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 Abstract—Visible light communication (VLC) has been widely 

applied to provide dense network access. Usually random access 

requests are sparse, and the users can be efficiently detected 

using compressed sensing (CS) based methods. However, in case 

of bursting network traffic, massive access requests can 

significantly degrade the performance of user detection. To this 

end, we propose an intelligent massive random access control 

scheme, i.e., Sparse Adaptive Random Access (SARA), based on 

reinforcement learning (RL). Through iterative interactions with 

the complex and time-varying environment, the proposed scheme 

of SARA can smartly provide appropriate flow control levels for 

users with different priorities. Thus, it can not only respond to 

high-priority users in a timely manner, but also avoid the low 

detection accuracy caused by massive access requests. The 

simulation results demonstrate that the proposed scheme 

outperforms the benchmark schemes in case of high concurrent 

traffic. 
keyword—Visible light communication, random access, 

compressed sensing, reinforcement learning. 

I. INTRODUCTION 

Visible light communication (VLC) technology is often 

used to provide communication services for dense indoor 

devices due to its advantages such as free spectrum license, no 

electromagnetic interference, and large capacity [1]. However, 

to date, most VLC-related communication schemes are 

heterogeneous schemes combining radio frequency uplink and 

VLC downlink, which cannot fully utilize the anti-jamming 

properties of VLC in the face of massive random access. 

Therefore, the different characteristics of the channel and the 

transformation of the communication mode brought about by 

VLC make its uplink access a problem worth studying [2]. 

In the uplink of the VLC, the micro base station (mBS) is 

responsible for detecting and coordinating the active users, so 

as to meet the service requests of multiple devices. The 
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concept of multi-packet reception is a signal processing 

method at the physical layer that attempts to decode multiple 

packets from colliding signals, and much of the literature on 

random access revolves around this idea. A random access 

scheme similar to ALOHA is proposed, which obtains the 

optimal access strategy by establishing a system access 

conflict graph and evaluating the status of multiple groups of 

devices [3]. Aiming at maximizing the access success rate of 

devices with low latency requirements, Sim divides devices 

into multiple categories, and proposes a priority-based access 

class barring (PACB) algorithm [4]. In the initial stage of the 

algorithm, the number of each type of active devices is 

estimated by the observed random access results, and the flow 

control factor is decided according to the estimation results 

latter. 

With the increase of smart devices, how to efficiently use 

the computing resources to coordinate the access requests is 

the core driving force for the design of massive random access 

[5]. Fortunately, users' access requests are sporadic most of 

the time, relying on this sparse property, compressed sensing 

methods can achieve efficient active user detection at low cost 

[6]. Based on this sparsity assumption, approximate message 

passing is used to detect sparse active users, and the 

characteristics of cooperative multiple-input multiple-output 

(MIMO) are used to improve the reliability of identifying 

users at the edge of the cell [7]. Ke et al. formulated pseudo-

random pilots for uplink access, combining alternate user 

detection and channel estimation into a multi-measurement 

based sparse recovery problem [8].  

However, CS performance is strongly influenced by the 

sparsity of the signal of interest, which makes it difficult to 

accurately detect users during high concurrent traffic periods, 

resulting in degradation of access efficiency. In view of this 

situation, it is necessary for us to develop an access and flow 

control strategy to give priority to the access requests of 

emergency services, and temporarily restrict those services 

with higher delay tolerance, so that the sparsity of user access 

requests can be sustained to guarantee reliable user detection. 

Nevertheless, the model of massive random access is complex 

and the mutual influence between different environmental 

factors is implicit, making it difficult for conventional 

schemes to adapt to the dynamic and intricate environments. If 

reinforcement learning (RL) is introduced in this problem, an 

RL agent can utilize the utility or value function obtained from 

interacting with the environment to update its strategy, 

enabling it to adaptively and rapidly make favorable decisions 

that adapt to the time-varying environments [12]. 

To this end, in this letter we redesign a dynamic access 
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scheme named Sparse Adaptive Random Access (SARA) 

based on RL, which can customize differentiated access 

strategies for different user priorities based on time-varying 

channels and user status in massive random access.  
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Fig. 1. The massive random access model based on VLC: the mBS receives 

pilot signals sent by users with different priorities through M PDs. 

Considering various factors such as access request priority 

and access efficiency, the scheme intelligently achieves access 

requests sparsification through the deep deterministic policy 

gradient (DDPG) algorithm [9]. It dynamically adjusts 

network parameters through the system utility of 

environmental feedback, and adaptively tracks the optimal 

access control strategy. 

II. SYSTEM MODEL 

The massive random access model based on VLC is shown in 

Fig. 1, where an VLC mBS is set up on the ceiling. The 

number of users within the management range of the VLC 

mBS is N, and each user is assigned a unique pilot sequence 

,1 ,2 ,[ , ,..., ]T

n n n n P=λ   
 
for easy detection by mBS. The 

mBS deploys M photo-diode (PD) arrays with an area 
RA , 

which is used to receive signals sent by multiple users. The 

duration of an access cycle is  , and the simulation time can 

be divided into multiple time slots of length  indexed by t. A 

vector 
1 2[ , ,..., ]t t t T

N

t   =α  is designed to represent the users’ 

request status, for example, where 1t

n = indicates that the nth 

user has requested access to the mBS, and it is equal to 0 

otherwise. 

The interaction process between a single PD and multiple 

users in the whole random access process will be described 

below. First, the active user sends its own pilot sequence by a 

small light-emitting diode (LED) array, and the sequence is 

modulated into an optical signal in the manner of intensity-

modulation direct-detection (IM/DD). The pilot sequences of 

multiple users are superimposed on the mth PD through the 

visible light channel to form an observation vector 1t

m

Py , 

which is expressed as: 

,

1

N
t t t t t t t t t t

m n n n m m m m m m

n

h
=

= + =  + = +y λ w H α w A α w . (1) 

where P N is the pilot matrix, and 1t

m

Pw  is the 

additive optical noise by the mth PD with i.i.d entries
2(0, )~  . 

1, 2, ,diag( , ,..., )t t t t

m m m N mh h h=H  is the diagonal 

matrix with the main diagonal elements are 
,{ |1 }t

n mh n N  , 

where
,

t

n mh represents the VLC channel impulse response from 

the nth user to the mth PD, following the Lambertian 

reflection model [10]. The matrix
Nt

m

PA  is an 

underdetermined matrix composed of   and 
t

mH , i.e. 

perception matrix. Combining perception matrix t

mA  and 

observation vector t

my , the mBS can obtain the estimated 

request status vector ˆ t

mα  on the mth PD: 

,1 ,2 ,
ˆ ˆ ˆ ˆ[ , ,..., ] ( , )t t t t T t t

m m m m N m mf  = =α A y  (2) 

where f represents the CS algorithm. For the detection results 

{ |1 }ˆ t

m m M α  of multiple PDs, the final estimated result 

1 2
ˆ ˆ ˆ ˆ[ , ,..., ]t t t t T

N  =α  is generated by the following rules: 

,

1

ˆ ˆ , 1,2,..., .
2 M

m

t t

n m n
M

n N
=

 
= 

 
=    (3) 

III. REINFORCEMENT LEARNING DRIVEN SPARSE ADAPTIVE 

RANDOM ACCESS CONTROL 

The user detection accuracy of the CS algorithm is related 

to two factors: the sparsity of the original signal and the 

restricted isometry property (RIP) of the perception matrix. 

This means that under different traffic densities and channel 

states, there should be an optimal sparsity level for access 

requests, which can ensure user detection accuracy while 

accessing as many users as possible [11].  

To this end, we design a dynamic hierarchical access 

scheme to coordinate access requests. The users are divided 

into L priorities, the number of users in each priority is 

{ |1 }t

lN l L  , and the priority level is represented by 

{ |1 }lr l L  . At the beginning of each access cycle, the mBS 

will broadcast a flow control (FC) vector 

1 2[ , ,..., ] , (0,1)t t t t t

L l

Tp p p p= p to all users for access check. 

Specifically, if the nth user is active and belongs to the lth 

priority, it will generate a random value (0,1)nq   before 

requesting access to mBS, when the access check is passed 

(
ln

tq p ), the user will select the current time slot to request 

access, i.e. 1t

n = , otherwise wait to repeat the process in the 

next time slot.  

By analyzing the environment to adjust the FC vector in 

real time, the system can meet the sparsity requirements of the 

CS algorithm while ensuring the availability of services to 

high-priority users. However, the ever-changing environment 

and huge amount of data in massive random access prompt us 

to adopt some dynamic big data analysis scheme, and the RL-

based deep neural networks is obviously a good candidate. 

Thus, the proposed SARA scheme realizes the dynamic 

requests sparsification for massive random access in the time-

varying environment. We design a reasonable system utility 

value to motivate the training of the model and give 

definitions of various elements in RL, and the proposed 
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scheme can theoretically converge to the optimal solution 

through trial-and-error learning from multiple "state-action-

feedback" behavior chains. 
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Fig. 2. Flow control framework with environment state as input and FC vector 

as output. The DDPG framework is composed of policy module, evaluation 

module and replay buffer, which is used to analyze massive dynamic data. 

The RL framework mainly consists of three elements: state 
t

s , action t
p  and the feedback, i.e. system utility 

tu , and the 

specific definitions are as follows. 

1)Issued action: The action is defined as the FC vector 

1 2[ , ,..., ]T

L

t p p p=p sent by mBS, which is used to control the 

user's access behavior. The set of active users passing the 

access check is ,{ | ,1 }1t

n

t n n N ==   , and the number of 

elements 
e

tN  in it can be approximately expressed as： 

e

1

card( )t
L

t t t

l l

l

N N p
=

   (4) 

where card() represents the number of elements in the set. 

After the user cluster requests access to the mBS, the user 

detection result of the mBS is ˆ t
α . mBS sends confirmations to 

users in 
e { 1 }ˆ 1|t

n

t n N ==   , and the number of 

successfully established connections is: 

ec card( )t t tN = . (5) 

Then, the user detection accuracy can be calculated by 

c e/t t tc N N= .  

2)State formulation: The current FC vector, user detection 

accuracy and channel impulse response are packaged as the 

environment state at the next time slot, which is expressed as:  
1 ]{ |1[ }, , tt t t

m m Mc+ = s p H . (6) 

3)The system utility 
tu  is expressed as: 

1

2 2

1 2

1 1

/2

( )
1

( )1
L L

t t t t t t t

l l l l

l l

u
L

c p N r p p c
= =

 
− 


 = − − −  


    (7) 

The utility 
tu is an incentive in the optimization process, and 

its setting takes into account three factors: First, the first item 

means that we want to make more successful accesses of high-

priority users, which can be obtained by combining the 

detection accuracy, the number of users per priority, the FC 

vector and the current priority level; The second item is the 

standard deviation of the internal elements in FC vector, 

which is weighted by a non-negative value 
1 , and it can 

prevent the system from completely ignoring low-priority user 

access; In addition, we also need to penalize the case of low 

user detection accuracy, represented by the third term 
2

2 )((1 )tc − , where 
2  represents the weight of this term in 

the system utility. 

The training model is devised in the framework of DDPG, 

includes current policy network ( | ) s , current evaluation 

network ( , | ) s p  and their respective target networks 

''( | ) s  and 
''( , | ) s p , in which the current network is used 

for real-time update, and the target network is used to stabilize 

the training process. Specifically, as shown in Fig. 2, its 

operation process is summarized in Algorithm 1: 

Algorithm 1. The Proposed SARA Algorithm 

Initialize:  

( | )s   , 
''( | )s   , ( , | )s p  

 
and ''( , | )s p    

Rest replay buffer . 

For episode=1,2,3...max_episode do 

Randomly generate an initial state 
1

s .
 

For 𝑡=1,2,3...max_step do
 

    Get current state 
t

s , and feed it into policy network 

Policy network outputs action 
( )( | )t k= +p s   , which 

acts on environment, obtaining feedback information 

    
Calculate current system utility 

tu  by (7) 

    Construct next state 
1 [ , ,{ |1 }]t t t t

mc m M+ =  s p H  

Pack current experience 
1{ , , , }t t t t tu + = s p s  and store it 

into replay buffer  

    Sample mini-batch 
( ){ |1 }j j J    

    Update current network weights   and   by 

        
( ) ( ) ( 1) ( 1)

' ''( , '( | ) | ),j j j je u + += + s s       

2( ) ( ) ( )1
arg min ( ( , | )) ,j j j

J

e
J

 − s p


 


    

( ) ( ) ( ), ( )

1
arg max ( , | ) | * ( | ) | .j j j

JJ = = =
   p s s p s s s

s p s



   

    

     If (t mod T == 0) then  

Soft update target network weights 
'  and 

'
 as 

' '

' '

(1 )

(1 )

= + −


= + −

  

  

   

   

 

     End 

End 

End 

IV. SIMULATION RESULTS 

In the VLC random access paradigm considered in this 

paper, the number of PDs in the mBS is M=16. The total 

number of users managed by a single mBS is N=256, and 

these users are equally divided into L=2 priorities (r1=1, r2=4). 

In the training stage, the weights 
1  and 

2  in system utility 
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are set to 20 and 40, respectively. The size of the replay buffer  

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Performance comparison between SARA and the benchmark schemes 
in (a) system utility, (b)access number of users allowed to request for access  
and (c) the detection accuracy of user. 

R is set to 10000, and the mini-batch size J=64. The learning 

rate of policy network and evaluation network are 10-3 and 2×

10-3. The discount rate 0.9 = , the soft update interval of the 

target network is T=10, and the soft update factor is 0.02 = . 

We considered the following three schemes in our 

simulations: 1) Lasso-based RA (LBRA) [6]: There is no user 

access management, and the problem of user access detection 

is solved by multi-group Lasso; 2) Priority-based access class 

barring (PACB) [4]: A flow control algorithm with two stages; 

3) The proposed SARA: A dynamic sparse adaptive approach 

to trade-off priority-based random access and network traffic. 

Fig. 3 shows the optimization of the three algorithms of 

LBRA, PACB and SARA when 25% of the users are active. 

As can be seen from Fig. 3(a), since LBRA has no access 

management strategy, the system utility will drop significantly. 

SARA produces the highest utility u=53.8, which is 9.5% 

higher than that of PACB. Fig. 3(b) shows that in terms of the 

number of users allowed to request for access, PACB 

converges to 50.4, while SARA is 21.8% higher than PACB 

because it will try to allow more high-priority users to request 

access during training. As shown in Fig. 3(c), the access 

success rate of PACB is 97.5%, while our proposed scheme is 

only 89.1%. In LBRA, strictly controlled user access avoids 

multi-user collision and leads to a higher user detection 

accuracy. 

V. CONCLUSION 

In this letter, we proposed a sparse adaptive random access 

algorithm for massive random access in VLC. To cope with 

the conflicts when active users request access simultaneously, 

we start to limit the concurrent access of users with multiple 

priorities. We propose a SARA scheme based on deep RL and 

CS. During the optimization process, SARA trains the 

network according to the environmental feedback and 

performs real-time random access management based on flow 

control. SARA implements differentiated access management 

for different priorities. Simulation results have verified its 

superiority compared with the benchmark schemes. 
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