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Abstract

Paraphrase generation is an important and chal-
lenging natural language processing (NLP) task.
In this work, we propose a deep generative model
to generate paraphrase with diversity. Our model
is based on an encoder-decoder architecture. An
additional transcoder is used to convert a sentence
into its paraphrasing latent code. The transcoder
takes an explicit pattern embedding variable as con-
dition, so diverse paraphrase can be generated by
sampling on the pattern embedding variable. We
use a Wasserstein GAN to align the distributions
of the real and generated paraphrase samples. We
propose a multi-class extension to the Wasserstein
GAN, which allows our generative model to learn
from both positive and negative samples. The gen-
erated paraphrase distribution is forced to get closer
to the positive real distribution, and be pushed away
from the negative distribution in Wasserstein dis-
tance. We test our model in two datasets with both
automatic metrics and human evaluation. Results
show that our model can generate fluent and reli-
able paraphrase samples that outperform the state-
of-art results, while also provides reasonable vari-
ability and diversity.

1 Introduction

Paraphrases are rewritten versions of text with different words
or expressions while preserving the original semantic. The
automatic paraphrase generation of a given sentence is an
important NLP task, which can be applied in many fields
such as information retrieval, question answering, text sum-
marization, dialogue system, etc. A paraphrase generator is
able to perform text reformulation on these systems to bring
variation. Besides, the generated paraphrases can be used as
augmented data in many learning tasks such as text identifi-
cation, classification and inference. Therefore, the generation
fidelity, naturalness and diversity play important roles in the
evaluation on a paraphrase generator system.

Paraphrase generation is a challenging task due to the
complexity of human language. The recent progress of
deep learning, especially sequence-to-sequence (Seq2Seq)
based models for text generation [Bahdanau et al., 2015;

Bowman et al., 2016], have shown great advantages over
the traditional rule-based [McKeown, 1983] and statis-
tic [Quirk et al., 2004] models. Intuitively, a straight-
forward method to generate paraphrase is to train a
Seq2Seq model to convert a sentence into its para-
phrasing reference using the maximum likelihood estima-
tion (MLE), where the cross entropy loss is optimized
[Prakash et al., 2016; Cao et al., 2017]. This method is fur-
ther extended in [Ranzato et al., 2016] to use metrics like
BLEU [Papineni et al., 2002] and ROUGE [Lin, 2004] as re-
ward function of the reinforcement learning algorithm. To
mitigate the gap between lexical similarity and sematic sim-
ilarity, [Li et al., 2018] replaces the lexical reward function
with a trained evaluator and update it using inverse reinforce-
ment learning.

The researches mentioned above focus on converting a sen-
tence into a paraphrasing target optimized with various met-
rics. However, there may be multiple possible paraphrases for
one given sentence. Paraphrases of a certain sentence gener-
ated by humans may differ from each other and contain wide
linguistic variations, which cannot be captured by single-
target transformation models. Moreover, these models tend
to generate sentences with high resemblance to the training
samples, while other good semantically similar results may
be suppressed [Li et al., 2018]. Therefore, in order to further
exploit the variability and obtain diverse paraphrases, it is
necessary to generatively model the paraphrase distribution
instead of a single target sample.

In order to model the distribution of the generated para-
phrase, we introduce a random variable as pattern embed-
ding. The generated results are explicit conditioning on the
pattern embedding variable. Therefore, the model can gen-
erate multiple results with diversity by sampling on this vari-
able. To train such a generative model, one existing work
is the VAE-SVG [Gupta et al., 2018] that uses a conditional
variation auto-encoder (VAE) [Kingma and Welling, 2014]

for paraphrase generation. However, in this paper,
we exploit the adversarial generative network (GAN)
[Goodfellow et al., 2014] to model the paraphrase genera-
tion distribution as an alternative approach. Instead of using
the KL-divergence to optimize the lower-bound in VAE, the
GAN uses adversarial training to directly align the generated
distribution with the real distribution, which is able to gener-
ate realistic results.

http://arxiv.org/abs/1909.13827v1


Applying GANs on text generation is non-trivial since text
consists of discrete tokens that are non-differentiable. We
use the Gumbel-softmax [Jang et al., 2017] as a continuous
approximation and use professor-forcing [Lamb et al., 2016]

algorithm to match the hidden states of input and paraphras-
ing sequences. In order to integrate professor-forcing in our
model, we design an auto-encoder along with a transcoder as
the generator. The transcoder is a feedforward network that
takes both the original sentence and the pattern embedding
as inputs, and outputs the paraphrase latent code. A shared
decoder is used to generate paraphrase sentence and decode
the reference sample.

Specifically, we take advantage of the Wasserstein GAN
(WGAN) [Arjovsky et al., 2017] to train our paraphrase gen-
eration model for better stability and convergence perfor-
mance. We propose a multi-class extension to WGAN by us-
ing multiple critics to measure the generated Wasserstein dis-
tance to different classes of samples. The multi-class WGAN
enables our model to learn paraphrase generation from both
positive and negative samples. The generated paraphrase dis-
tribution is forced to get closer to the positive distribution and
be pushed away from the negative distribution in Wasserstein
distance, which contributes to the generation fluency and rel-
evance.

Overall, the main contributions of this work are summa-
rized as follows: (1) We propose a generative model aiming
at generating multiple paraphrases of a given sentence with
diversity. (2) With continuous approximation and professor-
forcing, the model is trained with GAN to align the generated
distribution with the real distribution. (3) We develop the
multi-class WGAN that enables our model to learn from both
positive and negative samples, which promotes the generation
fluency and relevance.

2 Related Work

Neural Paraphrase Generation: [Prakash et al., 2016]

proposes a Seq2Seq paraphrase generation model using resid-
ual stack LSTM and cross entropy loss. [Cao et al., 2017]

introduces an additional copying decoder for keywords ex-
traction from the source. [Xu et al., 2018] uses a fixed vo-
cabulary of rewrite patterns in the decoder to generate diverse
paraphrases, and the model is trained using MLE criterion by
optimizing on selective patterns. The evaluation of paraphras-
ing is studied in [Li et al., 2018], where a trained evaluator is
used as the reward function to train a paraphrase generation
model with inverse reinforcement learning. Besides the above
transformation-based model, generative model to formulate
the paraphrase generation distribution is also proposed, such
as the VAE-based VAE-SVG [Gupta et al., 2018]. In this
paper, we use GAN as an alternative generative approach for
paraphrase distribution modeling. To the best of the authors’
knowledge, this work is the first in literature that applies GAN
in paraphrase generation.

Generative Adversarial Networks: The main idea of
GAN [Goodfellow et al., 2014] is to train a generator and
a discriminator that compete with each other, forcing the
generator to generate realistic outputs to fool the discrimi-
nator. In such way, the generated distribution of GAN is
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Figure 1: Overview of the proposed paraphrase generation frame-
work.

forced to align with the real distribution. Various extensive
algorithms to the vanilla GAN have been proposed to han-
dle different tasks. For example, conditional GAN (CGAN)
[Mirza and Osindero, 2014] is used to model conditional dis-
tribution by feeding side information to the generator and
discriminator. In ACGAN [Odena et al., 2017], an auxiliary
classifier is added to the discriminator to tackle the multi-
class generation problem. WGAN [Arjovsky et al., 2017]

modifies the discriminator as the critic to measure Wasser-
stein distance instead of Jensen-Shannon (JS) divergence, and
achieves better training stability.

GAN-based Text Generation: Since GANs achieve many
success in image generation fields, several recent researches
focus on applying GAN in text generation. For exam-
ple, [Hu et al., 2017] combines a discriminator with the
VAE model to generate text with controllable attribute.
With non-parallel corpus, [Shen et al., 2017] cross-align dis-
tributions between two datasets with GAN to perform
style transfer. Such adversarial training technique is also
used in unsupervised neural machine translation (NMT)
[Lample et al., 2018] to match the encoded latent spaces of
two languages. For supervised NMT with pairwise samples,
[Wu et al., 2018] designs an Adversarial-NMT model using
GAN as a probabilistic transformer to process translation on
parallel corpus.

3 Method

3.1 Model Framework

The overall framework of our proposed paraphrase generation
model is shown in Figure 1. The model consists of an auto-
encoder, a transcoder and a critic. The auto-encoder is used
to encode and reconstruct the input and reference paraphras-
ing sentences. The transcoder is a feedforward network that
converts a sentence into its paraphrasing latent code, which
is then decoded with a decoder shared with the auto-encoder.
Finally, the decoded paraphrase result is matched with the
recovered real sample using the critic.

Auto-encoder: Consider a pair of paraphrasing sen-
tences (x,y), where x = {x1, x2, · · · , xT } and y =
{y1, y2, · · · , yT } are sequences of tokens. In the auto-
encoder, x and y are encoded into latent code cx = encθe(x)
and cy = encθe(y), where θe refers to the encoder parameter.
cx and cy are then decoded by decθd(·) with parameter θd to
recover the original sequences as x̂ and ŷ. Gated recurrent
unit (GRU) based recurrent neural networks (RNN) are used
in the encoder and decoder. hx and hy denote the decoding
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Figure 2: The structure of the proposed auto-encoder, transcoder and critic.

hidden states. The auto-encoder is trained in a teacher-forcing
pattern, where ground truth samples are fed into the decoder
every time step during training. The training objective of
auto-encoder is to minimize the reconstruction loss, which
is the sum of token-level cross-entropy loss in this paper, i.e.

LAE(θe, θd) = E(x,y)

[

− log pdec(x|encθe(x); θd)

− log pdec(y|encθe(y); θd)
]

. (1)

Transcoder: The main purpose of this work is to model the
paraphrase distribution of a given sentence p(x) instead of a
transformation function f(x). In order to achieve this goal,
we introduce a random variable z as the pattern embedding
variable, and perform paraphrase generation conditioning on
z. Therefore, the paraphrase distribution can be derived as
p(x) = f(x|z), and diverse paraphrase of x can be generated
by sampling on z. Specifically, we use a feedforward GRU
network as the transcoder as shown in Figure 2, which takes
x and z as inputs, and convert x into its paraphrasing form
in the latent space, i.e. ct = trsθt(x|z). In particular, z
is a Nz-dimensional random vector sampled from a standard
normal distribution N (0, INz

), and concatenated with each
token in x for the transcoder input. The latent code ct is
decoded with a decoder that shares weight with the auto-
encoder to output the final paraphrase sequence x̂t, where
ht refers to the corresponding decoding hidden states. As
shown in Figure 2, ct is decoded in a free-run mode, where
the output of last state is used as the input of the next state.

Critic: In order to train the output distribution of the para-
phrase generation, we apply WGAN in our model, where
a critic is implemented aiming at distinguishing generated
fake samples from real samples. With a decoded sentence
x̂ as condition, the critic is trained to detect whether a sen-
tence is the real paraphrase of x̂. The critic outputs for real
and generated samples are denoted as wr = fθc(ŷ|x̂) and
wg = fθc(x̂t|x̂), with parameter θc. The structure of the
critic is detailed in Section 3.4.

3.2 Multi-class Wasserstein GAN

WGAN [Arjovsky et al., 2017], as an improved GAN al-
gorithm, utilizes the Wasserstein distance instead of JS-
divergence to achieve better stability and avoid mode collapse
problems. Given the distribution of real and generated sam-
ples as Pr and Pθg , the Wasserstein distance between the two

distributions is defined as

W (Pr,Pθg) = max
θc∈W

Ex∼Pr

[

fθc(x)
]

−Ex∼Pθg

[

fθc(x)
]

, (2)

where {fθc}θc∈W is the family of all K-Lipschitz functions
f : X 7→ R. The critic maps distributions into Wasserstrin
distance, which acts differently as the discriminator in vanilla
GAN. Thus, auxiliary classifier can not be directly integrated
into the critic as the AC-GAN [Odena et al., 2017] to handle
multi-class generation problem. Therefore, we propose an
alternative approach as follows.

We consider N classes in the real samples, each with dis-

tribution P
(i)
r , 1 6 i 6 N . For a certain generator with

distribution Pθg , we use a critic with N outputs to meassure

the Wasserstein distance between Pθg and P
(i)
r respectively,

i.e.

W (P(i)
r ,Pθg) = max

θc∈W
E
x∼P

(i)
r

[

f
(i)
θc

(x)
]

− Ex∼Pθg

[

f
(i)
θc

(x)
]

.

(3)
Suppose we are training a generator to generate samples of
class i. The generated distribution should have minimized

Wasserstein distance to P
(i)
r , while its Wasserstein distance to

another class P
(j)
r (j 6= i) should exceed a margin in order to

be distinguishable across classes. Therefore, we redefine the
generator loss as

L(i)
g (θ(i)g ) = (1− β)W (P(i)

r ,P(i)
g )+

β

N − 1

∑

j 6=i

[

W (P(i)
r ,P

(i)
θg
)−W (P(j)

r ,P
(i)
θg
) + α

]

+
, (4)

where [·]+ stands for a ReLU. Eqn. (4) contains a term
motivated by the triplet loss [Schroff et al., 2015], where we
use the Wasserstein distance between distributions to replace
the L2 distance between samples. α refers to the enforced
margin, and β refers to the weight on the negative loss.

In the paraphrase generation problem, some datasets con-
tain both positive and negative samples. With multi-class
WGAN, the generator is able to learn from the positive sam-
ples to generate flexible paraphrases, while also exploits from
negative sample to improve the generation reliability. Given

the real positive and negative distributions as P
(p)
r and P

(n)
r ,



the paraphrase generator loss is formulated as

Lg(θt, θd) = (1− β)W (P(p)
r ,Pθt,θd)+

β
[

W (P(p)
r ,Pθt,θd)−W (P(n)

r ,Pθt,θd) + α
]

+
. (5)

3.3 Continuous Approximation

Applying adversarial training algorithm on RNN based text
generator is hard since the generated sequence is discrete and
non-differentiable. One approach to tackle this problem is to
use REINFORCE [Sutton et al., 2000] algorithm. However,
the sampling-based gradient estimation suffers from high
variance and unstable training. Instead, we use the Gumbel-
softmax [Jang et al., 2017] trick as a continuous approxima-
tion to handle the discrete sequence generation problem. In
the decoding process of the paraphrase sequence generation,
we use the Gumbel-softmax distribution to replace the sam-
pled token feeding to the next RNN step, i.e.

yi =
exp[(log πi + gi)/τ ]

∑V

j=1 exp[(log πj + gj)/τ ]
, for 1 6 i 6 V (6)

where [π1, · · · , πV ] is the probabilities of decoding tokens,
V is the vocabulary size, τ > 0 is a temperature parameter,
and gi ∼ Gumbel(0, 1) distribution. Such reparameterization
trick provides a reasonable approximation and makes the gen-
erator differentiable that allows gradients to back-propagate
in training process.

3.4 Critic Model

Motivated by [Shen et al., 2017], we use professor-forcing
[Lamb et al., 2016] to match the decoding hidden states of
auto-encoder and paraphrase generator, since they share the
same decoder parameters. The hidden states of the paraphrase
generator are trained to be indistinguishable from hidden
states of the teacher-forced auto-encoder. By using hidden
states as critic input, the Wasserstein distance defined in Eqn.
(3) is reformulated as

Wθc(P
(i)
r ,Pθt,θd) = E

hy∼P
(i)
r

[

f
(i)
θc

(hy|hx)
]

− E
ht∼Pθt,θg

[

f
(i)
θc

(ht|hx)
]

(7)

where θc = argminL
(i)
c (θc). In order to enforce the Lip-

schitz constraint to the WGAN critic, we use the recently
proposed gradient penalty method [Gulrajani et al., 2017]. A
penalty term on gradient norm is added to the critic loss, i.e.

L(i)
c (θc) = E

ht∼Pθt,θg

[

f
(i)
θc

(ht|hx)
]

− E

hy∼P
(i)
r

[

f
(i)
θc

(hy|hx)
]

+ λ E
ĥ∼P

ĥ

[

(‖∇
ĥ
f
(i)
θc

(ĥ|hx)‖2 − 1)2
]

(8)

for i = p or n, and ĥ is sampled randomly from linear
interpolation of real and generated samples.

We use a CNN model for the critic. For hidden states hx

and h (h = hy or ht), we combine the two tensors into a
2-dimensional image like representation. For the i-th hidden
state hx,i in hx and j-th hidden state hj in h, the two hidden

Algorithm 1 Proposed paraphrase generation algorithm

Input: Positive and negative paraphrase sentences pair distributions

P
(p)
r and P

(n)
r , parameters α, β, λ and τ

1: Initialize θe, θd, θt, θc
2: repeat

3: Sample mini-batches of (x(p), y(p)) and (x(n),y(n)) from

P
(p)
r and P

(n)
r , respectively

4: Sample a random pattern embedding z ∼ N (0, INz )

5: Compute paraphrase latent code ct = trsθt(x
(p)|z)

6: Compute the paraphrase decoding hidden states in free-run
mode with Gumbol-softmax approximation ht = decθd(ct)

7: for i = p, n do

8: Compute the encoder latent code c
(i)
x = encθe(x

(i)) and

c
(i)
y = encθe(y

(i))
9: Compute decoder hidden states in teacher-forcing mode as

h
(i)
x = decθd(c

(i)
x ) and h

(i)
y = decθd(c

(i)
y )

10: Compute the auto-encoder loss L
(i)
AE(θe, θd) by Eqn. (1)

11: Combine hidden states as Eqn. (9), and compute critic

output f
(i)
θc

(ht|h
(i)
x ) and f

(i)
θc

(h
(i)
y |h

(i)
x )

12: Compute Wasserstein distance W (P
(i)
r ,Pθt,θd ) by Eqn.

(7) and critic loss L
(i)
c (θc) by Eqn. (8)

13: end for
14: Compute the paraphrase generator loss Lg(θt, θd) by Eqn.

(5)
15: Update {θe, θd, θt} by gradient descent on loss

Lg +
1

2
(L(n)

AE + L(p)
AE )

16: Update θc by gradient descent on loss Lc = L(p)
c + L(n)

c

17: until convergence
18: return paraphrase generation model decθd [trsθg (x|z)]

state vectors and their element-wise difference and product
are concatenated together forming a feature map as

wi,j = [hT
x,i,h

T
j , |hx,i − hj |

T , (hx,i ⊙ hj)
T ]T (9)

The feature map is then fed into a CNN feature extraction
network proposed in [Gong et al., 2018], which consists of
several DenseNet [Huang et al., 2017] blocks and transition
blocks. The extracted features are followed by an MLP to
output the final estimation of Wasserstein distances.

The overall training procedure of the proposed paraphrase
generation model is detailed in Algorithm 1.

4 Experiments

4.1 Datasets

We train and evaluate our paraphrase generation model on the
Quora question pairs 1 dataset and the MSCOCO 2 dataset.
The Quora dataset contains question pairs with human anno-
tations originally aiming for paraphrase identification. There-
fore, besides the positive paraphrase examples, Quora dataset
also contains non-trivial negative examples, in which a pair of
questions may share similar words but have different mean-
ings. These negative examples are helpful for our proposed

1https://www.kaggle.com/c/quora-question-pairs
2http://cocodataset.org



Generator Critic

Dataset #Train #Test #Validation #Positive #Negative

Quora 126K 4.5K 4.5K 126K 184K
MSCOCO 75K 20K 20K 75K 75K

Table 1: Statistics of datasets.

Quora

Models BLEU ROUGE-1 ROUGE-2 METEOR

Residual LSTM 29.63 58.89 30.72 31.62
VAE-SVG 26.58 50.92 23.44 26.36
Adversarial NMT 30.57 55.95 31.00 33.56

MC-WGAN (average) 27.54 56.45 27.75 28.14
MC-WGAN (best) 32.33 62.66 36.06 33.16

Table 2: Automatic results on the Quora dataset.

multi-class WGAN model. The Quora dataset consists of
over 400K question pairs, after filtering question over 20
words, we get 126K positive samples and 184K negative
samples for the training set. For testing and validation, we
use two sets each with 4.5K positive samples. The MSCOCO
contains an image captioning dataset with about 120K images
with each having 5 human annotated captions, which are used
by some previous works [Gupta et al., 2018] as a paraphrase
dataset . In this paper, we sample 75K pairs of captions to
identical images in MSCOCO as the positive training set.
We also randomly sample another 75K pairs of captions of
different images as negative set. Each of the testing and
validation sets we use consists of 20K samples of caption
pairs. Since MSCOCO dataset dose not contain annotated
negative samples, we only use it to demonstrate the fidelity of
our model across datasets. The statistics of the two datasets
used in this paper is presented in Table 1.

4.2 Training Details

We use the 300-dimensional pre-trained GloVe 3 word em-
beddings in our model. The max length of input and output
sentence is set as 20. We implement the encoder, transcoder
and decoder using RNNs with GRU cells. The encoder
and transcoder are two 2-layers bidirectional GRU networks
with inner-attention, and the decoder is a single-layer GRU
network. The sizes of all the GRU hidden states are 512.
The dimension of pattern embedding is 128. The DenseNet
blocks and transition blocks in the critic are implemented the
same as [Gong et al., 2018], except all the activation units are
replaced by Leakly-ReLU.

Before the adversarial training, we firstly pre-train the
auto-encoder and the transcoder with the MLE metric. The
auto-encoder RNN is pre-trained in the teacher-forcing mode.
However, the transcoder needs to be trained in free-run mode,
where the Gumbel-softmax distribution of last state output
given by Eqn. (6) is used as the next step input.

MSCOCO

Models BLEU ROUGE-1 ROUGE-2 METEOR

Residual LSTM 21.90 33.21 11.53 16.27
VAE-SVG 21.92 36.32 10.72 16.05
Adversarial NMT 21.68 36.01 11.75 17.16

MC-WGAN (average) 22.22 35.31 11.52 15.63
MC-WGAN (best) 27.83 48.42 22.93 22.78

Table 3: Automatic results on the MSCOCO dataset.

Models Relevance Fluency

VAE-SVG 3.75 4.07

MC-WGAN 4.09 4.22

Reference 4.88 4.95

Table 4: Human evaluation results on Quora dataset.

5 Results and Analysis

5.1 Baselines

We compare the results of our proposed model with sev-
eral existing paraphrase generation models, i.e. residual
LSTM [Prakash et al., 2016] (with two layers), VAE-SVG
[Gupta et al., 2018] and Adversarial NMT [Wu et al., 2018].
The reinforcement learning based Adversarial-NMT model
is originally used in machine translation. We use it as a
paraphrase generation model by sharing vocabulary and word
embeddings between the source and target languages. These
models represent the typical approaches of neural paraphrase
generation, and we use them as baselines to evaluate our
proposed model.

5.2 Automatic Evaluation

We first conduct automatic quantitative evaluations to
compare the paraphrase generation performance using
BLEU-4 [Papineni et al., 2002], ROUGE-1 and ROUGE-
2 [Lin, 2004], and METEOR [Denkowski and Lavie, 2014].
These metrics mainly consider the precision and recall of n-
grams between the generated sentences and the references.
Synonyms from WordNet are also considered in METEOR.
However, these lexical metrics are not ideally suitable for
the evaluation of paraphrase generation, because good para-
phrasing examples may exist besides the given references.
This occurs more seriously when a model is aiming at gen-
erating diverse paraphrasing samples, since the generation
diversity is traded-off to the accuracy on specific references.
Therefore, we only use these automatic metrics as part of our
evaluation along with human evaluation.

Table 2 and 3 show the performance of models on the
Quora and MSCOCO datasets respectively. Since our pro-
posed multi-class WGAN (MC-WGAN) model can generate
multiple paraphrases of a given sentence, we list the average
and best results separately. Table 2 shows that the best per-
formance of our model outperforms the baseline models in all
the considered metrics except for METEOR, which is close to
the Adversarial NMT. This indicates our model has the ability

3https://nlp.stanford.edu/projects/glove/



Input Reference Generated z1 Generated z2 Generated z3

how do you start making
money?

what should i do to earn
some more money?

how do i make money
through youtube?

how do i make money from
home?

what are some ways to
make money online?

how effective is scrapping
500 and 1000 rupee notes ?
will it reduce black money?

how will the ban on 500
and 1000 rupee note stop
black money?

how will banning 500 and
1000 rupee notes affect
black money?

how will the demonetiza-
tion of 500 and 1000 ru-
pee notes help indian econ-
omy?

how will the ban of 500 and
1000 rupee notes help in-
dian economy?

what are the worst mistakes
of your life?

what is the worst thing you
did by mistake in your life?

what is the worst mistake
you have in your life?

what was the most em-
barrassing moment of your
life?

what has been the worst ex-
perience of your life?

Table 5: Some examples of paraphrases generated on Quora dataset.

Input Reference Generated z1 Generated z2 Generated z3

a group of kids playing a
game of baseball.

the young boys are playing
a game of baseball in the
park.

a group of young children
playing a game of baseball

a group of baseball players
playing a game on the play-
ground.

three young children play-
ing baseball on a baseball
team.

a man playing tennis going
for a low ball

a tennis player with a racket
hitting the ball

a man in a tennis court
about to hit a tennis ball.

a tennis player in a defen-
sive stance to hit a ball with
a racket.

a man in a tennis court gets
ready to hit a ball.

small pieces of cake have
been arranged on a plate

chocolate dessert bars cov-
ered in frosting and sprin-
kles.

three pieces of cake are on
a plate with a cut of syrup.

two pieces of cake are on a
plate with strawberries.

three cakes on a plate that
have been sliced on top.

Table 6: Some examples of paraphrases generated on MSCOCO dataset.

to generate result close to the reference, i.e. the best results
with respect to the ground truth are within our generation
distribution. This is also shown by Table 3 on the MSCOCO
dataset. Table 2 shows the average performance of our model
is no better than the Residual LSTM and Adversarial NMT on
Quora dataset, because both Residual LSTM and Adversarial
NMT model contain MLE terms in their generator loss and
tend to generate samples close to the ground truth. How-
ever, with the help of GAN, our model mainly focuses on
a distribution perspective. VAE-SVG model is also enabled
to generate multiple paraphrases. Table 2 shows the average
performance of our model outperforms VAE-SVG on Quora
dataset, since the MC-WGAN learns from both positive and
negative samples. However, on the MSCOCO dataset, per-
formance gains only show on BLEU and ROUGE-2, because
the negative samples are randomly selected.

5.3 Human Evaluation

Table 4 shows the human evaluation performance on Quora
dataset, where we mainly compare our model against the
VAE-SVG model since both the two are generative models
that generate diverse paraphrase results. We randomly choose
200 sentences generated by each model, and assign all the
tasks to 3 individual human evaluators to score ranging from 1
to 5 according to the relevance and fluency of each paraphras-
ing pair. (1 refers to the worst and 5 refers to the best). Results
show that our proposed model generates better paraphrasing
samples than the VAE-SVG model in both relevance and flu-
ency metrics on Quora dataset. This is partially because our
model succeeds in taking advantage of the negative samples
to learn better generation distribution.

5.4 Generation Diversity

Table 5 and 6 show some examples of paraphrases gener-
ated with our model on Quora and MSCOCO dataset. By

sampling on the pattern embedding vector z, the model is
able to generate multiple paraphrases of a given sentence.
The shown examples capture the accurate semantic of the
input sentences, while provide reasonable variation in the
paraphrasing outputs. The results on MSCOCO show greater
variation in the paraphrases than the Quora dataset. This is
because different captions may describe one image from dif-
ferent aspects, which means the captions may not be strictly
semantically identical as the human annotated samples in
Quora dataset. Our model is able to capture this feature in
the generation phase, which leads the generator to add more
variational details in the results.

6 Conclusions

In this paper, we have proposed an alternative deep generative
model based on WGAN to generate paraphrase of given text
with diversity. We build our model with an auto-encoder
along with a transcoder. The transcoder is conditioning on an
explicit pattern embedding variable, and transcodes an input
sentence into its paraphrasing term in latent space. Conse-
quently, diverse paraphrases can be generated by sampling
on the pattern embedding variable. We apply WGAN to
force the decoding paraphrase distribution to match the real
distribution. By extending WGAN to multiple class genera-
tion, the generative model is enabled to learn from both the
positive and negative real distributions for better generation
quality. The proposed model is evaluated on two datasets
with both automatic metrics and human evaluation. Results
show that our proposed model can generate fluent and reliable
paraphrase samples that outperform the state-of-art results,
while also provides reasonable variability and diversity at the
same time. Our model provides a new baseline in generative
paraphrase modeling. The proposed model with the multi-
class WGAN algorithm can be potentially applied in may



other text generation tasks with multiple labels, such as natu-
ral language inference generation, in the future works.
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