the last G rows of the N × N
identity matrix IN , and the last G rows of FN is thus denoted by SG,NFN . The matrix
CFO is a circular matrix whose first column is the IDFT of the diagonal of 	FO.
Actually, the purely sparse NBI vector ẽi is a special case of (5.57) when there is
no FO, and we can derive that ẽBi = ẽi and CFO = IN when α = 0. If α �= 0, CFO

will have a certain number of nonzero entries with significant magnitude at each
column. Its physical mechanism is that each original nonzero entry (tone interferer)
generates a certain range of frequency spread around its central frequency. Then, by
multiplying CFO to the purely sparse vector ẽi , the vector ẽBi becomes block sparse.
Each tone interferer of the purely sparse NBI signal will become a clustered block
around the center tone interferer, so the actual sparsity level of the block sparse NBI
signal with FO will turn larger than the original sparsity level K of the purely sparse
vector. Thus, the block sparse NBI vector ẽBi can be represented in a block sparse
form according to (2.26) as given by

ẽBi = [ẽBi,0, . . . ẽBi,d1−1︸ ︷︷ ︸
ẽTBi,1

, . . . ẽBi,dg−1 , . . . ẽBi,dg−1
︸ ︷︷ ︸

ẽTBi,g

]T (5.59)

where the block sparse NBI vector ẽBi is divided into g sub-blocks ẽBi,1 . . . ẽBi,g .
Since each original NBI interferer will generate a cluster of nonzero entries around
the central frequency, the number of the nonzero sub-blocks in the block sparse vector
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ẽBi , i.e. Kb, is equal to the sparsity level of the original purely sparse NBI vector ẽi ,
i.e. K . Then we have Kb = K , and the actual sparsity level of the block sparse NBI
signal is larger than that of the original NBI signal, i.e. K .

Without loss of generality, the same FO α is adopted for the tone interferers for
simplicity of presentation. In fact, this model can be easily extended to different
frequency offsets for different tone interferers by setting a distinct FO matrix CFO,i

for each nonzero tone interferer ẽi,k in (5.57). The phase offset relation described
in the following (5.63) still holds for each tone interferer ẽi,k with its own FO αi .
By linear superposition of all the tone interferers, the proposed temporal differential
measuring method and the formulated sparse Bayesian estimation model, as well as
the BSBL algorithm described in the following section, still hold in the same way.

As described previously in Sect. 5.2, it should be noted that there is an important
characteristic of NBI, which facilitates the proposed method for block sparse repre-
sentation: the temporal correlation. The temporal correlation claims that, both the
support and the amplitude of the NBI keep invariant over the received OFDM symbol
of interest. Due to the temporal correlation of the NBI, the support and amplitude of
theNBI associatedwith the CP part and the followingOFDMblock part are the same,
and only their phases are shifted as follows: the time-domain NBI vector associated
with the i-th IBI-free region e

′
i should be equal to the time-domain NBI vector e

′
Xi

associated with the duplicate of the CP in the following OFDM block with only a
phase shift, where e

′
Xi is given by

e
′
Xi = SG,NFN ẽBXi . (5.60)

So the frequency domain block sparse NBI vector is given by

ẽBXi = [ẽBXi,0, ẽBXi,1, . . . , ẽBXi,N−1]T (5.61)

which is corresponding to the duplicate part in the OFDM block is the phase shifted
vector of ẽBi corresponding to the CP part in (5.57), which is given by

ẽBXi,k = ẽBi,k exp

(
j2π(k + α)ΔlB

N

)
, k = 0, 1, . . . , N − 1, (5.62)

where the FO α determines the phase to shift, and ΔlB is the distance between the
i-th CP and its duplicate at the following OFDM block. Note that ΔlB = N in this
case and we further have ẽBXi,k = ẽBi,k exp ( j2πα), which yields a simple constant
proportional relation only determined by α as follows

ẽBXi = exp ( j2πα) ẽBi . (5.63)
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5.5.2 BSBL Based NBI Reconstruction for CP-OFDM

(1) Block Sparse Representation of NBI through Temporal Differential Measuring
In CP-OFDM frames, the time-domain NBI vector e

′
i associated with the i-th IBI-

free region p
′
i is described in (5.58), where its frequency domain form is the block

sparse vector ẽBi given in (5.57).
Firstly, we should establish the block sparse representation of the NBI, which can

be implemented by the proposed block-sparse temporal differential measuring (BS-
TDM) method on the CP-OFDM frame between the CP and the OFDM data block.
As illustrated in Fig. 5.17, since the i-th CP is the copy of the last V samples of the
i-th OFDMblock, the measurement vector can be simply obtained by the differential
operation between the received IBI-free region p

′
i in (5.54) and its duplicate p

′
Xi in

(5.55) at the end of the OFDM block, which eliminates the cyclic data component
�

′
CPhi and yields the block sparse temporal differential measurement vector

Δp
′
i = Δe

′
i + Δw

′
i , (5.64)

where Δe
′
i = e

′
i − e

′
Xi and Δw

′
i = w

′
i − w

′
Xi . Thus from (5.58) and (5.60), we have

the block sparse representation of the NBI as

Δp
′
i = SG,NFNΔẽBi + Δw

′
i , (5.65)

where the length-N block sparse vector to be recovered is

ΔẽBi = ẽBi − ẽBXi = (1 − exp ( j2πα))ẽBi , (5.66)

whose support and block partition are the same with those of ẽBi given by (5.57).
Using this block sparse representation in (5.65), ΔẽBi can be recovered from the
acquired measurement vector Δp

′
i in the presence of background AWGN based on

the proposed BSBL algorithms. Afterwards, ẽBi can be calculated by (5.66) and the
NBI ẽBXi associated with the i-th OFDM block can be calculated through (5.63).
Then, the recovered NBI can be directly canceled out from the information data
just by subtracting ẽBXi from the received frequency-domain OFDM sub-carriersXi ,
which is given by

X0
i = Xi − ẽBXi , (5.67)

where Xi is the DFT of the i-th received OFDM block xi as illustrated in Fig. 5.17,
while X0

i is the frequency-domain OFDM data block free from the NBI generated
by the NB-IoT signal. Thus, the NBI-free OFDM data block can be then used for
information demapping and decoding.

(2) Partition Estimated Block Sparse Bayesian Learning (PE-BSBL) for NBI
Recovery
In the typical BSBL framework described in Sect. 2.4.3, the block partition of the
block sparse vector to be recovered is known [50]. For initialization, the parameters
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including {γt ,Bt } and the covariance matrix 
0 are estimated. Afterwards, they are
input to the BSBL iterations such as the Expectation Maximization (EM) method,
after which the maximum a posterior (MAP) estimation of the block sparse vector
can be calculated.

In the proposed PE-BSBL approach, the block partition of the NBI ẽBi will be
firstly estimated by power threshold method. The estimated block partition ΩBi

associated with the i-th OFDM block can be acquired by

ΩBi = {k
∣∣∣|Δ p̃

′
i,k |2 > ηth, k = 0, 1, . . . , N − 1}, (5.68)

whereΔp̃
′
i = [

Δ p̃
′
i,0,Δ p̃

′
i,1, . . . , Δ p̃

′
i,N−1

]
is the N -pointDFTofΔp

′
i , and the power

threshold ηth used to determine the estimated block partition is given by

ηth = β

N

N−1∑

k=0

∣∣∣Δ p̃
′
i,k

∣∣∣
2
, (5.69)

where β is a scaling coefficient that can be configured proportional to the INR in
different scenarios, and is empirically given by β = √

2σ2
e/σ

2
w as an appropriate

choice. Afterwards, every group of consecutive indices in ΩBi are marked as one
nonzero block. Those indices not included in ΩBi are labeled as zero blocks. By
labeling these blocks, the initial block partition Γi = {St }gt=1 is estimated, where
each block is an index set given by

St = {dt−1 + 1, dt−1 + 2, . . . , dt }, t = 1, 2, . . . , g, (5.70)

where dt is the size of the t-th block ẽBi,t given in (5.59) and might be different from
each other. Then the initial estimation of the support of the purely sparse vector ẽi in
(5.57) can be obtained by picking out the index of the largest entry in each nonzero
block, i.e.

Ωi =
{

k

∣∣∣∣∣
k ∈ ΩBi , k = argmax

k∈St
{|Δ p̃

′
i,k |}, t = 1, 2, . . . , g

}

. (5.71)

After estimating the block partition, the parameters that need to be learnt can
be firstly initialized. Set γ(0)

t = 0 for zero blocks and γ(0)
t = 1 for nonzero blocks.

According to the BLGN a priori distribution of the NBI as described previously,
the variance (auto-covariance) matrix of the purely sparse vector ẽi is a diagonal
matrix Vẽi ∈ C

N×N with the diagonal entries being {Vẽi }k,k = σ2
e for k ∈ Ωi , and

0 for k /∈ Ωi , because the tone interferers are mutually uncorrelated. According to
(5.57), (5.66) and the property of covariance in linear transform, it is derived that

VΔẽBi = |1 − exp ( j2πα)|2CFOVẽiC
H
FO

Δ= 

(0)
0 , (5.72)
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where 

(0)
0 ∈ C

N×N is the initialized priori covariance matrix of ΔẽBi . From (2.28),
the intra-block correlation (IBC) matrices {Bt }gt=1 can be initialized by

B(0)
t = 


(0),t
0 , t = 1, 2, . . . , g, (5.73)

where

(0),t
0 ∈ C

dt×dt denotes the corresponding t-th principal diagonal block in

(0)
0 .

The block sparse NBI signal also has the a priori Gaussian distribution in (5.72),
because the purely sparse NBI tone interferers are assumed to be Gaussian dis-
tributed, and the spectral leakage due to the frequency offset can be regarded as a
linear operation so the generated block sparse NBI signal is still Gaussian distributed
based on the random process theory. The background noise follows Gaussian distri-
bution (2.25), and the noise variance ε(0) can be initialized according to the AWGN
distribution or simply set to a value approaching zero [2, 50], where ε(0) will be
adjusted more accurately in the BSBL process.

Then, the BSBL iterations are implemented to recover the block sparse NBI ΔẽBi
using these initialized parameters. The PE-BSBL algorithm is summarized by the
pseudo-code in Algorithm 3, where ¯(k−1),t

x ∈ C
dt is the corresponding t-th block of

¯(k−1)
x . The output of Algorithm 3 is the recovered block sparse NBI ΔẽBi .
In the PE-BSBL algorithm, it is assumed that different blocksmight have different

sizes, so the IBC matrices {Bt }gt=1 are different from each other and are required to
be estimated through the Bayesian learning iterations. The block partition is also
required to be estimated before the learning process. In fact, the spectral leakage due
to the same frequency offset for different blocks can be regarded as the same.Making
use of this observation, we can derive the same IBC matrix for different blocks from
the frequency offset matrix CFO containing the same pattern of scaling coefficients,
before the learning iterations to facilitate the BSBL method, which is described in
detail in the next section. Hence, another BSBL based method, Informative BSBL
(I-BSBL), is proposed, which is capable of further improving the accuracy of NBI
recovery without requiring block partition estimation beforehand.

(3) Informative Block Sparse Bayesian Learning (I-BSBL) for Block Sparse NBI
Reconstruction
As described previously, for the I-BSBL method, there is no need to estimate the
block partition beforehand for initialization. On the other hand, importantly, the IBC
within each block caused by the frequency offset can be taken good advantage of
as an informative aid for the I-BSBL algorithm. The blocks are assumed to have
identical size u, and the initial IBC matrices {Bt

(0)}gt=1 are initialized to the same
matrix B(0) ∈ C

u×u , which is more practical since each tone interferer will spread
out to the same number of adjacent sub-carriers with the same scaling coefficients
due to the same frequency offset. Note that this can also be derived from (5.57)
where the t-th column (t = 1, . . . , N ) of the circular matrix CFO has u significant
nonzero entries, i.e. scaling coefficients, around the t-th diagonal entry (CFO)t t , and
other entries whose powers are smaller than ρ|(CFO)t t |2 are neglectable, where ρ is
the coefficient used to exclude the insignificant entries.
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Algorithm 3 Partition Estimated Block Sparse Bayesian Learning (PE-BSBL)
Input:

1) Initial IBC parameters {B(0)
t , γ(0)

t }gt=1

2) Initial priori covariance matrix 

(0)
0

3) Initial noise variance ε(0)

4) Measurement vector Δp
′
i

5) Observation matrix �
Δ= SG,NFN

Initialization:

1: ¯(0)x ← 

(0)
0 �T

(
ε(0)I + �


(0)
0 �T

)−1
Δp

′
i

2: 

(0)
x ←

(



(0)−1
0 + 1

ε(0) �
T�

)−1

3: Δẽ(0)
Bi ← ¯(0)x , ζ ← 1 × 10−8, k ← 0

Iterations:
4: repeat
5: k ← k + 1 {Next iteration}

6: γ(k)
t ← 1

dt
Tr

[(
B(k−1)
t

)−1
(



(k−1),t
x + ¯(k−1),t

x

(
¯(k−1),t
x

)T)]

7: ε(k) ← 1
G

[∥∥
∥Δp

′
i − �¯(k−1)

x

∥∥
∥
2

2
+Tr

(



(k−1)
x �H�

)]

8: B(k)
t ← 1

γ
(k)
t

[



(k−1),t
x + ¯(k−1),t

x

(
¯(k−1),t
x

)T ]

9: 

(k)
0 ← diag

{
γ

(k)
1 B(k)

1 , γ
(k)
2 B(k)

2 , · · · γ(k)
g B(k)

g

}

10: ¯(k)x ← 

(k)
0 �H

(
ε(k)I + �


(k)
0 �H

)−1
Δp

′
i

11: 

(k)
x ←

(



(k)−1
0 + 1

ε(k) �
T�

)−1

12: Δẽ(k)
Bi ← ¯(k)x {The k-th MAP estimation}

13: until(
1
N

∥∥
∥Δẽ(k)

Bi − Δẽ(k−1)
Bi

∥∥
∥
1

< ζ &
∥∥
∥Δpi − �Δẽ(k)

Bi

∥∥
∥
2

2
< ε(k)

)
{Halting condition}

Output:
Recovered block sparse NBI vector ΔẽBi = Δẽ(k)

Bi

According to the BSBL theory, the algorithm process towards learning the param-
eters are not sensitive to the choice of the block size u [50]. If a suitable u is selected
by configuring a very small ρ, such as ρ = 0.01, the algorithm can avoid excluding
significant entries at the cost of a slight increase in computational complexity. Any
tone interferer in ẽi will spread out to the same extent to generate a block in ẽBi with
the same block size of u located around this tone interferer, and the IBC of different
blocks is identical. Exploiting this property, the identical IBC matrix B(0) can be
exactly initialized from the frequency offset matrix CFO.
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Firstly, an artificial non-overlapping block-sparse representation of the NBI is
built up in order to cope with the unknown block partition. Since the block partition
is unknown, the blocks can be located at arbitrary positions and might overlap with

each other. There might be in total NB
Δ= N − u + 1 overlapping blocks inΔẽBi , and

the t-th block starts and ends at the t-th and (t + u − 1)-th entries, respectively. All
the nonzero entries of ΔẽBi lie within a subset of these NB blocks. Since the tone
interferers of ẽi follow a BLGN distribution and the operation of (5.57) is linear, the
t-th block follows a multivariate Gaussian distribution with the covariance matrix of
γtBt , whereBt ∈ C

u×u . As described in Sect. 2.4.3, the prior distribution of the block
sparse NBI follows ΔẽBi ∼ N(0, 
0), but 
0 is no longer block diagonal due to the
overlapping of blocks. Each γtBt lies along its principal diagonal and might overlap
other neighboring γ jB j (t �= j). Hence, the typical BSBL framework described in
the PE-BSBL method requires some modifications to be applicable in the I-BSBL
method. The covariance matrix 
0 can be expanded to a non-overlapping block
diagonal matrix 
̃0 ∈ C

NBu×NBu given by


̃0 = diag{γ1B1, . . . , γNBBNB}, (5.74)

where {γtBt }NB
t=1 no longer overlap with each other. Then the block sparse vector

ΔẽBi can be decomposed as follows

ΔẽBi =
NB∑

t=1

Etzt , (5.75)

where each non-overlapping block is denoted by zt ∈ C
u , E{zt } = 0, E{ztz j T } =

δt jγtBt (δt j = 1 for t = j , otherwise δt j = 0), and the equivalent block sparse vector

z Δ= [
zT1 , . . . zTNB

]T ∼ Nz(0, 
̃0). Et ∈ C
N×u is a zero matrix except that its t-th to

(t + u − 1)-th rows are replaced by the identity matrix Iu . Obviously, the block
partition of the artificial block-sparse vector z is trivial and known, since z is simply
composed of NB neighboring blocks with size of u. Now the equivalent I-BSBL
framework corresponding to (5.65) can be established as

Δp
′
i =

NB∑

t=1

SG,NFNEtzt + Δw
′ Δ=Az + Δw

′
, (5.76)

where A
Δ= [

A1, . . .ANB

]
with At

Δ=SG,NFNEt . In this way, the block sparse repre-
sentation for the I-BSBL method is built and is consistent with the typical BSBL
framework given in Sect. 2.4.3, since the blocks in z no longer overlap with each
other. It is also derived that z follows a multivariate distribution. Since the block par-
tition of z is known, the unknown parameters of the distribution can be learnt through
the proposed I-BSBL algorithm whose pseudocode is given in Algorithm 4.
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Algorithm 4 Informative Block Sparse Bayesian Learning (I-BSBL)
Input:

1) Informative IBC matrix {B(0)
t = B(0), γ(0)

t = γ(0)}NB
t=1

2) Informative priori covariance matrix 
̃
(0)
0

3) Initial noise variance ε(0)

4) Block sparse differential measurement vector Δp
′
i

5) Equivalent observation matrix A
Δ= [

A1, · · ·ANB

]
,

where At
Δ= SG,NFNEt

Initialization:

1: ¯(0)x ← 
̃
(0)
0 AT

(
ε(0)I + A
̃

(0)
0 AT

)−1
Δp

′
i

2: 

(0)
x ←

(
(
̃

(0)
0 )−1 + 1

ε(0) A
TA

)−1

3: z(0) ← ¯(0)x , ζ ← 1 × 10−8, k ← 0

Iterations:
4: repeat
5: k ← k + 1 {Next iteration}

6: γ
(k)
t ← 1

uTr

[(
B(0)

)−1
(



(k−1),t
x + ¯(k−1),t

x

(
¯(k−1),t
x

)T)]

7: ε(k) ← 1
G

[∥
∥∥Δp

′
i − A¯(k−1)

x

∥
∥∥
2

2
+Tr

(



(k−1)
x AHA

)]

8: 

(k)
0 ← diag

{
γ(k)
1 B(0), γ(k)

2 B(0), · · · γ(k)
NB

B(0)
}

9: ¯(k)x ← 

(k)
0 AH

(
ε(k)I + A


(k)
0 AH

)−1
Δp

′
i

10: 

(k)
x ←

(
(


(k)
0 )−1 + 1

ε(k) A
TA

)−1

11: z(k) ← ¯(k)x {The k-th MAP estimation}

12: until
(

1
uNB

∥∥z(k) − z(k−1)
∥∥
1 < ζ &

∥∥Δpi − Az(k)
∥∥2
2 < ε(k)

)

{Halting condition}
Output:

Recovered equivalent block sparse vector z = z(k)

The parameters in (5.74) for the I-BSBL model (5.76) should be initialized to
be input into the process of Algorithm 4. As has been analyzed, the IBC matrices
(covariancematrix of each block) are identical for realisticNBIwith frequency offset.
The covariance between any pair of entries within a certain block can be calculated
by multiplying their corresponding significant entries (scaling coefficients) in the
frequency offset matrix CFO given by (5.57). Thus, the IBC matrix B(0) ∈ C

u×u can
be accurately initialized as

B(0) = σ2
e [b1, b2 . . . , bu]

H [b1, b2 . . . , bu] , (5.77)
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where each corresponding significant entry b j is given by

b j = (CFO) j� u+1
2 �, j = 1, 2, . . . , u, (5.78)

where �·� is the floor operator. Because any block of the NB possible blocks might
be nonzero or zero blocks with equal probability, it is assumed that γ(0)

t = γ(0) =
1/2, t = 1, . . . , NB during the initialization phase, and will be updated to asymptot-
ically approaching either 0 or 1 by the I-BSBL algorithm. Thus, it is derived that the
non-overlapping covariance matrix (5.74) is initialized by


̃
(0)
0 = 1

2
diag{B(0), . . . ,B(0)

︸ ︷︷ ︸
NB blocks

}. (5.79)

After initialization, now the I-BSBLmodel in (5.76) can be solved by the proposed
Algorithm4. By exploiting the prior informative parameters (the IBCmatrixB(0), the
covariancematrix 
̃

(0)
0 , and γt ) in the extended equivalent framework given by (5.76),

the equivalent block sparse vector z will be accurately recovered by Algorithm 4
after the learning iterations, and thus the NBI vector ΔẽBi is recovered from (5.75).

Till now, we have successfully recovered the block sparse NBI vector, fromwhich
the NBI vectors located at the OFDM blocks can be derived due to the temporal cor-
relation of the NBI. The block sparse NBI vector ẽBXi given by (5.63) located at the
i-th OFDM block should be calculated for final cancelation. The block sparse differ-
ential NBI vector ΔẽBi recovered by the proposed PE-BSBL or I-BSBL algorithms
can be exploited to derive the block sparse NBI ẽBi located at the i-th CP according
to (5.66) as follows,

ẽBi = 1

1 − exp ( j2πα)
ΔẽBi (5.80)

Then ẽBXi can be directly acquired from ẽBi using (5.63). Afterwards, the NBI sig-
nal ẽBXi can be completely and accurately canceled from the received i-th frequency-
domain OFDM blockXi to obtain the NBI-free OFDM blockX0

i , as given by (5.67).
In this way, the receivers in LTE-A systems are free from the interference generated
by the in-band working NB-IoT signals.

5.5.3 Simulation Results and Discussions

The performance of the estimation accuracy and the recovery probability for the
proposed BSBL underlying NBI cancelation methods in LTE-A systems is evaluated
by extensive simulations in this section. The active data OFDM sub-carrier number is
N = 600 (when the number of resource block is 50 [27]), and the length of each CP
is V = 144, as specified in the LTE-A standard [27]. The sub-carrier spacing is 15
kHz, so the occupied active data bandwidth is configured as 9.0MHz [27], leading to
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a CP duration of 4.68µs. The equivalent baseband multipath six-tap channel, ITU-R
Vehicular-A channel model [38] in the presence of NBI with frequency offset, which
is widely used to emulate the wireless mobile channel, is applied, where the user
equipment (UE) receiver velocity of 20 km/h is used to present the typical low-speed
mobile channel. The maximum delay spread of the Vehicular-A channel is 2.51 µs,
which is equivalent to the discrete channel length L = 76, so the size of the IBI-free
region is G = 68.1

Each tone interferer of theNBI generated by theNB-IoT signal follows aGaussian
distribution. The frequency offset of theNBI is configured a priori known asα = 0.20
in the simulations, while it can also be effectively estimated at the receiver through
the grid search method [49] in realistic implementation. Since each NB-IoT signal
occupies a bandwidth of 200 kHz according to the NB-IoT specifications [21], which
is equivalent to 13 sub-carriers in the LTE-A spectrum, the sparsity level of the NBI is
assumed to be K = 13 in the simulations to emulate one NB-IoT interfering source
signal in the LTE-A system. To make the NBI model more general, the support Ωi

of the NBI is assumed to follow a uniform distribution U [0, N − 1] among all the
N sub-carriers.2 Besides, the NBI recovery performance of the previously proposed
CS based methods, including sparsity adaptive matching pursuit (SAMP) [36] and
the a priori aided SAMP (PA-SAMP), are also evaluated using the same wireless
system setup and reported for comparison.

The mean square error (MSE) performance of NBI recovery using the proposed
and existing methods are shown in Fig. 5.18. The performances of the proposed
BSBL based methods (PE-BSBL and I-BSBL for the recovery of the NBI associated
with each CP-OFDM symbol) and the classical CS-based methods (PA-SAMP and
SAMP algorithms using the preamble to estimate the NBI) are depicted with the
original sparsity level K = 13. The theoretical Cramer-Rao lower bound (CRLB)
calculated by 2σ2

w(K/V ) [51] is also included as a benchmark. It is noted from
Fig. 5.18 that the I-BSBL and PE-BSBL methods achieve a target MSE of 10−3 at
the INR of 11.1 and 12.0 dB, respectively, and the I-BSBL approach outperforms
the CS-based algorithms, i.e. PA-SAMP and SAMP, by approximately 2.2 and 3.9
dB, respectively. It is also observed that the MSE of the proposed BSBL-based
algorithm is asymptotically approaching the theoretical CRLB with the increase of
the INR, verifying the validity and accuracy of the proposed methods. The increase
of the INR implies that the intensity of the NBI is increased with respect to the
background AWGN power, making the NBI signal as measured in the block sparse
representation (5.65) easier to reconstruct, and more accurate. Besides, it is indicated

1In the simulations, the size of IBI-free region can be pre-determined according to the system
configuration of frame length and the maximum channel delay spread of the adopted channel. In
realistic implementation, the maximum channel delay spread can also be obtained from the prior
knowledge of the channel environment and channel statistics, or from the coarse channel estimation
at the receiver.
2The parameter K represents the sparsity level of the purely sparse NBI vector without frequency
offset, and the number of the nonzero blocks in the block sparse NBI signal with frequency offset
is Kg = K as described previously.
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Fig. 5.18 MSE performance
comparison of the proposed
BSBL-based and the
CS-based methods for NBI
recovery in the LTE-A
system under the wireless
Vehicular-A channel

by the simulation results that, the BSBL-based methods outperform the CS-based
ones in recovery performance with a low INR.

The recovery probability of the proposed NBI recovery method with respect to
different sparsity levels is depicted in Fig. 5.19 with the INR = 30 dB. The recovery
probability is defined as the rate of the successful NBI estimations (correct support
estimation andMSE< 10−3) to the total estimations. It is noted that the BSBL based
methods and the CS based methods reach a successful recovery probability of 0.90
at the sparsity level of K = 31 and K = 20, respectively, which indicates that the
proposed methods can accurately recover the NBI with large sparsity levels from the
acquiredmeasurement data that only has quite a small size. Since eachNB-IoT signal
occupies 13 sub-carriers in LTE-A spectrum, it is inferred that the proposed BSBL
method is capable of effectively recovering and canceling at least 2 in-band NB-IoT
interfering signals in the LTE-A system. Moreover, from the gap between the curves
of the proposed BSBL and CS based methods, it is implied that the proposed BSBL
based methods are more robust to larger sparsity levels, and that the BSBL based
methods are particularly effective in recovering the block spare NBI signal that has
more nonzero entries due to the spectral spread caused by the frequency offset of the
NBI. It can also be noted from Fig. 5.19 that, CS-based methods cannot reach 100%
successful recovery in the presence of 1 NB-IoT interfering signal (corresponding
to K = 13), whereas the proposed BSBL methods have stable 100% successful
recovery probability in this case.

To measure the influence of the frequency offset α of the NBI on the proposed
methods, the recovery probability with respect to the frequency offset α under the
Vehicular-A channel is illustrated in Fig. 5.20, where the frequency offset ranges
within α ∈ (−1/2, 1/2] and K = 13 and INR = 30 dB. It is noted from Fig. 5.20
that with the increase of the frequency offset absolute value |α|, the recovery suc-
cessful rate of each method decreases. It is worthwhile to be noted from Fig.5.20
that, the proposed I-BSBL and PE-BSBL algorithms significantly outperform the
conventional CS-based PA-SAMP and SAMP methods that ignore the IBC within



150 5 Sparse Recovery Based NBI Cancelation

Fig. 5.19 Successful
probability of NBI recovery
using the proposed BSBL
and CS based methods in the
LTE-A system under the
wireless Vehicular-A channel

Fig. 5.20 NBI recovery
probability with respect to
different values of frequency
offset α in the LTE-A system
under the wireless
Vehicular-A channel

the blocks. With the increase of the frequency offset, each tone interferer spreads
out to a wider block, and it is observed that the gain of the proposed BSBL methods
over the CS-based methods grows larger. This implies that the two proposed BSBL
based methods can fully exploit the IBC within the blocks of the NBI, whereas the
CS-basedmethods cannot. By initializing in advance and iteratively learning the IBC
parameters, a more accurate BSBL process is facilitated to achieve a better recovery
performance than the CS-based methods. Note that when α = 0 and the block sparse
NBI turns to a purely sparse signal, the BSBL methods still outperform the existing
CS-based counterparts, because the purely sparse vector is a special case of block
sparse vectors where all block sizes are one, and the a priori NBI parameter distri-
bution is fully exploited by the BSBL approach and refined more accurate through
learning process.
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5.6 Performance Analysis of Algorithms

(1) Computational and Time Complexity Analysis
First, we analyze the computational complexity of different algorithms, and compare
the computational complexity of the CS-based greedy algorithms of SAMP, PA-
SAMP, and the structured compressed sensing based greedy algorithm S-SAMP.

For the SAMP algorithm, in each iteration, the computational complexity mainly
comes from two parts: one is the complexity needed by the inner product of the
measurement matrix and the residue vector, i.e. O(MN ), and the other is the com-
plexity needed by solving the equivalent least squares problem of estimating the
temporal sparse vector using the temporal support, i.e. O(MK ). The average itera-
tion number is K . Thus, the total computational complexity of the SAMP algorithm
is O(M(K + N )K ).

For the PA-SAMP algorithm, due to the introduction of the prior information, the
complexity is different from that of SAMP. To obtain the prior information of the
partial support of the sparse vector requires the FFT operation, so the complexity
of O(N log2(N )) is required. Since the partial support (K0 in total) is used as the
prior information, the average iteration number reduces from K for SAMP downto
K − K0 for PA-SAMP. Thus, the total computational complexity of PA-SAMP is
O(M(K + N )(K − K0)).

For the S-SAMP algorithm, the complexity of the spatial multiple differential
measuring for the Nr antennas is O(MNr ). In the iteration process, the complexity
of the matrix multiplication between the observation matrix and the residue matrix is
O(NrMN ) for each iteration, and the complexity of the equivalentmulti-dimensional
least squares problem using the temporal support for the estimation of the temporal
jointly sparse matrix is O(NrMK ). Hence, the total complexity of the S-SAMP
algorithm is O (NrM + K NrM(N + K )).

Second, to quantitatively measure the runtime of different algorithms, the average
number of iterations for the structured compressed sensing based S-SAMPalgorithm,
the prior aided compressed sensing based PA-SAMP algorithm, the classical com-
pressed sensing based SAMP algorithm, and theOMP algorithm is listed in Table5.4,
where the average number is calculated over 103 simulations of NBI recovery. It is
indicated by the simulation results that, the average iteration number required by
the proposed structured compressed sensing based S-SAMP algorithm is much less
than that of the classical compressed sensing based SAMP algorithm. In MIMO
systems, the proposed SMDMmethod along with the S-SAMP algorithm exploiting
the temporal-spatial two-dimensional correlation of the NBI for NBI recovery and
cancelation has a significant higher convergence rate. Besides, it is shown by the sim-
ulation results that, the prior aided information can make the PA-SAMP algorithm
have a faster convergence rate and less iteration number compared with the classical
SAMP algorithm [36] or the OMP algorithm [46]. Therefore, it is verified that the
proposed S-SAMP and PA-SAMP algorithms have a lower time complexity.
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Table 5.4 Average number of iterations to reach correct NBI recovery for different algorithms

sparsity level S-SAMP PA-SAMP SAMP [36] OMP [46]

4 2.42 2.89 3.36 3.93

8 3.79 5.67 7.14 7.72

12 8.63 10.16 12.10 12.23

(2) Convergence Performance and Solution Existence of the Algorithms

Now we investigate the solution existence and the accuracy of the solution for the
previously described structured compressed sensing multiple measurement vectors
problem (5.38), as well as its derivative problem, i.e. the mixed �1,2-norm mini-
mization problem (5.41). First, we provide Theorem 5.1 to prove that the spatially
jointly sparse NBImatrixΔẼ needed to be recovered in the SCS-MMVmodel (5.38)
can be obtained by solving the mixed �1,2-norm minimization problem (5.41). Then
the existence and accuracy of the solution will be guaranteed. In order to prove
Theorem 5.1, we first provide the following lemma:

Lemma 5.1 Assume that y = �x0 + w is a noisy measurement of an arbitrary vec-
tor x0 ∈ C, and let the block-sparse vector xK denote the optimal K -block-sparse
approximation of x0, such that

xK = argmin
xK

∥∥xK − x0
∥∥
2,Γ , ∀ block-K -sparse xK . (5.81)

Assume that x̂ is a solution of the following mixed l2/ l1-norm minimization problem:

x̂ = min
x

‖x‖2,Γ = min
x

NB∑

i=1

‖x[i]‖2 s.t. ‖y − �x‖2 ≤ ε. (5.82)

If � satisfies the block-RIP property with the parameter of δ(B)2K <
√
2 − 1, and then

we have ∥∥x̂ − x0
∥∥
2 ≤ 2(1−δ(B)

2K )

1−(1+√
2)δ(B)

2K

K−1/2
∥∥xK − x0

∥∥
2,Γ

+ 4
√

1+δ(B)
2K

1−(1+√
2)δ(B)

2K

ε.
(5.83)

where the definitions of block sparsity and block-RIP are given in Definition 2.3 and
Eq. (2.21). The content of Lemma 5.1 and its proof can be referred to the related
content of Theorem 2 in literature [52], so the details of the proof are omitted here.
Then, in order to guarantee the existence and accuracy of the solution of the SCS-
MMV problem (5.38) and the mixed �1,2-norm minimization problem (5.41), we
provide the following theorem.
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Theorem 5.1 Let K denote the sparsity level of the actual NBI signal. The spatially
jointly sparse NBI matrix ΔÊ obtained by solving the mixed �1,2-norm minimization
problem (5.41) is the optimal approximation of the actual NBI matrix ΔẼ in the
noisy measurement (5.38), which makes the following statement hold, i.e.

∥∥
∥ΔÊ − ΔẼ

∥∥
∥
2,2

≤ C (B)
K · ε, (5.84)

if the block-sparse observation matrix �B = (FM ⊗ INr ) generated by the obser-
vation matrix FM given by Eq. (5.38) satisfies the block-RIP condition with the
block-RIP parameter of δ(B)

2K <
√
2 − 1, where

C (B)
K = 4

√
1 + δ(B)

2K

1 − (1 + √
2)δ(B)

2K

. (5.85)

The detailed proof of Theorem 5.1 is provided as follows.

Proof Let vec(A) denote the vectorization operation of amatrix, which returns a vec-
tor composed of all the columns of the matrixA. First, the SCS-MMVmeasurement
model (5.38) is vectorized into:

vec
(
ΔYT

) = (
FM ⊗ INr

)
vec

(
ΔẼT

)
+ vec

(
ΔWT

)
(5.86)

where vec(ΔYT ) and vec(ΔẼT ) are the high-dimensional vectors derived by the
vectorization of all the rows of ΔY and ΔẼ. Define the block-sparse NBI vector

as x
Δ= vec(ΔẼT ). In the vectorization, the original observation matrix FM is also

turned into
(
FM ⊗ INr

)
, where ⊗ denotes the operation of Kronecker product. Then,

the mixed �1,2-norm minimization problem (5.41) is vectorized and turned into a
mixed �2/�1-norm minimization problem as:

x̂ = arg min
x∈CNNr

‖x‖2,Γ ,

x = vec
(
ΔẼT

)
, x̂ = vec(ΔÊT ),

(5.87)

Γ = {d1, . . . , dNB}, NB = N , di = Nr ∀i, (5.88)

s.t.
∥
∥vec

(
ΔYT

) − (
FM ⊗ INr

)
x
∥
∥
2 ≤ ε, (5.89)

where x is the block-sparse vector composed of the vectorization of all the rows
of ΔẼ. It can be noted from the principle of vectorization that, the block partition
is naturally generated by row as shown by Eq. (5.88), where the number of sub-
blocks NB = N , and each sub-block x[i] represents the i-th row of ΔẼ. The mixed
�2/�1-norm ‖x‖2,Γ is given by Eq. (2.20).
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Then we can complete the proof of this theorem based on Lemma 5.1. Consider
the conditions of Lemma 5.1, the noisy measurement of the block-sparse vector

x
Δ= vec(ΔẼT ) is given by Eq. (5.86), while the solution of the mixed �2/�1-norm

minimization problem given by (5.87) as described in Eq. (5.82) in Lemma 5.1 is
the estimated block-sparse vector x̂.

Thus, consider that the optimal K -block-sparse approximation of the actual NBI
vector x0 to be estimated is given by Eq. (5.81). For this theorem, since the sparsity
level of the actual NBI signal is K , the actual NBI vector x0 to be estimated in
Eq. (5.86) is already K -block-sparse (NOT an arbitrary vector) on the block partition
Γ given by Eq. (5.88). Hence, xK can be calculated as:

xK = argmin
∀K -block-sparse xK

∥∥xK − x0
∥∥
2,Γ = x0. (5.90)

According to the conditions of this theorem, the block observation matrix (FM ⊗
INr ) generated by Eq. (5.86) satisfies the block-RIP condition with the block-RIP
parameter of δ(B)

2K <
√
2 − 1. Thus, according to Lemma 5.1, we have the following

conclusion:

∥∥x̂ − x0
∥∥
2 ≤ 2(1 − δ(B)

2K )

1 − (1 + √
2)δ(B)

2K

K−1/2
∥∥xK − x0

∥∥
2,Γ

+ 4
√
1 + δ(B)

2K

1 − (1 + √
2)δ(B)

2K

ε.

(5.91)

as described by Eq. (5.90), xK = x0, thus the first term to the right of Eq. (5.91) turns
zero. Thus, we have

∥∥x̂ − x0
∥∥
2 ≤ 4

√
1+δ(B)

2K

1−(1+√
2)δ(B)

2K

ε, (5.92)

substituting x̂ and x0 with vec(ΔÊT ) and vec(ΔẼT ), respectively, yields

∥∥
∥vec(ΔÊT ) − vec(ΔẼT )

∥∥
∥
2

≤ 4
√

1+δ(B)
2K

1−(1+√
2)δ(B)

2K

ε. (5.93)

Note that the mixed �1,2-norm minimization problem in Eq. (5.87) and the block-
sparse measurement model in Eq. (5.86) are the vectorization form of the mixed
�1,2-norm minimization problem in Eq. (5.41) and the SCS-MMV-based multiple
measurement model in Eq. (5.38), respectively. Thus, through the inverse operation
of turning the vectorized vector back to the original matrix, we have

∥∥∥ΔÊ − ΔẼ0

∥∥∥
2,2

=
∥∥∥vec(ΔÊT ) − vec(ΔẼT

0 )

∥∥∥
2

≤ 4
√

1+δ(B)
2K

1−(1+√
2)δ(B)

2K

εS,
(5.94)
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where it is obvious that the first equality holds: according to the definition in
Eq. (5.40), the �2,2-norm of a matrix calculates the squared power of all the entries
of the matrix, while the �2-norm of the vectorized column vector also calculates the
squared power of all the same entries. Consequently, we have finished the proof of
this theorem from Eq. (5.94). �

In essence, the proof is derived by turning the mixed �1,2-norm minimization
problem (5.41) into a block-sparse problem in the form of Eq. (5.82) equivalently.
Then, by vectorizing the spatially jointly sparse NBI matrix ΔÊ by row into the
block-sparse framework given by Eq. (5.82), and combined with the constraints of
the SCS-MMVproblemgiven byEq. (5.41), each rowof thematrixΔÊ is regarded as
a sub-block of the block-sparse model. Then, based on Lemma 5.1 and the equivalent
block-sparsity in row of the matrix ΔẼ in Eq. (5.38), the proof of Theorem 5.1 is
derived.

Theorem 5.1 has theoretically guaranteed the solution existence of the mixed �1,2-
normminimization problem (5.41), and verified the solution can accurately approach
the NBI signal to be estimated in Eq. (5.38).

(3) Cramér-Rao Lower Bound of Sparse Recovery
Next, we will derive the theoretical Cramér-Rao Lower Bound (CRLB) of the MSE
of theNBI estimation according to themodern signal processing theory [51]. Assume
that the NBI measurement vector as well as the recovery model is given by

yi = �ẽi + w. (5.95)

Assume that the background noise w is zero-mean AWGN with the variance of σ2
w,

and then the conditional probability density function of the measurement vector yi
conditioned on ẽi is given by

p yi,Γ |ẽi,Γ
(
yi ; ẽi,Γ

) = 1
(
2πσ2

w

)M/2 exp

(
− 1

2σ2
w

∥∥yi − �Γ ẽi,Γ
∥∥2

)
, (5.96)

where Γ is the support of the NBI. ẽi,Γ and�Γ are the components of the NBI vector
and the observation matrix corresponding to the support Γ , respectively. Then, the
Fisher information matrix J(ẽi,Γ ) [51] corresponding to the NBI can be calculated
as

[J(ẽi,Γ )]m,n
Δ= −E

⎧
⎨

⎩

∂2 ln
[
p yi,Γ |ẽi,Γ

(
yi ; ẽi,Γ

)]

∂ẽi,Γ,m∂ẽi,Γ,n

⎫
⎬

⎭
= 1

σ2
w

[
(�Γ )H�Γ

]
m,n, (5.97)

where [J(ẽi,Γ )]m,n denotes the entry of rowm and column n of the Fisher information
matrix J(ẽi,Γ ). ẽi,Γ,m and ẽi,Γ,n denote them-th and n-th entries of ẽi,Γ , respectively.
According to the estimation theory in [51], the CRLB can be derived as



156 5 Sparse Recovery Based NBI Cancelation

(CRLB :) E
{∥∥êi,Γ − ẽi,Γ

∥∥2
}

≥ Tr
{(
J(ẽi,Γ )

)−1
}

= σ2
wTr

{(
(�Γ )H�Γ

)−1
}

≥ σ2
wK/ϕ,

(5.98)

where there are two inequalities, so the CRLB is a lower bound. The first inequality
holds due to the principle of vector CRLB [51]. The second inequality turns to
equality if all the columns of the observation matrix �Γ are strictly orthogonal
with each other, and in this condition �Γ

H�Γ becomes a diagonal matrix (whose
diagonal entries are all equal to the self inner product of each column of �Γ , i.e. ϕ).
In fact, the columns of the observation matrix adopted in this chapter, as the partial
inverse discrete Fourier transformmatrix in Eq. (5.18), i.e.�Γ = FM , are not strictly
orthogonal between each other. Hence, the CRLB cannot reach the strict equality.
However, since the partial discrete inverse Fourier transform matrix has a good RIP
property and semi-orthogonal property [53, 54], it can be adopted as the observation
matrix for sparse signal recovery,which is able to asymptotically approach theCRLB.
Consequently, the theoretical analysis of the CRLB is consistent with the simulation
results of the MSE reported in this chapter.

5.7 Conclusion

In this chapter, the fundamental drawback of the conventional “passive” anti-NBI
methods is overcome based on the sparse recovery theory. We cut in the problem
from the perspective of “proactive recovery”, and propose the NBI recovery methods
based on compressed sensing, structured compressed sensing and sparse Bayesian
learning, to conduct the accurate and robust recovery and elimination of the NBI sig-
nal in severe conditions of different scenarios and broadband transmission systems.
Using the proposed methods, the broadband communication system can be free from
the impacts of the NBI and the system performance is significantly improved. It is
indicated by the theoretical analysis and extensive simulation results that, the NBI
recovery and cancelation methods based on sparse recovery theory proposed in this
chapter significantly outperform the conventional counterparts, and the estimated
NBI can asymptotically approach the theoretical bound. The proposed method of
NBI measuring, modeling and reconstruction is promising to provide a new theoret-
ical basis and effective alternative for the accurate recovery and cancelation of the
NBI signal in broadband communication systems.
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Chapter 6
Sparse Recovery Based IN Cancelation

Abstract In this chapter, the second key techn ology on the third scientific problem
of this book, i.e. the sparse recovery theory based impulsive noise (IN) reconstruction
and cancelation, is investigated. The highly efficient new technique of accurate IN
recovery and cancelation based on compressed sensing and structured compressed
sensing theories is proposed to overcome the limitation of the conventional “passive”
anti-IN methods and reach the research target of actively and accurately recover and
completely eliminate the IN in broadband communication systems. In this chapter,
first, to address the issue of the state-of-the-art methods, the IN recovery and can-
celation method based on prior aided compressed sensing is proposed. Second, for
the MIMO system, a structured compressed sensing based IN recovery algorithm
exploiting spatial correlation is proposed. Finally, the method of combined NBI and
IN recovery and cancelation based on the time-frequency combined compressed
sensing framework is proposed to overcome the impacts from the NBI and IN on
broadband communication systems.

6.1 Introduction

6.1.1 Problem Description and Related Research

The existing methods of IN mitigation mainly include three aspects, i.e. receiver-
side nonlinear operation, transmitter-side pre-processing, and receiver-side post-
processing. There has been plenty of research on this, which has been described
in detail in Chap.1. The existing conventional methods of IN mitigation have many
drawbacks. For example, the mitigation operations introduce nonlinear distortion
and cause data loss of the signal of interest. Too much time and frequency resources
are occupied, which reduces the efficiency. The estimation is inaccurate, leading
to false alarms and errors. The complexity of the design is high. The assumptions
of the system and the conditions are not realistic. Most of the conventional meth-
ods of IN mitigation is to “passively” mitigate and get rid of the IN, which is not
able to completely eliminate it. Hence, we need to investigate highly accurate IN
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recovery methods that do not have impacts on the correct demodulation and decod-
ing of the signal of interest, and consume much less time and frequency resources,
and much more applicable in practice. The theoretical and technological framework
of “actively” and accurately recovering the IN should be established to completely
eliminate the impacts of the IN on the system performance, and break the bottleneck
that limits the system performance.

In order to address the issues of conventionalmethods, the compressed sensing and
sparse recovery theories can be applied in the problem of IN estimation. According to
the definition of the IN, the IN has a bursting property in the time domain and natural
sparsity. Thus it satisfies the requirements of the compressed sensing framework. We
only need to use a certain approach to obtain the compressed sensing measurement
data of the IN in a certain domain. Then the compressed sensing model and the
measurement matrix are designed to formulate the compressed sensingmeasurement
and recovery model. The IN can be recovered employing the compressed sensing
algorithms.

However, the research on INmitigation is still mainly focused on the conventional
ones. The study on compressed sensing based methods is insufficient. Only a few
related works make use of the frequency domain null sub-carriers as the measure-
ment data of the IN and estimate the IN based on compressed sensing algorithms,
mainly including the research by Caire [1], Lampe [2], and Naffori [3]. However,
the existing compressed sensing based methods have a series of problems. First, in
severe conditions such as large sparsity level, insufficient measurement data and low
INR, the estimation performance degrades greatly. Second, a large amount of null
sub-carriers or pilots are needed to conduct IN estimation, which results in great loss
of spectrum efficiency. Besides, the existingmethods are only aimed at single antenna
systems, not exploiting the spatial correlation of the IN in multiple antennas of the
MIMO system. The spatial diversity is not fully utilized to improve the estimation
performance. Moreover, the existing methods only consider the sparse estimation of
the IN, but have not investigated the severe transmission environment in the pres-
ence of both NBI and IN. The time and frequency combined compressed sensing
framework is not formulated. The combined NBI and IN recovery and cancelation
method is not studied. Hence, the conventional methods have great limitation when
the IN is serious.

6.1.2 Research Aims and Problems

In order to address the fundamental limitation of the conventional anti-INmethods in
“passively” and incompletelymitigate the IN, andmeanwhile solve the problems of a
few compressed sensing based IN estimation methods such as unstable performance,
inaccurate estimation, low spectrum efficiency, limited performance in MIMO and
severe scenarios etc, this chapter cuts in from the perspective of “actively recovering”
the IN. The compressed sensing based IN recovery schemes with high spectrum effi-
ciency, accuracy and robustness are studied on. In the frameworks of time-frequency
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combined compressed sensing measurement and recovery and the spatially multi-
dimensional structured compressed sensing, the bottleneck of conventional anti-IN
methods is broken. The theoretical bound of IN estimation is approached, and the
system performance of the broadband OFDM system and MIMO system in severe
conditions in the presence of both NBI and IN is significantly improved. Specifically,
the contributions of this chapter are summarized as follows:

• The prior aided compressed sensing based method of IN recovery is proposed,
which exploits the time domain threshold method to obtain the partial support
prior information of the IN to reduce the requirement of the frequency domain
measurement data amount. The compressed sensing recovery model is formulated
based on partial Fourier transform matrix as the observation matrix, and the PA-
SAMP algorithm proposed is utilized to accurately recover the IN.

• Based on the spatial correlation of the IN between multiple receive antennas
in MIMO systems, the spatially multi-dimensional IN measurement method is
proposed. Combining the measurement data at multiple receive antennas, the IN
recovery framework based on spatially structured compressed sensing is formu-
lated. The structured compressed sensing based highly efficient greedy algorithm,
i.e. Structured Prior Aided SAMP (SPA-SAMP), is proposed. The convergence,
solution existence and the estimation accuracy of the SPA-SAMP algorithm are
theoretically guaranteed. It is verified that the proposed method achieves higher
recovery accuracy and robustness compared with classical compressed sensing
based algorithms in MIMO systems.

• The NBI and IN combined recovery framework based on time-frequency com-
bined compressed sensing is formulated. The OFDM frame structure based on
compressed sensing time-frequency combined measuring is devised. Exploiting
the differential measuring of the temporal training sequence and the frequency
domain null sub-carriers, we formulate the NBI and IN combined sparse recovery
model. With the aid of the prior information of the time and frequency domain
partial support, the PA-SAMP algorithm is conducted to accurately recover and
eliminate both NBI and IN.

6.2 System Model

(1) Time Domain Sparse Impulsive Noise Model

According to the definition of the IN given in literature, such as described in
Sect. 2.3.1 in Chap.2, in a quantitative perspective of view, the ratio between the
time duration occupied by the time-domain IN nonzero entries and the time duration
of the OFDM block transmission symbol is no greater than 5% [4, 5]. Specifically in
OFDM systems, the ratio between the number of nonzero entries in the time-domain
IN zi = [zi,0, zi,1, . . . zi,N−1]T corresponding to the i-th OFDM frame and the length
of the OFDM data block N is no greater than 5%. Continuing to use the definitions
and notations of the IN model and parameters given in Sect. 2.3.1, the support is
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Πi = { j ∣∣zi, j �= 0 , j = 0, 1, . . . , N − 1
}
. The sparsity level is K = |Πi |. Thus we

have K/N ≤ 5%. The INR between the IN and the background noise is denoted
by γIN, where the IN is regarded as an interference to the system, while the INR is
referred to as the power ratio between the power of the IN and the background noise
(AWGN), which is shown in Eq. (2.9) for detail.

In the framework of sparse recovery theory, the unknown high-dimensional signal
should satisfy the sparse property. The dimension of the time-domain IN correspond-
ing to theOFDMblock transmission symbol is N , which belongs to high-dimensional
signal. The ratio of the time duration occupied by the nonzero entries, i.e. the bursting
impulses, is sufficiently small, so it satisfies the “sparse property” required by the
compressed sensing sparse recovery theory. According to the related sparse recovery
literature [6], it can be known that we only need to design an observation matrix with
good RIP property and formulate the IN sparse measurement model, and then the
IN signal in broadband transmission systems can be recovered using sparse recovery
methods.

In this chapter, the IN model of Middleton’s Class A-Poisson described in
Sect. 2.3.1 in Chap.2 is still used. The definitions of the related parameters are
also used, i.e. sparsity level K , support Πi , and INR γIN, etc.

(2) Spatial Correlation of Impulsive Noise

It is shownby the related literature on INand realistic channel testing results inMIMO
systems that, the IN in MIMO systems has spatial correlation, i.e. spatial domain
correlation [7, 8]. Specifically, inMIMO systems, it is assumed that the time-domain
IN support (set of nonzero entries locations) of different receive antennas is identical,
i.e. the time-domain IN signals at different receive antennas share the same time-
domain sparse pattern. The bursting impulses of the IN at different receive antennas
occur at the same sampling point, as given by

Πi,(1) = Πi,(2) = · · · = Πi,(Nr ) = Πi (6.1)

where Πi,(r), r = 1, . . . Nr denotes the IN support corresponding to the i-th OFDM
symbol at the r -th receive antenna. It is indicated by the spatial correlation of the
IN that, the time-domain sampling locations of the nonzero entries bursting of the
time-domain IN at different receive antennas are the same, while the amplitudemight
be different [7, 8].

The reason why the IN has spatial correlation is as follows: Usually, the distance
between receive antennas of theMIMOsystem is comparable to thewavelength of the
carrier of the signal of interest [9, 10]. Thus, since the IN signal generated by the IN
source travels in light speed, the time difference to reach different receive antennas is
comparable to the time-domain sampling interval 1/ fc of the radio frequency signal of
interest in typical broadband communication systems. Because the radio frequency
carrier of the signal of interest, i.e. fc, is much higher than the signal bandwidth
B (might be 2–3 orders of magnitude higher), it is commonly reckoned that the
baseband bandwidth of the IN is comparable to that of the signal of interest (since
the IN is bursting in the time domain, it contaminates the whole signal bandwidth in
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the frequency domain). Also, the coherent time of the nonzero entries of the time-
domain IN is comparable to the time interval of the time-domain baseband symbols
of the signal of interest, i.e. 1/B.

Hence, fc is much higher than the baseband bandwidth of the IN signal, and
the coherent time of the baseband symbol of the IN signal is much larger than the
sampling interval of the radio frequency signal of interest, i.e. 1/B � 1/ fc. Thus,
the time difference for the IN signal to reach different receive antennas is much
smaller than the coherent time of the IN baseband symbols. We can assume that
different receive antennas are suffering from a certain IN burst at the same time,
which is equivalent to that the time-domain sampling locations of the IN bursts at
different receive antennas are the same. On the other hand, since the channel fading,
antenna gain and other parameters might be different for different receive antennas,
the amplitude of the IN on the receive antennas might be different from each other.

6.3 Prior Aided Compressed Sensing Based IN Cancelation

6.3.1 OFDM System Model with Impulsive Noise

Consider a typicalOFDMsignal frame aswell as the frequency-domainOFDMframe
structure is shown in Fig. 6.1, which is commonly specified in OFDM-based commu-
nications standards including the 802.11WLAN [11] and ITU-TG.9960 [12]. In this
chapter, the null sub-carriers including the reserved tones and the virtual sub-carrier
masks specified in OFDM-based systems, usually for spectrum masks, notching and
inter-service interference avoidance, are utilized to acquire the measurement vec-
tor for compressed sensing-based IN recovery. In the time domain, the i-th frame
si = [cT xTi

]T
consists of the OFDM data block xi = [xi,0, xi,1, . . . , xi,N−1

]T
of

length N and its cyclic prefix (CP) ci of length M . The i-th time-domain OFDM data
block is the IDFT of the associated frequency-domain data in the N sub-carriers,
which contains a set of reserved null sub-carriers denoted by the set Θ . Then the
transmitted signal passes through the multi-path fading channel with the channel
impulsive response (CIR) of hi = [hi,0, hi,1, . . . , hi,L−1

]T
with length L in the pres-

ence of the IN zi . Then, in the frequency domain, the received data in the reserved
null sub-carriers set Θ are denoted by

p̃i = FRzi + w̃i , (6.2)

where the vector p̃i = [ p̃i,0, p̃i,1, . . . , p̃i,R−1]T of length R = |Θ| is themeasurement
vector of the IN at the null sub-carriers, w̃i denotes the corresponding frequency-
domain AWGN vector, while the observation matrix to be used for the compressed
sensing-based IN recovery is the partial DFT matrix FR given by
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Fig. 6.1 Time-frequency OFDM frame structure exploited for compressed sensing-based IN can-
celation

FR = 1√
N

[χχχ0 χχχ1 · · · χχχN−1], (6.3)

where the k-th entry of χχχm is exp(− j2πmk/N ), k ∈ Ω,m = 0, . . . , N − 1. The
measurement vector p̃i at the set Θ contains the IN component and the background
AWGN, while the OFDM data component is not included since the null sub-carriers
are set to zeros.

6.3.2 Priori Aided Compressed Sensing Based IN Recovery

In order to introduce the compressed sensing theory and method, according to the
framework of underdetermined linear inverse problem based on compressed sensing
theory described in Sect. 2.4.1 in Chap.2, first we need to obtain the measurement
vector of the IN to be recovered, and devise the observation matrix that satisfies the
sparse measurement relation. Then the compressed sensing measurement problem
model described by Eq. (2.10) can be formulated, and the IN can be recovered using
the compressed sensing based algorithm.

As described in the previous section, recall that the measurement vector of IN p̃i
as well as the observation matrix FR have been acquired from the null sub-carriers in
(6.2), which is the formulated compressed sensing IN measurement model. Accord-
ing to the compressed sensing theory [6, 13], the unknown high-dimensional sparse
IN vector zi can be recovered accurately from the underdetermined measurement
data (6.2) containing the power constrained background noise w̃i using the com-
pressed sensing algorithms. As described in Chap.2, to solve the sparse underdeter-
mined linear inverse problem (6.2) can be equivalent to solving the following convex
relaxed �1-norm minimization problem:
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min
zi∈CN

‖zi‖1, s.t.‖p̃i − FRzi‖2 ≤ εI , (6.4)

where εI is the power constraint of the AWGN in (6.2). As described previously,
the �1-norm minimization problem (6.4) can be also solved efficiently by classical
compressed sensing algorithms. Since the sparsity level of the IN in practical OFDM
transmission systems is variable and unknown at the receiver, the classical greedy
algorithms of OMP [14] and SP [15] are not suitable. In this chapter, with the aid
of the a priori partial support of the IN, the PA-SAMP algorithm can be utilized to
recover the IN, which can adapt to varying and unknown sparsity levels. Moreover,
the requirement of measurement data amount can be reduced with the help of partial
support.

The a priori information of the IN partial support will also improve the perfor-
mance of compressed sensing-based IN recovery. Since the intensity of IN is normally
much higher than that of the time-domain data component or AWGN, it is feasible
to obtain a coarse estimation of the IN partial support Π(0) at the i-th OFDM data
block through thresholding from the received time-domain OFDM data block xi .
The time-domain samples whose powers exceed the given threshold λt are included
in the partial support Π(0), which is given by

Π(0) =
{
n
∣∣∣
∣∣xi,n
∣∣2 > λt , n = 0, 1, . . . , N − 1

}
, (6.5)

where the power threshold λt is given by

λt = α · 1

N

N−1∑

n=0

∣∣xi,n
∣∣2, (6.6)

where α is a coefficient that can be configured large enough to ensure the accuracy
of the time-domain partial support of the IN. The partial support will help improve
the performance of the compressed sensing algorithm for IN recovery, especially in
severe conditions where the INR is relatively low, the measurement data is insuffi-
cient, or the sparsity level is large.

With the aid of the IN partial support Π(0), the original IN vector zi correspond-
ing to the i-th OFDM data block is able to be efficiently and accurately recovered
using the proposed PA-SAMP algorithm of whom the pseudo-code is summarized
in Algorithm 1. We only need to replace the input and output with the related values
of the IN. Specifically, the input includes the measurement vector p̃i , the observation
matrix� = FR , and the a priori partial supportΠ(0), as well as the iteration step size.
After the iterations, the output is the estimated final support Π̂i and the recovered IN
vector ẑi , s.t. ẑi |Π̂i

= (FR)
†
Π̂i
p̃i , ẑi |Π̂ c

i
= 0.

Finally, the time-domain IN can be both canceled out from the received OFDM
data block, and be processed by the successive demapping and decoding modules
at the receiver, which is free from the impacts of the IN. Through introducing the
aid of the prior information of the partial support, exploiting the prior aided com-
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pressed sensing based PA-SAMP algorithm, the requirement of the measurement
data amount is greatly reduced. Thus the spectral efficiency is greatly improved, and
meanwhile the accuracy and stability are improved. Compared with conventional
SAMP algorithm, the PA-SAMP algorithm has a lower complexity, higher accuracy
and applicability, which is analyzed in detail in Sect. 5.3.

6.3.3 Simulation Results and Discussions

The performance of the proposed CS-based IN cancelation scheme for OFDM-based
systems is investigated and validated through extensive simulations. The simulation
parameters are configured according to the typical wireless communications system.
The OFDM sub-carrier number N = 1024, the CP length M = 128, and the number
of null sub-carriers R = 128. The multi-path fading ITU-R Vehicular-B channel
model [16] in the presence of IN is used. The scaling coefficient for the partial
support acquisition is α = 5.0.

The general process of the proposed approach for compressed sensing-based IN
recovery with the IN parameters of A = 0.15,ω = 0.02, K = 10, and INR γIN = 30
dB is depicted inFig. 6.2,where theGaussianmixturemodel is adopted and the arrival
rate of the IN bursts is described by a Poisson point process with a medium value of
λ = 50/sec. The IN partial support is firstly obtained using the threshold λt in (6.6).
From the null sub-carriers set, we can get the IN measurement vector out of which
the accurate IN is recovered using PA-SAMP. It is observed from Fig. 6.2 that the
final IN estimation based on the PA-SAMP method matches the actual IN very well.

The mean square error (MSE) performance of IN recovery using the proposed
prior aided compressed sensing based method is shown in Fig. 6.3. The classical
compressed sensing based SAMP algorithm is also simulated for comparison. The

Fig. 6.2 IN recovery
process using the proposed
prior aided compressed
sensing based PA-SAMP
method
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Fig. 6.3 MSE performance
for IN recovery using
PA-SAMP and SAMP

theoretical Cramer-Rao lower bound (CRLB) 2σ2
w · (K/R) is depicted as a bench-

mark. It can be observed that the PA-SAMP algorithm achieves the target MSE 10−3

at the INR of 24.6 and 32.3 dB with K = 8 and K = 16, respectively, which outper-
forms SAMP by approximately 1.8 dB. It is noted from the simulation results that
the MSE of the proposed method approaches the theoretical CRLB with the increase
of the INR, and the high accuracy of the proposed IN cancelation method is verified.

6.4 Structured Compressed Sensing Based IN Cancelation

The classical compressed sensing theory basedmethods of IN recovery have not fully
utilized the spatial correlation of the IN inMIMO systems, so the performance might
be degraded in severe conditions such as insufficient measurement data, intensive
background noise and large sparsity levels. In this section, we propose the spatially
multiple measuring (SMM) method of the IN for MIMO systems, and formulate
the framework of IN recovery based on spatially multi-dimensional structured com-
pressed sensing. Furthermore, the improved structured compressed sensing based
greedy algorithm, i.e. structured prior aided SAMP (SPA-SAMP), is proposed to
achieve a higher recovery accuracy and stability than classical compressed sensing
based algorithms.

6.4.1 MIMO System Model with Impulsive Noise

According to the specifications in the IEEE 802.11n/p [11, 17], the signal frame
and the frequency-domain structure of a typical wireless MIMO system is illus-
trated in Fig. 6.4. Without loss of generality, the 2 × 2 MIMO system is investigated
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Fig. 6.4 Time-frequency OFDM frame structure exploited by the SMM method for the structured
compressed sensing-based IN recovery and cancelation

in this section, while the proposed scheme is also applicable in arbitrary Nt × Nr

MIMO systems, where Nt and Nr are the number of transmit and receive antennas.
The null sub-carriers, including the reserved tones and the virtual sub-carrier masks
specified in various communications standards such as the IEEE 802.11p WAVE
standard, are utilized by the proposed SMM method to acquire the measurement
matrix for structured compressed sensing based IN recovery. In the time domain,
the i-th transmitted frame at the t-th transmit antenna consists of the OFDM symbol
x(t)
i = [x (t)

i,0, x
(t)
i,1, . . . , x

(t)
i,N−1

]T
of length N and its cyclic prefix (CP) c(t)

i with length

M . The i-th time-domain OFDM symbol x(t)
i is the inverse discrete Fourier trans-

form (IDFT) of the corresponding frequency-domain data X̃(t)
i in the N sub-carriers,

which contains some reserved null sub-carriers whose indices are denoted by the set
Θ . All the Nt transmit antennas are sending the OFDM symbols simultaneously, then
passing through the wireless MIMO channel with the channel impulsive response

(CIR) h(tr) =
[
h(tr)
0 , h(tr)

1 , . . . , h(tr)
L−1

]T
between the t-th transmit antenna and the r -

th receive antenna. At the receiver, the received i-th OFDM signal frame at the r -th
receive antenna is denoted by [(c(r)

i )T , (y(r)
i )T ]T , which is composed of the received

OFDM data block y(r)
i and its cyclic prefix c(r)

i . The received OFDM data block y(r)
i

is given by
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y(r)
i = [y(r)

i,0 , y(r)
i,1 , . . . , y(r)

i,N−1]T =
Nt∑

t=1

h(tr) � x(t)
i + z(r)

i + w(r)
i , (6.7)

where z(r)
i and w(r)

i denote the time-domain additive IN (of length N ) at the r -th
receive antenna and the time-domain AWGN vector, respectively. The operator �
denotes cyclic convolution. It is noted that, the length-N time-domain IN signal z(r)

i

is corresponding to the location of the received OFDM data block y(r)
i , which is

irrelevant to the CP c(r)
i . Thus, through the DFT operation, the received signal is

transferred to the frequency domain as

Ỹ(r)
i = FNy

(r)
i =

Nt∑

t=1

H(tr)X̃(t)
i + FNz

(r)
i + w̃(r)

i , (6.8)

where FN and w̃(r)
i denote the N -point DFT matrix and the frequency-domain

AWGN vector at the r -th receive antenna, respectively. The N × N channel fre-
quency response (CFR) matrix between the t-th transmit antenna and the r -th receive
antenna is denoted by H(tr) = diag{FNh(tr)}. As has been described previously, the
R = |Θ| null sub-carriers corresponding to the null sub-carrier set Θ out of X̃(t)

i at
all the transmit antennas are preset to zero. Thus, we can use a selection matrix SR to
pick out the R sub-carriers corresponding to the set Θ from the received frequency-
domain data block Ỹ(r)

i , and obtain a frequency-domain measurement vector of the
IN p̃(r)

i as given by
p̃(r)
i = SRỸ

(r)
i

=
Nt∑

t=1
SRH(tr)X̃(t)

i + FRz
(r)
i + SRw̃

(r)
i

= 0 + FRz
(r)
i + w̃(r)

R,i ,

(6.9)

where the R × N selection matrix SR is composed of the R rows of the N × N
identity matrix IN corresponding to the set Θ . The reason why the last equality in
Eq. (6.9) holds is that, the entries of X̃(t)

i corresponding to the set Θ are zero, so we
have SRH(tr)X̃(t)

i = 0. The R × N partial Fourier transform matrix FR is composed
of the R rows of the original N -point DFT matrix FN corresponding to the set Θ .
Thus, the received data corresponding to the null sub-carrier setΘ at the r -th receive
antenna can be simplified and rewritten as

p̃(r)
i = FRz

(r)
i + w̃(r)

R,i , (6.10)

where the vector p̃(r)
i = [ p̃(r)

i,0 , p̃
(r)
i,1 , . . . , p̃

(r)
i,R−1]T of length R is the one-dimensional

measurement vector of the IN at the null sub-carriers at the r -th receive antenna.
w̃(r)

R,i denotes the length-R corresponding frequency-domain AWGN vector. Then, it
can be derived that the observation matrix for the subsequent structured compressed
sensing IN recovery is the partial Fourier transform matrix FR as given by
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FR = 1√
N

[χχχ0 χχχ1 · · · χχχN−1], (6.11)

where the k-th entry of χχχm is exp(− j2πmk/N ), k ∈ Θ,m = 0, . . . , N − 1. Note
that the measurement vector p̃(r)

i at the set Θ only contains the components of IN
and AWGN, while the information data component is not included since the null
sub-carriers are set to zeros.

6.4.2 Spatially Multi-dimensional IN Measurement

For the SISO system, the classical compressed sensing based INmeasurement model
can be formulated. The IN signal ξi for the SISO system can be recovered using the
one-dimensional measurement vector p̃(r)

i given by (6.10). One can apply classical
compressed sensing theory and algorithms, including solving the convex relaxed �1-
normminimization problem, and applying the state-of-art compressed sensing-based
greedy algorithms. However, these CS based methods are only aimed at the SISO
system and ignores the spatial correlation of the IN in the MIMO system, which
might result in performance degradation, particularly when the intensity of the IN is
fluctuating and its sparsity is large.

To further improve the immunity to bad conditions, the structure compressed
sensing theory is introduced to extend the previous work in SISO systems to MIMO-
OFDM systems, leading to the proposed SMM method. The structured compressed
sensing based IN recovery model is formulated, and the IN can be efficiently and
accurately recovered. In the Nt × Nr MIMO-OFDM system, the proposed SMM
method exploits all the Nr measurement vectors given in (6.10) corresponding to the
spatially correlated Nr receive antennas, yielding the structured compressed sensing
recovery problem model as given by

P̃ =
[
p̃(1)
i , p̃(2)

i , . . . , p̃(Nr)
i

]

R×Nr

= FR�0 + W̃, (6.12)

where P̃ is the INmulti-dimensional measurement matrix constituted by the Nr mea-
surement vectors in column obtained by Eq. (6.10) at the Nr receive antennas, which
is consistentwith the structured compressed sensingmulti-dimensionalmeasurement
vectors (MMV) model introduced in Sect. 2.4.2. �0 = [z(1)

i , z(2)
i , . . . , z(Nr)

i ]N×Nr is
the spatially jointly sparse IN matrix. Due to the spatial correlation of the IN (6.1)
described previously, the columns of the spatially jointly sparse IN matrix share the
same support Πi , while the amplitude of the nonzero entries in the same row of the
matrix corresponding to different receive antennasmight be different fromeach other.
W̃ = [w̃(1)

R,i , w̃
(2)
R,i , . . . , w̃

(Nr)
R,i ] denotes the corresponding frequency-domain AWGN

matrix.
The formulated mathematical model in (6.12) complies with the theory of

structured compressed sensing MMV model [18, 19]. Each column of the multi-



6.4 Structured Compressed Sensing Based IN Cancelation 173

dimensional measurements matrix P̃ is one measurement vector of the IN related
with one receive antenna, and the spatial correlation is taken good advantage of by
the structured compressed sensing measurements model (6.12). Afterwards, accord-
ing to the structure compressed sensing framework in Sect. 2.4.2, the multiple IN
signals within �0 that are jointly sparse can be simultaneously recovered by solving
the mixed �0,q -norm minimization problem as given by

�̂ = arg min
�∈CN×Nr

‖�‖0,q , s.t.
∥∥∥P̃ − FR�

∥∥∥
q,q

≤ εS, (6.13)

where εS denotes the error tolerance due to the background AWGN W̃, and the
�p,q -norm of the matrix � is defined by

‖�‖p,q =
(
∑

m

∥∥(�T )m
∥∥q
p

)1/q
(6.14)

with (�T )m being the m-th row of �. The mixed �0,q -norm minimization problem
in (6.13) is a non-convex and NP-hard one. Fortunately, it can be convex relaxed to
a mixed �1,2-norm minimization problem equivalently according to the structured
compressed sensing theory, yielding

�̂ = arg min
�∈CN×Nr

‖�‖1,2, s.t.
∥∥∥P̃ − FR�

∥∥∥
2,2

≤ εS, (6.15)

and thus it is derived that the error bound due to AWGN can be calculated by

εS = ‖W̃‖2,2 = √RNrσw. (6.16)

Note that the previously described classical compressed sensing-based approach
can be regarded as a special case of the proposed structured compressed sensing-
based framework with Nr = 1 in (6.12) and (6.13). The structured compressed sens-
ing mixed �1,2-norm minimization problem (6.15) can be efficiently solved using
the structured compressed sensing-based greedy algorithms, such as simultaneous
orthogonal matching pursuit (S-OMP) [14], etc. However, S-OMP requires the actual
sparsity level to be known to reconstruct the sparse signal, which is impractical for
the IN signal in realistic wireless MIMO systems. Moreover, there is no a priori
information exploited in state-of-artmethods. Hence, we propose the improved struc-
tured compressed sensing-based greedy algorithm of SPA-SAMP with the aid of the
prior information to solve the mixed �1,2-normminimization problem efficiently and
accurately, and improve the performance against conventional algorithms in MIMO
systems.
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6.4.3 Structured Prior Aided SAMP (SPA-SAMP) Algorithm

Unlike our previously proposed classical compressed sensing based greedy algorithm
which copes with only one-dimensional measurement vector which is not robust in
severe conditions, the proposed structured compressed sensing-based greedy algo-
rithm SPA-SAMP further improves the performance by exploiting the spatial cor-
relation of the IN signals at multiple receive antennas to maximize the accuracy of
each iteration in the greedy pursuit process.

Firstly, since the intensity of the IN is normally much higher than that of data
component or AWGN in the time domain, it is feasible to obtain a coarse a priori
estimation of the partial support Π(0)

i of the IN signals at all the Nr receive antennas
through power thresholding. The indices of the time-domain samples in the i-th
OFDM symbols {y(r)

i }Nr
r=1 with the average power exceeding the given threshold λt

are included in the partial support Π(0)
i , which is given by

Π
(0)
i =

{

n

∣∣∣∣∣
1

Nr

Nr∑

r=1

∣∣∣y(r)
i,n

∣∣∣
2

> λt , n = 0, 1, . . . , N − 1

}

, (6.17)

where the power threshold λt is given by

λt = α

NNr

Nr∑

r=1

N−1∑

n=0

∣∣∣y(r)
i,n

∣∣∣
2
, (6.18)

where α is a scaling coefficient that can be configured large enough to ensure the
accuracy of the time-domain partial support of the IN. Afterwards, the a priori partial
support estimation Π

(0)
i can be exploited to facilitate the initialization and iterations

of SPA-SAMP.
The main principle of the SPA-SAMP algorithm is in the framework of structured

compressed sensing and to minimize the mixed �1,2-norm (6.15) of the spatially
jointly sparse IN matrix �. With the aid of the prior information, the support of
the IN is solved through iterations. Its pseudo-code is summarized in Algorithm 1.
Specifically, the input includes the multi-dimensional measurements matrix P̃, the
observation matrix � = FR, and the a priori partial support Π

(0)
i , as well as the iter-

ation step size Δs, which can be a compromise between the convergence rate and
the accuracy. During the multiple iterations, the accuracy of the temporary support
estimation Π(k)

i is improved at each iteration, and the testing sparsity level T is
increased byΔs when the stage switches. The halting condition is determined by the
�2,2-norm of the residual matrix ‖R‖2,2 ≤ Cε · εS , in which Cε is a constant control-
ling the halting condition and its value is given by (6.67) derived in the following
proof of Theorem 6.7. The output of the algorithm is the final support Π̂i and the

recovered spatially jointly sparse IN matrix �̂, s.t. �̂

∣∣∣
Π̂i

= �
†
Π̂i
P̃, �̂

∣∣∣
Π̂ c

i

= 0.
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Afterwards, the r -th column of the recovered IN jointly sparse matrix �̂ at the
output of Algorithm 1, namely ẑ(r)

i , is exactly the estimation of the real time-domain
IN signal z(r)

i corresponding to the i-th OFDM symbol at the r -th receive antenna.
Then, this recovered IN signal can be canceled out from the received OFDM symbol
at the r -th receive antenna before the following demapping and decoding.

The overall structure and explanations of each step of Algorithm 1 are described
as follows:

Phase 1—Input before the algorithm. The a priori estimated support Π
(0)
i , the

initial sparsity level K (0) = |Π(0)
i |, and the multi-dimensional measurements matrix

P̃ are input into the algorithm.

Phase 2—Initialization phase. The initially estimated INmatrix is set by �̂
(0)
∣∣∣
Π

(0)
i

← �
†

Π
(0)
i

P̃, and the initial testing sparsity level is set by T ← K (0) + Δs.

Phase 3—Main iterations. The main iterations are composed of the outer and
inner loops. The outer loop is a repetition of multiple stages, with each stage being
composed of multiple iterations and a different testing sparsity level, and the outer
loop terminates until the halting condition of the algorithm is met, i.e. ‖R‖2,2 ≤
Cε · εS ; Within the inner loop of each stage, the iterations process includes: 1)
Preliminary test (Line 5–6), where the atoms corresponding to the largest T − K (0)

entries generated by the residue matrix projection onto the dictionary
(
�HR(k−1)

)
l, j
,

are chosen as the preliminary list Sk ; (2) Candidate list (Line 7), where the candidate
support list Lk for the current iteration ismade by aggregating the preliminary test list
Sk and the temporary final support of the previous iteration Π

(k−1)
i ; (3) Temporary

final list (Line 8), where the temporary final support for the current iteration Π
(k)
i is

formed by selecting the largest T entries out of the projection of the measurements
matrix P̃ onto the plane spanned by the subset of the dictionary�Lk corresponding to
the candidate list Lk ; (4) Sparse recovery and residue calculation (Line 10–11), where
the estimated INmatrix is calculated basedon the least squares principle implemented
on the temporary final support Π(k)

i , and the residue matrix R is calculated using the
estimated IN matrix; (5) Stage switching (Line 12–17), where the stage is switched
and the testing sparsity level T is increased by Δs when the �2,2-norm of the residue
matrix is greater than that of the previous iteration, otherwise the stage keeps the
same and the iteration goes into the next.

Phase 4—Output. The output of the algorithm includes the final support Π̂i , and
the recovered spatially jointly sparse IN matrix �̂ corresponding to the final support.

The solution existence and the convergence of Algorithm 5 are theoretically guar-
anteed, which is described in detail in Sect. 6.6. It should be observed from Algo-
rithm 5 that the spatial correlation of the IN signals in the MIMO system is fully
exploited in SPA-SAMP by considering the aggregated contributions of all the Nr

projections associated with Nr receive antennas when selecting the optimal candidate
list in each iteration, instead of making the candidate list from only one measure-
ment vector as in state-of-art algorithms. Hence, the performance of IN recovery
is significantly improved, which is reported in the following computer simulations.
Furthermore, SPA-SAMP is more applicable in realistic wireless transmission sce-
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Algorithm 5 Structured a Priori Aided Sparsity Adaptive Matching Pursuit (SPA-
SAMP) for IN Recovery in MIMO System.
Input:

1) A priori estimated support Π(0)
i

2) Initial sparsity level K (0) = |Π(0)
i |

2) Measurements matrix P̃
3) Observation matrix � = FR
4) Iteration step size Δs.
Initialization:

1: �̂
(0)
∣∣∣
Π

(0)
i

← �
†

Π
(0)
i

P̃ (initially estimated IN matrix)

2: R(0) ← P̃ − ��̂
(0)

(initial residue matrix)
3: T ← K (0) + Δs (initial testing sparsity level); k ← 1

Iterations:
4: repeat

5: v ∈ C
N s.t. vl =

Nr∑

j=1

∣∣∣
(
�HR(k−1)

)
l, j

∣∣∣

6: Sk ← Max{v, T − K (0)} {Preliminary test}
7: Lk ← Π

(k−1)
i ∪ Sk {Make candidate list}

8: u ∈ C
|Lk | s.t. ul =

Nr∑

j=1

∣∣∣∣
(
�

†
Lk
P̃
)

l, j

∣∣∣∣

9: Π
(k)
i ← Max{u, T } {Temporary final list}

10: �̂
(k)
∣∣∣
Π

(k)
i

← �
†

Π
(k)
i

P̃; �̂
(k)
∣∣∣
Π

(k)c
i

← 0

11: R ← P̃ − �
Π

(k)
i

�
†

Π
(k)
i

P̃ {Compute residue}

12: if ‖R‖2,2 ≥ ∥∥R(k−1)
∥∥
2,2 then

13: T ← T + Δs {Stage switching}
14: else
15: Π̂i ← Π

(k)
i ; R(k) ← R

16: k ← k + 1 {Same stage, next iteration}
17: end if
18: until ‖R‖2,2 ≤ Cε · εS {Halting condition}
Output:

1) Final output support Π̂i

2) Recovered spatially jointly sparse IN matrix �̂, s.t. �̂

∣∣∣
Π̂i

= �
†
Π̂i
P̃, �̂

∣∣∣
Π̂c

i

= 0

narios than state-of-art structured compressed sensing-based greedy algorithms, such
as S-OMP that requires the sparsity level to be known [14].

6.4.4 Simulation Results and Discussions

Theperformance of the proposed structured compressed sensing-basedSMMmethod
with the SPA-SAMP algorithm for IN recovery and cancelation in the MIMO wire-
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less vehicular systems is evaluated through simulations. The simulation setup is
basically configured in a wireless vehicular transmission scenario. The OFDM sub-
carrier number N = 1024 and the number of null sub-carriers R = 128. The 16QAM
modulation scheme with the low density parity check (LDPC) code with code length
of 1944 bits and code rate of 1/2 as specified in wireless local area networks [11]
is adopted. The 2 × 2 MIMO system with spatial correlation at the receive anten-
nas [20] in the presence of IN is adopted, where Nt = Nr = 2. The typical 6-tap
multipath channel model named by Vehicular B specified by ITU-R is adopted [16],
considering the low speed scenario with a receiver velocity of 30 km/h. The scaling
coefficient for the partial support acquisition is α = 5.0. The parameters of the IN
are configured as A = 0.15,ω = 0.02, K = 10,λ = 50/s and the INR is γIN = 30
dB.

The performance of one realization of the IN recovery using the proposed struc-
tured compressed sensing-based SMM method with the SPA-SAMP algorithm for
the 2 × 2MIMO system is depicted in Fig. 6.5. The partial support is firstly obtained
using the threshold λt in (6.18). From the null sub-carriers sets at the Nr receive
antennas, we can get the joint measurements matrix of the IN from which the accu-
rate IN is recovered using SPA-SAMP. It is observed from Fig. 6.5 that the final IN
estimation matches the actual IN very well.

The mean square error (MSE) performances of the proposed SMM method with
the structured compressed sensing-based SPA-SAMP algorithm, and the state-of-art
compressed sensing-based algorithms (PA-SAMP and SAMP [21]) for IN recovery
in the 2 × 2 MIMO system are shown in Fig. 6.6. The theoretical Cramer-Rao lower
bound (CRLB) σ2

w · (K/R) is illustrated as a benchmark. It can be observed that the
proposed structured compressed sensing-based SPA-SAMP algorithm achieves the

Fig. 6.5 General process of
IN recovery using the
proposed structured
compressed sensing-based
SMM method with the
SPA-SAMP algorithm
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Fig. 6.6 MSE performance
of the IN reconstruction
using the proposed
structured compressed
sensing-based SMM method
with the SPA-SAMP
algorithm compared with
state-of-art compressed
sensing-based methods in the
2 × 2 MIMO system

MSE of 10−3 at the INR of 23.2 and 32.0 dB with K = 8 and K = 16, respectively,
which outperforms conventional PA-SAMP and SAMP algorithms by approximately
2.2 and 3.8 dB, respectively. It is noted from Fig. 6.6 that the MSE of the proposed
SPA-SAMP is asymptotically approaching the theoretical CRLB with the increase
of the INR, verifying the high recovery accuracy.

The bit error rate (BER) performance of different IN mitigation and cancelation
schemes in the 2 × 2 MIMO system is illustrated in Fig. 6.7, including the proposed
structured compressed sensing-based SMMmethod with the SPA-SAMP algorithm,
as well as the conventional non-compressed-sensing-based method (clipping and
blanking [22]), and the classical compressed sensing-based methods (conventional
compressed sensing measuring method of SCO [3] along with the SAMP algo-
rithm [21] and our previously proposed PA-SAMP algorithm). The case without
the IN is also depicted as a benchmark. In the simulations of BER, the V-BLAST
coding is applied for MIMO data, and the transmitted data symbols at each antenna
is independent of each other [23]. The receiver employs the independent demap-
ping algorithm of max-log-MAP [24], and the SPA algorithm [25] is applied for
LDPC decoding with the maximum iteration number being 50. It can be found that
at the target BER of 10−4, the proposed structured compressed sensing-based scheme
outperforms the classical compressed sensing-based methods and the conventional
clipping and blanking method by approximately 0.7 and 1.5 dB, respectively. Fur-
thermore, the gap between the proposed method and the case without the IN is only
about 0.16 dB, validating the accuracy and effectiveness of the proposed IN recovery
scheme.
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Fig. 6.7 BER performance
of different schemes for IN
mitigation and cancelation
for the 2 × 2 MIMO system

6.5 Compressed Sensing Joint Cancelation of NBI and IN

For the environment in the presence of both NBI and IN, this section formulates
the time-frequency combined compressed sensing framework and devises the time-
frequency training framework and the jointly sparse measurement model. An algo-
rithm of joint recovery and cancelation of the NBI and IN based on time-frequency
combined compressed sensing is proposed.

6.5.1 Time-Frequency Combined Measuring

In conventional wireless or wired vehicular communication systems, there is no
frame design for time and frequency combined training, which is not suitable for
conducting the time-frequency combined sparse measuring of the NBI and IN. Thus,
in this section, we introduce the novel compressed sensing-based time-frequency
measuring OFDM (CS-TFM-OFDM) frame structure to provide technical support
for the time-frequency combined sparse measuring and compressed sensing recov-
ery of the NBI and IN. In the proposed CS-TFM-OFDM frame structure, repeated
training sequences are devised for the temporal differential measuring of the NBI.
Repeated training sequences have already been adopted as guard intervals in the stan-
dards such as digital terrestrial television broadcasting (DTTB) specified in [26] for
channel estimation, synchronization, etc. Meanwhile, the null sub-carriers including
the reserved tones and the virtual mask sub-carriers are widely specified and applied
in state-of-art standards such as IEEE 802.11p and ITU-T G.9960 [11, 12, 17],
which can be utilized to acquire the measurement vector of IN under the proposed
CS-TFM-OFDM framework. Based on this time-frequency training OFDM frame
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Fig. 6.8 Time-frequency frame structure of CS-TFM-OFDM exploited for compressed sensing-
based joint NBI and IN recovery and cancelation

structure, the NBI and IN combined time-frequency sparse measuring framework
can be formulated.

The proposed CS-TFM-OFDM frame structure applied in typical vehicular
communication systems is shown in Fig. 6.8. In the time domain, the i-th frame
si = [cT xTi

]T
consists of the constant training sequence c = [c0, c1, . . . , cM−1

]T

of length M and the following OFDM data block xi = [xi,0, xi,1, . . . , xi,N−1
]T

of
length N , where the training sequences for different frames are identical. The i-th
time-domain OFDM data block is the IDFT of the related frequency-domain data
in the N sub-carriers, which contains a set of reserved null sub-carriers denoted
by the set Θ0. Then the transmitted signal passes through the multi-path vehicular
channel with the channel impulse response (CIR) of hi = [hi,0, hi,1, . . . , hi,L−1

]T

with length L in the presence of the NBI ẽi = [ẽi,0, . . . ẽi,N−1
]T

(with length of N

corresponding to N sub-carriers) and the IN zi = [zi,0, . . . zi,N+M−1
]T

(with length
N + M corresponding the the training sequence and OFDM data block), and con-
sidering the background AWGN wi . Then, at the receiver, the time-domain received
i-th frame training sequence yi = [yi,0, yi,1, . . . , yi,M−1

]T
can be presented as

yi = �Mhi + FM ẽi + SMzi + wi , (6.19)

where the M × (M + N ) selection matrix SM = [IM ON ]. The matrices IM and
ON are the M × M identity matrix and the N × N zero matrix, respectively. SMzi
is the IN component corresponding to the i-th training sequence (if there exists
IN bursting at the location of the training sequence, it is nonzero, otherwise it is
zero). The partial inverse Fourier transform matrix FM is given by Eq. (5.6). The
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training sequence component at the receiver is denoted by �Mhi , with the matrix
�M ∈ C

M×L represented by

�M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

c0 xi−1,N−1 xi−1,N−2 · · · xi−1,N−L+1

c1 c0 xi−1,N−1 · · · xi−1,N−L+2

c2 c1 c0 · · · xi−1,N−L+3
...

...
...

. . .
...

cL−2 cL−3 cL−4 · · · xi−1,N−1

cL−1 cL−2 cL−3 · · · c0
cL cL−1 cL−2 · · · c1
...

...
...

. . .
...

cM−1 cM−2 cM−3 · · · cM−L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (6.20)

whose entries {xi−1,n}N−1
n=N−L+1 represent the last L − 1 samples of the (i − 1)-

th OFDM data block xi−1, which causes inter-block-interference (IBI) on the i-th
training sequence. Since the (i − 1)-th OFDMdata block xi−1 only causes IBI on the
first L − 1 samples of the i-th received training sequence yi , the lastG = M − L + 1
samples of yi will form the IBI-free region q0

i = [yi,L−1, yi,L , . . . , yi,M−1
]T

denoted
by

q0
i = �Ghi + FG ẽi + z′

i + w′
i , (6.21)

where q0
i consists of the last G elements of yi , while FG and �G are the G × N

observationmatrix composed of the lastG rows ofFM , and theG × L Toeplitzmatrix
composed of the last G rows of �M in (6.20), respectively. The corresponding IN
vector z′

i is composed of the last G entries of SMzi in (6.19). w′
i denotes the AWGN

vector related to the IBI-free region with zero mean and the variance of σ2
w. As

has been described previously in Sects. 5.5.1 and 5.3.1, the IBI-free region exists
in practical wireless communication systems because a common rule for the system
design is to configure the guard interval length M to be larger than the maximum
channel length L in the worst case to avoid IBI between OFDM data blocks, so L is
usually smaller than M , i.e., L < M .

In the frequency domain at the receiver as depicted in Fig. 6.8, the received data
in the reserved null sub-carriers set Θ0 are denoted by

p̃0i = FRzi + SR ẽi + w̃i , (6.22)

where the vector p̃0i = [ p̃0i,0, p̃0i,1, . . . , p̃0i,R−1]T of length R = |Θ0| is the measure-
ment vector of the IN at the null sub-carriers. SR ẽi is the frequency-domain NBI
component corresponding to the null sub-carriers set Θ0 (if there exists NBI at
the null sub-carriers set Θ0, its value is nonzero, otherwise it is zero). SR is an
R × N selection matrix with (SR)i,ki = 1, ki ∈ Θ0, i = 1, . . . R, and other entries
being zero. w̃i denotes the corresponding frequency-domain AWGN vector, while
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the observation matrix to be used for the compressed sensing-based IN recovery is
the partial discrete Fourier transform (DFT) matrix FR given by

FR = 1√
N

[χχχ0 χχχ1 · · · χχχN+M−1], (6.23)

where the entries χχχm contains are exp(− j2πmk/(N + M)), k ∈ Θ0,m = 0, . . . ,
N + M − 1. The measurement vector p̃0i at the set Θ0 contains the IN component
and the background AWGN, while the OFDM data component is not included since
the null sub-carriers are set to zeros at the transmitter.

6.5.2 Time-Frequency Combined Recovery of NBI and IN

In order to recover the NBI and IN in the framework of CS-TFM-OFDM time-
frequency combined compressed sensing, firstly we should obtain the temporal dif-
ferential measurement vector of the NBI and the frequency-domain sparse measure-
ment vector of the IN. We should guarantee that they are not affecting each other, so
that the compressed sensing based time-frequency combined sparse recovery model
can be formulated. Thereafter the compressed sensing based algorithms are utilized
for NBI and IN recovery.

(1) NBI temporal differential measurement modeling and compressed sensing
recovery
First, we investigate the acquisition of the NBI measurement vector. The measure-
ment vector is supposed to contain the NBI component. However, the data or train-
ing sequence components are mixed up with the NBI in the measurement vector
and should be nulled out to improve the performance of compressed sensing-based
recovery. Besides, the measurement data impacted by the IN should also be removed
so as to avoid the affect of the IN.

Considering conducting temporal differential measuring for the IBI-free region
(6.21) of the received training sequence, since the CIR within the adjacent training
sequences are the same and can be regarded as invariant (hi ≈ hi+1), the received
training sequence component �Ghi can be eliminated by subtracting q0

i+1 from q0
i ,

i.e. the temporal differentialmeasuring operation of the IBI-free region in the adjacent
training sequences. Thus we have

Δq0
i = FGΔẽi + Δw′

i + Δz′
i , (6.24)

where Δq0
i = q0

i − q0
i+1

Δ= [Δq0
i,0, . . . Δq0

i,G−1

]T
,Δw′

i = w′
i − w′

i+1,Δz′
i = z′

i −
z′
i+1, while the NBI differential vector Δẽi ∈ C

N is denoted as

Δẽi = ẽi − ẽi+1 = [Δẽi,0,Δẽi,1, . . . , Δẽi,N−1
]T

. (6.25)
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As described in Chap.5, due to the temporal correlation of the NBI, there is a rela-
tion that the frequency-domain NBI vector at the (i + 1)-th training sequence ẽi+1

equals ẽi at the i-th training sequence with a phase shift, i.e., ẽi+1,k =
ẽi,k exp( j2πkΔl/N ), k = 0, 1, . . . N − 1. Therefore, the entries of the NBI differ-
ential vector in (6.25) are given by

Δẽi,k = ẽi,k

(
1 − exp

(
j2πkΔl

N

))
, k = 0, 1, . . . , N − 1. (6.26)

In order to completely eliminate the possible IN component Δz′
i in the NBI dif-

ferential vector (6.24), and thus completely avoid any negative impacts of the IN
on the effects of NBI temporal differential measuring, we can conduct an operation
of refinement on Δq0

i in the original NBI measurement vector. That is, the power
thresholding method can be utilized to exclude the measurement samples possibly
contaminated by the IN, i.e. the measurement data samples in Δq0

i whose power
exceeds the following power threshold should be excluded:

ηt = α · 1

G

G∑

m=1

∣∣Δq0
i,m

∣∣2, (6.27)

where α is a scaling coefficient given by α =
√∑

j∈Πi
|zi, j |2/(2σ2

wK ) to ensure

the accuracy of excluding IN contaminated samples and avoid mislabeled samples
impacted by IN. After the refinement operation that excludes the possible IN contam-
ination, the accurate NBI differential vector only containing the NBI and background
AWGN components can be obtained given by

Δqi = FGΔẽi + Δw′
i , (6.28)

where Δqi is the refined NBI differential vector after excluding the possible IN con-
tamination. Till now, we have formulated the NBI compressed sensing measurement
model (6.28). According to the compressed sensing theory described previously, to
solve the compressed sensing underdetermined linear inverse problem can be convex
relaxed and turned to solving the following �1-norm minimization problem:

min
Δẽi∈CN

‖Δẽi‖1, s.t.‖Δqi − FGΔẽi‖2 ≤ εN , (6.29)

where εN is the noise tolerance generated by the AWGN Δw′
i , which can be preset

according to the AWGN distribution [6].
Thus, the �1-norm minimization problem (6.29) can be efficiently solved by

compressed sensing greedy algorithms, such as the proposed PA-SAMP algorithm.
According the the PA-SAMP algorithm, the partial support of the NBI should be
estimated as the prior information. The N -point DFT of the measurement vector
Δq̃i = [Δq̃i,0,Δq̃i,1, . . . , Δq̃i,N−1

]
contains some partial information of the NBI
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support, with some spectral leakage because the measurement vector length G is
smaller than N . However, the intensity of the NBI is commonly much higher than
that of AWGN, which improves the resolution of the NBI locations in the spectrum
of Δq̃i . Hence, it is feasible to obtain the estimation of the NBI partial support Ω(0)

at the i-th frame through thresholding. The sub-carriers with power exceeding the
power threshold λ f are included in the partial support Ω(0), which is given by

Ω(0) =
{
k
∣∣∣
∣∣Δq̃i,k

∣∣2 > λ f , k = 0, 1, . . . , N − 1
}

, (6.30)

where the power threshold λ f is

λ f = β

N

N−1∑

k=0

∣∣Δq̃i,k
∣∣2, (6.31)

where β is a scaling coefficient that can be configured proportional to the INR in
different scenarios, and is empirically given by β = √2σ2

e/σ
2
w as an appropriate

choice that proffers a proper tradeoff between the complexity and accuracy. This
is intuitively understandable because when the INR is high, the threshold should
become larger to avoid a too aggressive support that might include extra false entries.
On the other hand, smaller INR will drive the threshold to become smaller to include
more true entries in the partial support, i.e. to make the support less conservative, to
avoid complexity increase.

The a priori partial NBI support will help improve the performance of the com-
pressed sensing algorithm for NBI recovery, especially in severe conditions where
the INR is relatively lower or the sparsity level is larger.

Thus, we can use the prior aided compressed sensing based greedy algorithm,
i.e. PA-SAMP (see Algorithm 1 for detail), to accurately recover the NBI differ-
ential vector Δêi . According to Eq. (6.26), the frequency-domain NBI differential
vector corresponding to the i-th frame training sequence ẽi can be derived from the
compressed sensing recovered NBI differential vector Δêi as given by

ẽi,k = Δêi,k

/(
1 − exp

(
j2πkΔl

N

))
, k = 0, 1, . . . , N − 1. (6.32)

Thus, the frequency-domain NBI vector corresponding to the i-th frame OFDM data
block ẽDi = [ẽDi,0, ẽDi,1, . . . , ẽDi,N−1

]T
can be similarly obtained as

ẽDi,k = ẽi,k · exp
(
j2πkΔd

N

)
, k = 0, 1, . . . , N − 1, (6.33)

where Δd = M is the distance between the i-th frame training sequence and the
OFDM data block. After obtaining the frequency-domain NBI vector correspond-
ing to the OFDM data block, it can be eliminated. The subsequent demapping and
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decoding process of the signal of interest at the receiver can be free from the impact
of the NBI.

(2) Frequency-Domain Sparse Measuring and Compressed Sensing Recovery for IN
Recall that the measurement vector of IN p̃0i as well as the observation matrix FR

have been acquired from the null sub-carriers in (6.22), it is feasible to recover the
IN vector in the presence of background AWGN based on the compressed sensing
theory.

In order to guarantee the accuracy of compressed sensing based IN recovery, the
IN measurement vector should only contain the IN and AWGN components, but not
the possibly existing NBI component. Thus, before solving the compressed sensing
problem to recover the IN, in order to eliminate the probable influence of the NBI
on the compressed sensing-based IN recovery, it is necessary to exclude the NBI
contaminated sub-carriers with power exceeding the given threshold η f from the
null sub-carriers set Θ0, with the threshold given by

η f = β2

R

R−1∑

k=0

∣∣ p̃i,k
∣∣2, (6.34)

where β is given in (6.31). At the null sub-carriers set Θ0, if there happens to be
an NBI contaminated sub-carrier, it will be correctly detected and excluded by this
thresholding procedure, because the intensity of the NBI is much higher than that
of the frequency-domain component of IN (due to the DFT property) as well as the
background AWGN. Therefore, the original null sub-carriers set Θ0 can be refined
to Θ by excluding these possibly NBI contaminated null sub-carriers, and the mea-
surement vector p̃0i in (6.22) is refined accordingly by excluding the corresponding
entries. Then, it can be turned into an NBI-free frequency-domain IN measurement
vector p̃i as given by

p̃i = FRzi + w̃i . (6.35)

Exploiting the refinedmeasurement vector p̃i , the IN recovery problemmodel can be
formulated based on the compressed sensing theory, i.e. the convex relaxed �1-norm
minimization problem as given by

min
zi∈CN

‖zi‖1, s.t.‖p̃i − FRzi‖2 ≤ εI , (6.36)

εI is the noise tolerance generated by AWGN w̃i .
The �1-norm minimization problem (6.36) can also be efficiently solved by the

compressed sensing based greedy algorithms, such as the PA-SAMP algorithm. The
a priori information of the IN partial support will also improve the performance of
compressed sensing-based IN recovery. Since the intensity of IN is normally much
higher than that of the time-domain data component or AWGN component, it is
feasible to obtain the IN partial support Π

(0)
i at the i-th OFDM data block through

the thresholding operation of the received time-domain OFDM data block xi . The
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time-domain samples with power exceeding the given threshold λt are included in
the partial support Π(0)

i , which is given by

Π
(0)
i =

{
n
∣∣∣
∣∣xi,n
∣∣2 > λt , n = 0, 1, . . . , N − 1

}
, (6.37)

where the power threshold λt is given by

λt = α · 1

N

N−1∑

n=0

∣∣xi,n
∣∣2, (6.38)

where α is a scaling coefficient given in (6.27). The IN partial support is able to
improve the performance of the compressed sensing algorithm for IN recovery, espe-
cially in severe conditions where the INR is relatively low or the sparsity level of IN
is large.

After obtaining the partial support, the PA-SAMP algorithm (see Algorithm 1 for
detail) can be used to recover the IN. After the algorithm is conducted, the recovered
time-domain IN vector ẑi is output, which is exactly the time-domain IN vector
corresponding to the i-th frame OFDM data block. Thus, the IN can be completely
removed from the received OFDM data block, and the subsequent demodulation and
decoding process can be free from the impact of the IN.

Consequently, the compressed sensing based time-frequency combined recov-
ery method for NBI and IN described in this section, can accurately and efficiently
recover the NBI and IN simultaneously, and eliminate the impacts of them from the
received signal of interest completely. The proposed method has taken into account
the interference between the NBI and IN. The time and frequency domain measure-
ment vectors for the NBI and IN are independent of each other, so the framework of
robust and accurate elimination for NBI and IN is formulated.

6.5.3 Simulation Results and Discussions

The performance of the proposed compressed sensing-based simultaneous NBI and
IN cancelation schemes for wireless communications scenario is investigated and
validated through extensive simulations. The signal bandwidth is configured as
7.56MHz located at the central frequency of 6 GHz. The ITU-R Vehicular B channel
model [16] widely used to emulate the wireless channel with the relative receiver
velocity of 30 km/h as low-speed mobility is applied. The OFDM sub-carrier num-
ber N = 1024, the length of each training sequence M = 128, and the number of
null sub-carriers R = 128 are adopted. The modulation scheme 64QAM and the low
density parity check (LDPC) with code length of 64,800 and code rate of 2/3 [27]
is adopted. Consider the transmission environment in the presence of both NBI and
IN, where the INR of the NBI is INR = 30 dB. The IN arrival rate is described by
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Fig. 6.9 General process of NBI and IN recovery based on time-frequency combined compressed
sensing with PA-SAMP algorithm: a NBI recover b IN recovery

Poisson process with a moderate value of λ = 50/s, and the instantaneous amplitude
of the IN is modeled by the Middleton’s Class A distribution with the parameters
A = 0.15 and ω = 0.02.

The general process of the proposed approach for compressed sensing based NBI
and IN combined recovery is depicted in Fig. 6.9 with the NBI sparsity KN = 10
and IN sparsity KI = 10. It can be noted from the simulation results that the final
NBI and IN estimations using the PA-SAMP algorithm accurately match the actual
NBI and IN, respectively, in the framework of time-frequency combined compressed
sensing framework.

The mean square error (MSE) performance of NBI and IN recovery using the
proposed method is shown in Fig. 6.10 and Fig. 6.11, respectively. The theoretical
Cramer-Rao lower bounds (CRLB) 2σ2

w · (KN/G) and 2σ2
w · (KI/R) for NBI and

IN, respectively, are also included as benchmarks. In Fig. 6.10, the performance of
the proposed scheme for NBI recovery with the greedy algorithms of PA-SAMP
and the classical SAMP [21] and OMP [28] algorithms (assuming that the sparsity
level is known for OMP to make the performance of OMP comparable) are depicted
for the sparsity level KN = 8 and KN = 16. The PA-SAMP algorithm achieves a
target MSE of 10−3 at the INR of 26.3 and 33.1 dB with the sparsity level KN =
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Fig. 6.10 MSE performance
comparison for NBI
reconstruction using
proposed compressed
sensing based scheme with
PA-SAMP and SAMP
algorithms

Fig. 6.11 MSE performance
comparison for IN
reconstruction using
proposed compressed
sensing based scheme with
PA-SAMP and SAMP
algorithms

8 and KN = 16, respectively, which outperforms the classical SAMP and OMP
algorithms by approximately 1.7 and 2.0 dB, respectively. Figure6.11 shows the
MSE performance of the compressed sensing-based IN recovery scheme. The PA-
SAMP algorithm achieves theMSE 10−3 at the INR of 24.6 and 32.3 dBwith KI = 8
and KI = 16, respectively, which outperforms SAMP and OMP by approximately
1.8 and 2.2 dB, respectively. It is noted from Figs. 6.10 to 6.11 that the MSE of the
proposed methods approach the theoretical CRLB with the increase of the INR, so
the high accuracy of the proposed simultaneous NBI and IN cancelation method is
verified for vehicular communications.

The recovery probability of the proposed simultaneous NBI and IN recovery
method versus different sparsity levels under the Vehicular B channel is depicted in
Fig. 6.12. The recovery probability is calculated by counting the ratio of successful
recovery, i.e. correct support and MSE< 10−3, within 103 times of simulations. The
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Fig. 6.12 Successful
recovery probability of NBI
and IN recovery using the
proposed time-frequency
combined compressed
sensing PA-SAMP and
SAMP algorithms

proposed simultaneous NBI and IN recovery method based on PA-SAMP reaches a
successful recovery probability of 0.9 at the sparsity level of more than 16, which
indicates that the proposed method based on PA-SAMP correctly recovers the NBI
and IN at large sparsity levels from only a small portion of acquired measurement
vector. For theNBI and IN in commonwireless communications scenarios, the typical
sparsity level of the NBI and IN is between 10 and 20 [3, 29], which indicates the
effectiveness of the proposed scheme in practice. It is also noted from the gap between
the curves of PA-SAMP and SAMP based methods that the proposed PA-SAMP
method can accurately recover NBI and IN with the aid of partial support.

The bit error rate (BER) performance of the proposed simultaneous NBI and
IN cancelation scheme under the Vehicular B channel in the presence of both NBI
and IN is shown in Fig. 6.13. In the simulations, the receiver employs the indepen-
dent demapping algorithm of max-log-MAP [24], and the SPA algorithm [25] is
adopted for LDPC decoding with the maximum iteration number of 50. The BER
performance of the conventional non-compressed sensing-based method, i.e. the tra-
ditional frequency threshold excision (FTE) anti-NBI method [30] along with clip-
ping and blanking anti-IN method [31], and the proposed time-frequency combined
compressed sensing-based method with the PA-SAMP and SAMP are presented for
comparison. The worst case ignoring NBI and IN is also depicted as a benchmark. It
can be found that at the target BER of 10−4, the proposed time-frequency combined
method with the proposed PA-SAMP algorithm outperforms the proposed method
with classical SAMP and the conventional non-compressed sensing-based method
by approximately 0.58 and 1.56 dB, respectively. Furthermore, the gap between the
proposed method and the ideal case without NBI and IN is only about 0.25 dB,
validating the accuracy and effectiveness of the proposed simultaneous NBI and IN
recovery method in the severe environment.
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Fig. 6.13 BER performance
comparison of different
mitigation and cancelation
schemes in the presence of
both NBI and IN

6.6 Algorithm Performance Evaluation

(1) Computational Complexity Analysis
The computational complexity of SPA-SAMP is mainly composed of two parts,
i.e. the prior information acquisition and the iteration process. The prior informa-
tion acquisition requires the complexity of O(NrN ). The complexity of the iter-
ation process is as follows: Each iteration mainly contains two steps. One is the
complexity required by the matrix multiplication between the observation matrix �

and the residue matrix R, i.e. O(NrRN ). The other is the equivalent least squares

problem, i.e. �̂
(k)
∣∣∣
Π

(k)
i

← �
†

Π
(k)
i

P̃, which requires the complexity of O(NrRN ). The

total iteration number in average is K − K (0), so the complexity of iteration pro-
cess is O

(
(K − K (0))NrR(N + K )

)
. Consequently, the total complexity is also

O
(
(K − K (0))NrR(N + K )

)
. Due to the sparse property of the IN,we have K � N ,

so the complexity of SPA-SAMP is moderate in common. Compared with the struc-
tured compressed sensing based greedy algorithm, i.e. S-SAMP in Algorithm 2
as proposed in Chap.5 whose complexity is O (NrM + K NrM(N + K )), it can be
noted that the average iteration number is reduced due to the introduction of the prior
information of the partial support, which greatly reduces the complexity.

(2) Solution Existence and Convergence of SPA-SAMP
Now we analyze the solution existence and the convergence of the proposed SPA-
SAMP algorithm, and provide the theoretical proof of the related theorems based on
the theory of compressed sensing and structured compressed sensing.

Before providing the theorems to guarantee the solution existence and conver-
gence of the SPA-SAMP algorithm, we first provide Lemma 6.1 to show that the
output estimated support of any stage in SPA-SAMP is equivalent to the final output
support of the classical subspace pursuit (SP) algorithm [15] with corresponding
sparsity level. Then, we provide two theorems to prove the solution existence and
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convergence of the proposed SPA-SAMP algorithm based on the Lemma 6.1, with
the RIP condition of the observation matrix FR and the block-RIP condition of the
generated block-sparse observation matrix �B = (FR ⊗ INr), where ⊗ is the Kro-
necker product operation of matrices.

Lemma 6.1 The output temporal estimated support of the �-th stage in SPA-SAMP
∀� ∈ [1, . . . , �K/Δs�], is equivalent to the final output support of the SP algo-
rithm [15] with the sparsity level K� = � · Δs.

The proof of Lemma 6.1 is given as follows.

Proof The key of this proof is to prove the equivalence of the key steps, i.e. the
preliminary test (Line 5–6 in Algorithm 1) and making temporary final list (Line
8-9 in Algorithm 1), to those of the SP algorithm in [15], under the condition of
the spatial correlation of the IN signals at different receive antennas. We have the
following two propositions:

Proposition 6.2 (preliminary test) The process of the preliminary test (Line 5–6 in
Algorithm 5) in SPA-SAMP as given by

Sk ← Max{v ∈ C
N , T − K (0)} (6.39)

s.t. vl =
∑Nr

j=1
|(�HR(k−1))l, j |, l ∈ [1, . . . , N ] (6.40)

is equivalent to the step 1) of the SP algorithm in [15], i.e.,

S( j)
k ← Max{v( j), T − K (0)} (6.41)

s.t. v
( j)
l = |(�Hr(k−1)

j )
l
|, ∀ j ∈ [1, . . . Nr], (6.42)

where r(k−1)
j = R(k−1)

j is the j-th column of R(k−1).

Proposition 6.3 (temporary final list) The process of making the temporary final list
(Line 8–9 in Algorithm 5) in SPA-SAMP as given by

Π(k) ← Max{u ∈ C
|Lk |, T } (6.43)

s.t. ul =
∑Nr

j=1
|(�†

Lk
P̃)

l, j
|, l ∈ [1, . . . , |Lk |] (6.44)

is equivalent to the steps (2) and (3) of the SP algorithm in [15], i.e.,

Π
(k)
( j) ← Max{u( j), T } (6.45)

s.t. u( j)
l = |(�†

L( j)
k

p̃( j)
i )

l
|, ∀ j ∈ [1, . . . Nr]. (6.46)

where Π
(k)
( j) is the temporary final list of k-th iteration for j-th receive antenna.
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Now we prove the above two propositions. For Proposition 6.2, based on the
orthogonality property of the least squares principle [32], the process of (6.41) and
(6.42) can pick out the best atoms set (columns of �), i.e. S( j)

k , which is the most
probable to be included in the real support of the corresponding IN vector z( j)

i out of
all the atoms in �, through choosing the largest inner-products between the residue
vector r(k−1)

j and the dictionary matrix �. By doing so, the selected preliminary test
of k-th iteration for j-th receive antenna list is given by

S( j)
k = Π( j) − Π

(k−1)
( j)

⋂
Π( j), (6.47)

where Π( j) is the real support of the IN signal at j-th receive antenna. Because of
the spatial correlation Π( j) = Π,∀ j ∈ [1, . . . Nr], and Π

(k−1)
( j) = Π(k−1) due to the

Mathematical Induction principle as presented later in this proof, one has

S( j)
k = Sk, ∀ j ∈ [1, . . . Nr]. (6.48)

Then, based on (6.48), it can be noted that the preliminary test list calculated from
each process of (6.41) associated with the j-th receive antenna yields the same atoms
set Sk , hence, the process of (6.39) , which picks out the atoms set by accumulating
all the Nr residue vector inner-products, is equivalent to (6.41). Thus Proposition 6.2
holds, which guarantees the equivalence of the preliminary test lists of the two algo-
rithms.

For Proposition 6.3, the process of solving the problem (6.45) and (6.46) is picking
out the best T atoms set Π

(k)
( j) out of the enlarged candidate list L( j)

k , so that the

selected set Π(k)
( j) (temporary final list) is corresponding to the largest T projections

(coordinates) of p̃( j)
i onto the spanned plane of the atoms (columns) in �L( j)

k
. Hence,

one has
Π

(k)
( j) = Π( j)

⋂
L( j)
k , (6.49)

where L( j)
k = S( j)

k

⋃
Π

(k−1)
j is the enlarged candidate list with |L( j)

k | > T , and from
(6.48) along with the spatial correlation, one has

L( j)
k = Lk, ∀ j ∈ [1, . . . Nr] (6.50)

Π
(k)
( j) = Π(k), ∀ j ∈ [1, . . . Nr] (6.51)

where (6.51) can be further induced in detail using the principle of Mathematical
Induction for argument k, based on the margin fact that Π(0)

( j) = Π(0),∀ j , due to the
spatial correlation, along with the inductions of (6.47) through (6.49). In fact, for
k = 1, Eqs. (6.47) through (6.51) hold obviously; for k ≥ 1, if they hold for k − 1, it is
obvious that they also hold for k. Based on (6.51), it can be noted that the temporary
final list calculated from each process of (6.45) associated with the j-th receive
antenna yields the same atoms set Π(k), hence, the process of (6.43), which picks
out the atoms set by accumulating each of the Nr measurement vector projections, is
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equivalent to (6.45). Thus Proposition 6.3 holds, which guarantees the equivalence
of making temporary final lists for the two algorithms.

From these two propositions, one can infer that, for the �-th stage of SPA-SAMP
(the corresponding sparsity level K� = � · Δs), the preliminary and temporary final
lists for each iteration are the same with those of SP with K�, so the output estimated
final supports of them are equal. Consequently, we reach the conclusion that the
output estimated final support of the SPA-SAMP at the �-th stage should be the same
with that of SP with sparsity level K� = � · Δs.

After this lemma, we derive the following two important theorems concerning
about the convergence and performance error bound of the proposed SPA-SAMP
algorithm. At the beginning, a lemma concerning about the iteration number within
each stage is given as follows:

Lemma 6.4 (iteration number within stage) Let nit(K�) denote the number of iter-
ations consumed by the �-th iteration of SPA-SAMP, which has the testing sparsity
level K�. One has

nit(K�) ≤ 1.5K�

− log cK�

, (6.52)

where

cK�
= 2δ3K�

(1 + δ3K�
)

(1 − δ3K�
)3

. (6.53)

Proof According to Theorem 8 in [15], the inequality (6.52) holds for the SP algo-
rithm with sparsity level K�, with the constant (6.53) given by Eq. (6.8) in the SP
literature [15]. Then based on the proof of Lemma 6.1, the �-th stage of SPA-SAMP is
equivalent to the SP algorithm with the sparsity level of K�, so the conclusion (6.52)
also holds for the �-th iteration stage of the SPA-SAMP algorithm, which completes
the proof.

Theorem 6.5 (convergence without noise) If FR satisfies RIP with the RIP constant
δ3Ks < 0.165, then SPA-SAMP converges to the exact IN matrix �0 to be recovered
as in P̃ = FR�0, which is the noiseless case of (6.12), after �max = �K/Δs� stages
of iterations, and the total number of iterations NIT is bounded by

NIT ≤ �K/Δs� ·
(

1.5Ks

− log cKs

)
(6.54)

where
Ks = �K/Δs� · Δs. (6.55)

The proof of Theorem 6.5 is given as follows.
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Proof From Theorem 2 in [15], it was proved that the residue norm ‖r(k)‖2 <

‖r(k−1)‖2,∀k for any sparsity level K� ifFR satisfies RIPwith constant δ3Ks < 0.165.
Based on Lemma 6.1, the �-th stage of SPA-SAMP is equivalent to SP with spar-
sity level K�, so after each iteration of SPA-SAMP in the �-th stage, the residue
vector ‖r(k)

j ‖2 < ‖r(k−1)
j ‖2,∀k, j . Thus, the �2,2-norm of the residue matrix satisfies

‖R(k)‖2,2 < ‖R(k−1)‖2,2 within each stage before the stage switching.

Recall that the condition of stage switching for each stage of SPA-SAMP is

‖R(k)‖2,2 ≥ ‖R(k−1)‖2,2. (6.56)

Based on Lemma 6.4, the number of iterations of the �-th stage in SPA-SAMP is
bounded by (6.52), so the stage switching condition (6.56) will be met for each stage
in SPA-SAMP and each stage will definitely end at that time. Then, concerning about
the solution convergence, we have the following proposition

Proposition 6.6 The global halting condition of SPA-SAMP without noise, which is
given by ∥∥R(�)

∥∥
2,2 = 0, (6.57)

cannot be met within the stage �, � < �K/Δs�, and thus the stage will finally switch
to next one. Until � = �K/Δs�, SPA-SAMP converges to the exact desired solution
�0 and the global halting condition in (6.57) is met.

Here, we denote the residue matrix and the estimated IN matrix at the end of the
�-th stage as R(�) and �̂(�), respectively. To prove Proposition 6.6, firstly we use the
proof of contradiction to prove the first part of it. Assume that ∃� < �K/Δs� such
that the residue matrix norm of the �-th stage,

∥∥R(�)

∥∥
2,2 = 0 is met during the �-th

stage. Since the sparsity level K� = � · Δs < Ks , (Ks is the real sparsity level), so

∃�′ �= 0, s. t. �0 − �̂(�) = �′. (6.58)

Thus,

∥∥R(�)

∥∥
2,2 =

∥∥∥P̃ − FR(�0 − �′)
∥∥∥
2,2

=
∥∥∥(P̃ − FR�0) + FR�′

∥∥∥
2,2

= ∥∥FR�′∥∥
2,2 > 0,

which is contradictory to the assumption.Hence, the global halting condition in (6.57)
cannot be met for � < �K/Δs�.

Then, based on the Theorem 1 in [15], the SP algorithm with sparsity level Ks

converges to the exact desired solution without noise since FR satisfies RIP with
constant δ3Ks < 0.165. Thus, based on Lemma 6.1, the �K/Δs�-th stage with testing
sparsity level of Ks is equivalent to SP with sparsity level Ks , and it is guaranteed
that SPA-SAMP converges to the exact solution �0, i.e.



6.6 Algorithm Performance Evaluation 195

�̂(�max) = �0, (6.59)

where �max = �K/Δs�, and �̂(�max) denotes the output of the final (�max-th) stage.
Then, it is evident that

∥∥R(lmax)

∥∥
2,2 =

∥∥∥P̃ − FR�̂(�max)

∥∥∥
2,2

=
∥∥∥P̃ − FR�0

∥∥∥
2,2

= 0,

so Proposition 6.6 holds.
It is evident that the total number of stages of SPA-SAMP is �K/Δs� to reach the

sparsity level Ks such that Ks = �K/Δs� · Δs ≥ K . For each stage � ≤ �K/Δs�,
due to Lemma 6.4 one has

nit(K�) ≤ 1.5K�

− log cK�

≤ 1.5Ks

− log cKs

, ∀� ≤ �K/Δs�, (6.60)

where the second inequality holds because K� ≤ Ks, ∀l ≤ �K/Δs�, and since the
RIP constant δ3K�

in (6.53) is monotonically increasing with K� (which is easy to
verify using a proof of contradiction based on the definition of RIP), we have that
cK�

is monotonically increasing with �. Hence, the total number NIT of iterations of
SPA-SAMP, including all �max stages, is bounded by

NIT =
�max=�K/Δs�∑

�=1

nit(K�) ≤ �K/Δs� ·
(

1.5Ks

− log cKs

)
. (6.61)

Then (6.54) holds, which completes the proof.
Theorem 6.5 guarantees the convergence of SPA-SAMP to the exact desired solu-

tion without background noise. When in the presence of noise, the convergence is
guaranteed by the following theorem:

Theorem 6.7 (convergence with noise) If FR satisfies RIP with the constant δ3Ks <

0.083, Ks = Δs�K/Δs�, let the output estimated IN matrix at the end of the final
�max = �K/Δs�-th stage of SPA-SAMP be denoted by �̂(�max), then one has that
�̂(�max) converges to the real IN matrix �0 as in the multiple measurements model
P̃ = FR�0 + W̃ in (6.12), with the estimation error bounded by

∥∥∥�0 − �̂(�max)

∥∥∥
2,2

≤ C ′
Ks

∥∥∥W̃
∥∥∥
2,2

, (6.62)
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where

C ′
Ks

= 1 + δ3Ks + δ23Ks

δ3Ks (1 − δ3Ks )
, (6.63)

and the total number of iterations of SPA-SAMP NIT is upper bounded by (6.54).

The proof of Theorem 6.7 is given as follows.

Proof Similarly to the proof of Theorem 6.5, according to Theorem 10 in [15],
it was proved that the residue vector norm ‖r(k)‖2 < ‖r(k−1)‖2,∀k for any sparsity
level K� ifFR satisfies RIPwith constant δ3Ks < 0.083 in the presence of background
noise. Then similarly, the residuematrix satisfies‖R(k)‖2,2 < ‖R(k−1)‖2,2 within each
stage. The number of iterations of the �-th stage is still bounded by (6.52) based on
Lemma 6.4, so the stage switching condition in (6.56) will be met for each stage in
SPA-SAMP.

According to Lemma 6.1, the �max-th stage of SPA-SAMP is equivalent to SP with
sparsity level of K�max = Ks . Then, since FR satisfies RIP with the constant δ3Ks <

0.083, based on Theorem 9 in [15], one has

∥∥∥z( j)
i − ẑ( j)

(lmax)

∥∥∥
2

≤ C ′
Ks

∥∥∥w̃( j)
i

∥∥∥
2
,∀ j ∈ [1, . . . Nr], (6.64)

where z( j)
i and ẑ( j)

(lmax)
denote the j-th column of matrices�0 and �̂(�max), respectively,

and the constant C ′
Ks

is given by (6.63), which is derived by Theorem 9 in [15].
Equation (6.64) indicates that the error between any IN vector of the estimated IN
matrix and the real one is bounded by the noise power, and it holds for any receive
antenna j ∈ [1, . . . Nr]. Then, one has the error of the estimated IN matrix bounded
by ∥∥∥�0 − �̂(�max)

∥∥∥
2,2

≤ C ′
Ks

∥∥∥W̃
∥∥∥
2,2

, (6.65)

since the �2,2-norm of a matrix calculates the square root of the sum of all entries
of the matrix as defined by (6.14), and thus (6.65) is derived from (6.64). Next, we
raise a proposition similar to that in Theorem 6.5 as follows:

Proposition 6.8 The global halting condition of SPA-SAMP with noise, which is
given by ∥∥R(�)

∥∥
2,2 ≤ Cε · εS, (6.66)

Cε = 1 +
√
1 + δ(B)

2Ks
· C ′

Ks
, (6.67)

is met at the end of the final stage of �max = �K/Δs�, and the SPA-SAMP algorithm
converges to the exact desired solution �0 with error bounded by (6.65) after the
�max-th stage (δ

(B)
2Ks

is the block-RIP constant).
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To prove this proposition, we have known that the stage �max = �K/Δs� of SPA-
SAMP is equivalent to SP with sparsity level Ks based on Lemma 6.1, so after �max

stages of SPA-SAMP, the residue matrix R(�max) yields the following

∥∥R(�max)

∥∥
2,2 =

∥∥∥P̃ − FR�̂(�max)

∥∥∥
2,2

(6.68)

=
∥∥∥FR

(
�0 − �̂(�max)

)
+ W̃
∥∥∥
2,2

(6.69)

≤
∥∥∥W̃
∥∥∥
2,2

+
∥∥∥FR

(
�0 − �̂(�max)

)∥∥∥
2,2

(6.70)

≤
∥∥∥W̃
∥∥∥
2,2

+
√
1 + δ(B)

2Ks

∥∥∥�0 − �̂(�max)

∥∥∥
2,2

(6.71)

≤
[
1 +
√
1 + δ(B)

2Ks
· CKs

]

︸ ︷︷ ︸
:=Cε

∥∥∥W̃
∥∥∥
2,2

(6.72)

= Cε · εS, (6.73)

where Eq. (6.70) holds due to Triangle Inequality, Eq. (6.72) holds because of (6.65),
and Eq. (6.73) is derived due to (6.16). The reason why (6.71) holds is as follows:

Let vec(A) denote the vectorization operation of a matrix, which returns a vector
composed of all the columns of the matrix A. Since �0 and �̂(�max) are block-Ks-
sparse after vectorization (the number of rowswith nonzero �2-norm are nomore than
Ks , with the definition of block sparsity given in Definition 2.3), then (�0 − �̂(�max))

is block-2Ks-sparse after vectorization because there are at most 2Ks rows with
nonzero �2-norm (the upper bound is reached when the supports of �0 and �̂(�max)

are completely different). Let �′ = �0 − �̂(�max), then

‖�‖2,2 = ∥∥vec (�T
)∥∥

2, (6.74)

since both sides of Eq. (6.74) calculate the square root of the sum of all entries’
powers. Assuming that the block observation matrix �B = (FR ⊗ INr) satisfies the
block-RIP with block-RIP constant δ(B)2K , then one has

∥∥FR�′∥∥
2,2 =

∥∥∥vec
[(
FR�′)T

]∥∥∥
2

(6.75)

= ∥∥(FR ⊗ INr)vec
(
�′T )∥∥

2 (6.76)

≤
√
1 + δ(B)

2Ks

∥∥vec
(
�′T )∥∥

2 (6.77)

=
√
1 + δ(B)

2Ks

∥∥�′∥∥
2,2, (6.78)
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where Eq. (6.75) holds since both sides calculate the square root of the summation of
the powers of all entries, and the reason is the same with (6.78); Eq. (6.76) holds due
to the definitions of the vectorization process and the matrix Kronecker production;
Eq. (6.77) holds because of the block-RIP of (FR ⊗ INr).

Till now, we have proved Proposition 6.8. Due to Proposition 6.8, the SPA-SAMP
algorithm with noise is guaranteed to reach the global halting condition (6.66) and
will end at the �max-th stage, and the estimated INmatrix �̂(�max) converges to the real
IN �0 with error bounded by (6.65). Besides, the total number of iterations NIT is
upper bounded by (6.54) with the similar proof to that in Theorem 6.5, thus omitted.
Till now, the proof of this Theorem has been completed.

Till this end, the solution existence and the convergence of the proposed SPA-
SAMP algorithm in both noiseless and noise cases are theoretically proved and
guaranteed. The performance error bound of the estimated IN in the presence of
background noise is also derived in closed-form.

6.7 Conclusion

In this chapter, the fundamental drawbacks of the conventional “passive” anti-IN
methods are solved with the introduction of sparse recovery and compressed sensing.
Cutting in from the “active recovery” perspective of view, the prior aided compressed
sensing basedmethod and the spatially correlatedmulti-dimensional structured com-
pressed sensing basedmethods of IN recovery and cancelation are proposed. Further-
more, the compressed sensing based NBI and IN joint recovery scheme is proposed
in the framework of time-frequency combined sparse measurements. Thus, the NBI
and IN can be accurately recovered and eliminated in severe channel conditions,
and the transmission performance is free from the NBI and IN. Besides, the theo-
retical analysis has proved the solution existence and convergence of the proposed
algorithm SPA-SAMP, which provides the theoretical basis of the proposed sparse
recovery framework. It is shown by theoretical analysis and extensive simulations
that, the proposed prior aided multi-dimensional compressed sensing based method
for IN recovery and elimination outperforms the state-of-the-art methods signifi-
cantly, and the accurate recovered IN can be approaching the theoretical bound of
estimation. The proposed sparse measuring method and the prior aided compressed
sensing modeling theory, as well as the prior aided multi-dimensional compressed
sensing based greedy algorithms, can promisingly provide a novel theoretical basis
and effective technical solution for the accurate recovery and elimination of IN in
broadband communication systems.
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Chapter 7
Conclusions

Abstract This monograph is aimed at the urgent needs of the ever-increasing trans-
mission performance of the next-generation broadband communications systems.
It is focused on the key bottleneck that limits the current broadband transmission
performance seriously, i.e. the non-conventional interference and noise, NBI and IN.
The drawbacks of the conventional methods such as high implementation complex-
ity, low applicability, low estimation accuracy and unstable performance, etc., should
be overcome by breaking the fundamental limitation of the conventional “passive”
anti-NBI and anti-IN approaches. In this chapter, we draw the conclusions of this
book.

7.1 Contributions

This monograph cuts in from the views of “scrambling”, “diversifying”, and “recov-
ering”, to expand the research on the key technologies on NBI and IN mitigation and
cancelation. Through the optimized synchronization frame structure design, the syn-
chronization algorithm, which is robust to NBI, is achieved. Through the maximized
time-frequency diversity interleaving scheme, the optimal time-frequency combined
interleaver design is implemented in the environment with both NBI and IN.

By introducing the recently emerging sparse recovery theory, the time-frequency-
space multi-dimensional structured compressed sensing measurement and recovery
model is formulated. The classical compressed sensing algorithms are effectively
improved concerning the characteristics of NBI and IN. The prior aided compressed
sensing and structured compressed sensing based sparse recovery algorithms are
proposed, which is able to recover and cancel the NBI and IN accurately and stably
in severe conditions, such as insufficient measurement data and large sparsity level.
The presentation idea of thismonograph is as follows: raising the scientific problems,
setting the research targets, searching for the ideas, making the research regimes,
conducting theoretical analysis and simulations, and deploying system applications
and standardizations.
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202 7 Conclusions

We focus on solving the three major scientific problems on NBI and IN mitiga-
tion and cancellation, and have set explicit research targets. Accordingly, we have
proposed the main contributions, and validated the reliability and effectiveness of
the proposed schemes by theoretical analysis and simulations. We have also pushed
forward the applications in practice and the standardization process of the proposed
techniques. The proposed theory and technology have theoretical and application
value, and provide theoretical basis and effective technical solution for relieving the
impacts of special noises in the new generation broadband transmission systems.

Towards the three scientific problems and the corresponding research targets
raised in this book, the key technical routine is as follows: mitigating the noise and
interference by “scrambling” → avoiding the noise and interference by “diversity”
→ eliminate the noise and interference by “recovery”. In this way, three major con-
tributions are formulated, and we have investigated four research issues accordingly.
The key theoretical framework and technical system of NBI and IN mitigation and
cancelation for the new generation broadband communications system is formulated,
which breaks the fundamental performance limitation of the conventional methods.
The contents in this book might provide positive contributions to the academia and
industry in this area. The contributions are concluded in detail as follows.

7.1.1 Anti-NBI Frame Design and Synchronization Method

• Main contribution:
Synchronization is crucial to the performance of broadband communication sys-
tems, especially for OFDM systems. In the presence of NBI, the frame synchro-
nization and carrier recovery are seriously affected. The conventional synchro-
nization frame design and synchronization algorithms were not designed for anti-
NBI, which resulted in low synchronization accuracy, high error rate and severe
performance degradation in the presence of NBI. Therefore, the problem of accu-
rate and efficient synchronization in the presence of NBI has become the utmost
important problem for the system performance. In this book, we have investigated
the OFDM preamble design that effectively mitigates the NBI, and designed the
efficient and robust algorithms of receiver-side frame synchronization and carrier
recovery. Besides, the signalling transmission method, which is robust to NBI,
is also investigated. The proposed methods can solve the problems of conven-
tional synchronization methods and guarantee the synchronization performance
of OFDM systems in the presence of NBI, which provides a basic technical guar-
antee for the system performance.

• Technical content and routine:
We follow the idea of designing a “scrambled” synchronization frame structure
to mitigate the NBI. To address the scientific problem of overcoming the severe
impacts of theNBI on the receiver synchronization performance,we have proposed
the optimized synchronization frame structure design as well as the receiver-side
efficient and robust synchronization algorithm. An OFDM-based preamble with
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improved temporal structure has been designed, which enjoys the advantages of
both Schmidl’s andMinn’s methods. More importantly, a novel scrambling opera-
tion is proposed,which is applied in the temporal preamble of theOFDMsymbol to
mitigate the impact of the NBI on synchronization. Two groups of identical train-
ing sequences distributed in turn over the active sub-carriers are devised, which is
used to achieve diversity gain in frequency-selective fading channels. The relative
distance between the two groups of training sequences can be changed, so that
several bits of signalling information can be conveyed. Using this scheme, the
receiver can rapidly and accurately obtain the basic transmission parameters.

• Application prospects:
The OFDM-based preamble designed in this book can significantly improve the
timing and carrier synchronization performance in the presence of NBI, and guar-
antee the robust transmission of the signalling information of the OFDM system.
The NBI existing widely in wired or wireless channels can be mitigated effec-
tively. The proposed preamble and frame structure design has been adopted as the
broadband power line communications specifications in physical layer, which is
promising to be further applied in many other different communication systems
impacted by NBI.

7.1.2 Optimal Time-Frequency Combined Interleaving

• Main contribution:
Conventional interleaving schemes have many drawbacks, such as complicated
design, redesign for each different coded modulation scheme, low flexibility and
universally applicability, etc. Time and frequency interleaving is not considered
at the same time, so the frequency and time domain bursting errors cannot be
avoided. There is no optimal guarantee for conventional bit or symbol interleaving
patterns, so they cannot be sure to achieve the optimal and maximum time and
frequency diversity gains. To this end, this book has proposed the optimal time-
frequency combined interleaving scheme in the presence of NBI and IN, including
the interleaving parameter optimization scheme with the maximum time diversity
gain, and the symbol interleaving block cyclic shifting technique with maximum
frequency diversity gain. In this way, the time-frequency diversity gains are maxi-
mized, and the time and frequency domain bursting errors are avoided effectively.
The interleaving and decoding performance in the presence of both NBI and IN
can be significantly improved.

• Technical content and routine:
We follow the idea of providing the maximum time-frequency diversity gains to
avoid the NBI and IN. To address the scientific problem of improving the time-
frequency interleaving performance in the presence of both NBI and IN, we have
proposed the optimal time-frequency combined interleaving scheme. Based on the
proposed two theoretical criteria, the optimal time-frequency interleaving scheme
is proposed to avoid the NBI and IN in broadband communication systems. Based
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on these criteria, we can guide the optimization of interleavers and significantly
improve the time and frequency diversity gains. Specifically, one criterion is sat-
isfied by optimizing the distribution of OFDM data blocks in the forward error
checking codewords. The other criterion is satisfied by optimizing the distribu-
tion of OFDM sub-carriers in the forward error checking codewords. Based on
the theoretical optimization criteria, we have investigated and proposed the block
interleaver with the optimal interleaving size as the time interleaving scheme, and
proposed the sub-matrix row cyclic shifting technique as the novel frequency inter-
leaving scheme. The proposed interleaving schemes are at the symbol level instead
of bit level, which is able to achieve better effectivenesswith lower implementation
complexity.

• Application prospects:
The proposed optimal time-frequency combined interleaving scheme is able to
achieve a better anti-NBI and anti-IN capability with shorter interleaving delay
and lower complexity comparedwith conventional schemes. It is likely to provide a
simple, efficient and robust anti-NBI and anti-IN interleaving scheme for the coded
OFDM block transmission system. It can also be widely applied in other channel
conditions impacted by NBI and/or IN. The optimal time-frequency combined
interleaving scheme investigated in this book has been adopted by the advanced
digital terrestrial multimedia broadcasting standards, and it is promising to provide
technical support for the new generation digital communication and multimedia
transmission systems.

7.1.3 Sparse Recovery Based NBI and IN Cancelation

• Main contribution:
Most of the state-of-the-art NBI and IN mitigation methods are limited in the
conventional signal processing regime, which is stuck in the bottleneck of “pas-
sively” combatting against noise and interference. The research on the sparse
recovery based NBI and IN estimation is insufficient. In this book, based on the
recently emerging advanced sparse recovery theory, the NBI and IN measurement
and recovery models are formulated. Moreover, the time-frequency-space multi-
dimensional structured compressed sensing based efficient and accurate recov-
ery method is proposed, which greatly outperforms classical compressed sensing
algorithms and solves the problem of conventional methods. Thus, the combined
“active” recovery and cancelation of NBI and IN is implemented.

• Technical content and routine:
We follow the idea of accurate sparse recovery for completely canceling the NBI
and IN, and have mainly conducted the following two aspects of research:
First, to address the third scientific problem of breaking the bottleneck of
conventional passive NBI and IN mitigation methods for accurate recovery and
complete cancelation, we have proposed the sparse recovery based NBI recon-
struction method as well as efficient optimized sparse recovery algorithms. The
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NBI temporal differential measuring method independent of the channel estima-
tion is proposed, which exploits the training sequences between signal frames or
the preamble repeated training sequences to conduct the low-complexity differen-
tial operation to obtain the NBI measurement vector. The partial Fourier transform
matrix is utilized as the observation matrix to formulate the compressed sensing
basedNBI reconstruction problemmodel. The prior aided sparsity adaptivematch-
ing pursuit (PA-SAMP) algorithm is proposed,which effectively improves theNBI
recovery efficiency and accuracy in severe conditions.
Based on the temporal and spatial correlation of the NBI, we have proposed the
spatially multi-dimensional differential measuring method, which combines the
measurement data at multiple receive antennas to formulate the time-space two-
dimensional structured compressed sensing NBI reconstruction model in MIMO
systems. The structured compressed sensing based efficient greedy algorithm, i.e.
structured SAMP (S-SAMP), is proposed to achieve higher recovery efficiency
and robustness than classical compressed sensing algorithms. The block sparse
Bayesian learning (BSBL) theory is introduced to the problem of NBI estimation.
To address the extended case of the block-sparse NBI with frequency offset, the
CP-OFDM frame structure is utilized to obtain the NBI differential measurement
data and formulate the sparse Bayesian learning based framework. Based on the
block partition estimation, the partition estimated BSBL algorithm is proposed.
Furthermore, the intra-block correlation is fully utilized to propose the informative
BSBL (I-BSBL) algorithm, which further improves the sparse recovery accuracy.
Second, to address the other key issue of the third scientific problem, we have
proposed the sparse recovery based IN reconstruction and cancelation method as
well as the corresponding efficient sparse recovery algorithms. We have proposed
the prior information aided compressed sensing based IN recovery method, which
employs the temporal thresholding method to obtain the partial support of the IN
to reduce the requirement of measurement data. The compressed sensing recovery
model is formulated using partial Fourier transform observation matrix, and the
proposed compressed sensing greedy algorithm PA-SAMP is utilized to accurately
recover the IN.
According to the spatial correlation of the IN between multiple receive antennas in
MIMO systems, we have proposed the spatially multi-dimensional measurement
method, which combines the measurement data at multiple receive antennas to
formulate the spatially structured compressed sensing based IN recovery frame-
work. The structured compressed sensing based efficient greedy algorithm, i.e.
structured prior aided SAMP (SPA-SAMP), is proposed. The solution existence
and the convergence of SPA-SAMP are theoretically proved. It is shown that the
proposed method is able to achieve higher recovery accuracy and robustness than
classical compressed sensing algorithms.
Furthermore, we have proposed the time-frequency combined compressed sens-
ing based NBI and IN recovery framework, and designed the compressed sensing
time-frequency combined measuring frame structure, i.e. CS-TFM-OFDM, which
exploits the differential measurement of the temporal training sequences and the
null sub-carriers to formulate the NBI and IN combined sparse recovery model.
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With the aid of the partial support as prior information, PA-SAMP is utilized to
achieve simultaneous accurate recovery and cancelation of NBI and IN.

• Academic and application prospects:
The proposed theoretical framework and core techniques can significantly improve
theNBI and IN estimation performance in complicated conditions such as different
sparsity level, wide range of INR and insufficient measurement data, etc. The
recovery accuracy of the proposedmethods are approaching the theoretical CRLB.
The system bit error rate is approaching the system performance without NBI
and IN, which significantly outperforms the conventional methods. The related
research outcomes have laid the academic basis and provided effective technical
solutions for NBI and IN combined sparse recovery and cancelation. They are also
promising to be widely applied inmany practical broadband transmission systems,
such as power line communications, wireless communications, etc., where theNBI
and IN in realistic channels can be accurately recovered and eliminated.

7.2 Further Research

Due to the limitation of time and ability of the author, the research in this book
cannot be perfect, and there are inevitably some constraints and aspects to be further
studied on. Upon accomplishing the research works in this book, we have tried to
raise some possible further research possibilities to extend and deepen this work,
listed as follows:

1. The synchronization frame structure and algorithm are mainly aimed at miti-
gating the NBI, while the frame design for IN mitigation remains unrevealed.
Furthermore, one can study the duality optimal design of the synchronization
frame structure for simultaneous mitigation of NBI and IN to improve the spec-
trum efficiency and reduce the time and frequency resource consumption. Thus,
the frame structure can be applicable for severe channel conditions with both NBI
and IN. Besides, the frame header with flexibly switching modes suitable for the
channels with NBI and IN is also designed.

2. The current time-frequency combined interleaving scheme in this book is aimed
at the channel condition with both NBI and IN, and it is optimized and designed
according to the criterion of maximizing the time and frequency diversity gains.
In the future, we can utilize the theoretical tools such as information theory, the
extrinsic information transfer curve [3, 9], and the statisticalmodel ofNBI and IN,
to analyze the theoretical channel capacity. The theoretically achievable channel
capacity and the bound of the time-frequency diversity gain can be achieved
through the bit or symbol interleaving schemes in the presence of NBI and IN.
The capacity approaching method of the combined interleaving with maximum
time-frequency diversity gain can be designed to further improve the interleaving
performance and adapt to different scenarios and system requirements.
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3. The spatially multi-dimensional structured compressed sensing based NBI recov-
ery algorithm proposed in this book is mainly utilizing the spatial correlation of
the NBI at multiple receive antennas to obtain the multi-dimensional differen-
tial measurement vectors, and thus to formulate the structured compressed sens-
ing sparse recovery model for NBI reconstruction. Furthermore, we can exploit
the temporal correlation of the NBI to conduct the differential measuring for a
number of consecutive adjacent OFDM symbols to obtain the temporal multi-
dimensional differential measurement matrix. In this way, we can formulate the
temporal multi-dimensional structured compressed sensing based NBI recovery
framework, which is promising to further improve the NBI recovery performance
in SISO systems.

4. We have investigated the block sparse Bayesian learning based NBI recovery
algorithm in CP-OFDM systems with frequency offset in this book. As far as IN
is concerned,we have beenmainly focused on prior aided compressed sensing and
structured compressed sensing based IN recovery methods. Thus, we can further
study on the IN recovery algorithms in the framework of sparse Bayesian learn-
ing [7, 8]. In this way, the IN recovery accuracy can be further improved in severe
conditions such as large sparsity level, low INR and insufficient measurement
data.

5. The INmodel investigated in this book ismainly the classical sparse signal model.
In practical systems, there exist block-sparse IN models, such as the block-sparse
IN caused by the timing offset or the clustering of the IN source [4]. Hence, we
need to further study the enhanced algorithms for block-sparse models and struc-
tured compressed sensing or block-sparse recovery based theories. In this way,
the IN recovery performance in the condition of block-sparsity can be guaranteed.

6. Currently, the NBI and IN mitigation and cancelation schemes have been focused
on the physical layer and point to point transmission. The proposed techniques,
including the frame structure design and synchronization algorithms, the time-
frequency combined interleaving scheme for baseband complex symbols, the
equivalent baseband NBI and IN recovery, are all cutting in from the physical-
layer perspective of view and aimed at the performance optimization for point
to point transmission. If we consider the multi-point transmission scenarios such
as multi-cast and self-organizing networks, the cooperative IN estimation and
cancelation algorithms based on multi-user cooperative communications can be
further investigated. The upper-layer communication and interference cancelation
protocols for NBI and IN remain to be further studied.

7. Considering the popular 5G and B5G technologies, we can further study the
influence of NBI and IN on the novel coded modulation techniques in the
next-generation wireless communication, such as the new channel coding (e.g..
LDPC code [1] and polar code [2] adopted by 5G eMBB standards), new non-
orthogonal multiple access (e.g.. sparse code multiple access [6]), multi-user
massive MIMO [5], etc. In the complicated scenarios and requirements includ-
ing multi-node, multi-user, low power consumption, wide coverage, enormous
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capacity, high rate, ultra-reliable low latency, etc., the flexible, efficient and accu-
rate NBI and IN recovery and cancelation algorithms can be designed. Moreover,
the new coded modulation techniques can be optimized and designed for better
anti-NBI and anti-IN capability.
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