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Abstract: With the rapid development of light emitting diode (LED), visible light communication
(VLC) becomes an important technique for information transmission including underwater
applications. However, accurate channel estimation for underwater VLC is still challenging due
to the complex environment of the underwater VLC channel. In this paper, by utilizing a proper
approximation, where the channel attenuation is linear with the frequency, a new compressive
sensing (CS) based channel estimation approach is proposed. Utilizing the sparse property of the
reflection path length for the underwater VLC channel, the CS framework is modeled to estimate
the reflection path length, which can further recover the underwater VLC channel. Moreover, a
Bayesian CS recovery algorithm is investigated to overcome the problem of high coherence for
the sensing matrix which outperforms the conventional greedy algorithm such as orthogonal
matching pursuit (OMP). Simulation results illustrate that our proposed channel estimation for
underwater VLC systems has a superior performance which can significantly reduce the pilot
overhead, improve the spectral efficiency, and enhance the estimation accuracy.
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1. Introduction

With the rapid development of light emitting diode (LED), visible light communication (VLC) [1,
2], which can work in a wide bandwidth and high data rate [3], is attracting widespread
concern by both academia and industry. Apart from the indoor application for VLC [4],
the outdoor environments including terrestrial, space, and underwater links are also suitable
scenarios for VLC applications. There are numbers of underwater activities including pollution
monitoring, oil control, offshore explorations, and so on [5], whose realization needs high data
rate communications. Although the acoustic communication underwater is highly concerned, it is
limited by its narrow bandwidth and low data rate. Fortunately, VLC can provide a much higher
data rate, and thus can be a promising solution in the future underwater communications [6-9].

Although the underwater VLC can provide a wide bandwidth, low latency, and robustness
against multi-path propagation and Doppler spread [5, 10], the application for underwater
VLC is still challenging. The attenuation of light transferred underwater is dependent on the
wavelength [11, 12], where the attenuation of the signal increases with the frequency and is
heavily attenuated by the sea water. Moreover, it is also affected by other propagation effects
such as temperature fluctuations, salinity, scattering, dispersion, and beam steering [13—-15].
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These problem will cause a severe frequency selective property for the VLC channel. Therefore,
the propagation channel of the underwater VLC applications is complicated, whose model and
performance were investigated in [5]. As the channel estimation is a prerequisite to guarantee
system performance, the complicated channel model will lead to the difficulty of channel
estimation, which limits extensive utilization for underwater VLC especially for wideband
systems.

Recently, as the study of compressive sensing (CS) is becoming a research hotspot [16—18],
researchers can recover a high dimensional signal from a relatively small dimensional signal. In
wireless communications, as the channel impulse response (CIR) can be modeled as a sparse
vector [19-21], the channel estimation can be performed under the framework of compressive
sensing (CS) [22,23], which can achieve high estimation accuracy with high spectral efficiency.
However, the underwater VLC channel is quite different with the wireless channel. The sparsity
in time domain does not exist for the severe underwater VLC channel with wavelength-dependent
attenuation. Therefore, a novel approach should be investigated to solve the underwater VLC
channel estimation problem.

In this paper, a CS model is built for the underwater VLC channel estimation. Instead of time
domain sparsity, we turn our concentration to the sparse nature of the reflection path length
for VLC channels. As the number of underwater reflected paths is rather limited, their length
can be considered sparse after the quantification. According to this CS model, a Bayesian CS
recovery algorithm is utilized to recover the path length to overcome the high coherence problem
for the sensing matrix. In this way, the underwater VLC channel can be recovered with high
accuracy. Simulation results demonstrate that the proposed scheme has a superior performance
in channel estimation and can reduce considerable amount of pilots. Moreover, the proposed
Bayesian CS based scheme for underwater VLC channel estimation outperforms the conventional
greedy algorithm such as orthogonal matching pursuit (OMP), which is an excellent solution for
CS problem with high coherence sensing matrix.

The rest of the paper is organized as follows. The model of the underwater VLC channel
and the corresponding system are investigated in Section II. The proposed channel estimation
scheme utilizing the sparse character is presented in Section III. The Bayesian CS algorithm
for underwater VLC channel estimation is introduced in Section I'V. Simulation results and
discussion are provided in Section V. Finally, the paper is concluded in Section VI.

Notation: Uppercase and lowercase boldface letters denote matrices and column vectors,
respectively; | -] represents the operation of performing a decimal to a round down integer. (-),
|- Il,,, and E(-) denote transpose, the £,-norm of a vector, and the expectation of a random
variable, respectively. [-]; and [-]; ; denote the i-th column/element of a matrix/vector, and (i, j)-th
entry of a matrix, respectively.

2. System model and channel model

In this paper, the underwater VLC channel estimation is based on an orthogonal frequency
division multiplexing (OFDM) system [24]. One OFDM frame in time domain is denoted by

t=[c"u], M
where ¢ = [c, co, - - .,cM_l]T and u = [ug, uy, . . .,uK_l]T are the M-length guard interval (GI)
and K-length OFDM symbol, respectively. The GI is utilized to protect the symbol from being
contaminated by the previous frame. The padding types of the GI fall into three categories, which
are cyclic prefix (CP), zero padding (ZP), and pseudorandom noise (PN) sequence. In this paper,
CP-OFDM is adopted for convenience to simplify the elimination of the inter block interference
(IBI).

In frequency domain, the OFDM symbol is combined by multiple orthogonal subcarriers.
Most of the subcarriers are used for transmitting data, while a few of them are pilot subcarriers
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and used for underwater VLC channel estimation. The reduction of pilot subcarriers amount
can improve the spectral efficiency, but may also degrade the accuracy of channel estimation.
Therefore, the tradeoff of spectral efficiency and estimation accuracy is essential and should be
thoroughly considered.

The underwater VLC channel frequency response (CFR) is modeled as [5]

H(f)=ae P, (2)

where « is the attenuation factor, which is independent with frequency and can be set as 1 without
loss of generality. The exponential term B (f) denotes the cumulative attenuation coefficients,
which is the effect for both the absorption and scattering. Parameter s is the distance travelled
by the light signal. It can be seen that different frequencies of signal have different channel
attenuations. Therefore, the underwater VLC channel is wavelength dependent, which will make
the channel estimation more difficult.

The channel model above is based on only the line-of-sight (LOS) links. However, if there
exist some shelters or echoes, the received signal may be the superposition of multiple paths.
Under this condition, the channel model can be rewritten as

L-1
H(f) = Z ae Pt (3
1=0

where s; is the distance of the /-th path. The frequency f can be divided into two parts, i.e.,
f = fo + fo, where f;, and f,. are the baseband signal frequency and the modulation carrier
frequency, respectively. L is the number of the paths. It should be mentioned that, there is not
many shelters or echoes for underwater environment. Therefore, the parameter L is usually very
small and this makes s; sparse in the distance domain, which is the domain corresponding to the
distance of the paths.

To recover the underwater VLC channel, the attenuation coefficient 8 (f) is the key point,
which is usually considered as not regular with the frequency. A typical attenuation trend in sea
water for the visible light is shown in Fig. 1. It is investigated in Fig. 6(a) of literature [25], whose
axis of wavelength is transformed to frequency in this paper. It can be seen that the attenuation
coefficient can hardly be represented as a closed form equation for the whole spectrum. However,
if we select only a small portion of the entire light-wave spectrum, which is still broadband
compared to the existing radio frequency communication system, the relationship between the
attenuation coefficient and the frequency can be approximately determined [11].

In our application, the utilized frequency bandwidth is only dozens of MHz, where the linear
relationship is basically fitted [S]. Hence, we can model the attenuation coefficient as a linear
model, which can be written as

B(f)=pB1f +Ba, )

where 81 and (3, are linear factors of the underwater VLC channel model, respectively. As a
result, the underwater VLC channel is simplified and can be represented by

L-1
H(f)= Z e B +B)si 5)
=0

Although the attenuation coefficient is still dependent with the frequency, the underwater VLC
channel model can be characterized now by a closed form equation. In this way, the CS model
can be formulated according to the sparsity in the distance domain, which is introduced in the
next section.
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Fig. 1. A typical attenuation trend in sea water [25].

3. Proposed channel estimation

Assuming a discrete value for s;, the reflection path length for the underwater VLC channel is
sparse in the distance domain. The pilots for the OFDM frame is configured into uniformly-spaced
P subcarriers in order to acquire equidistant CFR samplings ranging from fpin to finax. The
sampling interval, which is also the interval of the pilots, is given by

Af —_ fma]z : {min’ (6)

Based on this sampling method for the CFR, the i-th sampling frequency point is denoted as

ﬁ' = fmin + iAf’ @)
where 0 < i < P. The corresponding CFR for the i-th sampling frequency point is represented by

L-1
H(f)= IZO ae—Bifi+B2)si

L-1
= ZZO ae_[ﬁl(ﬁnin+iAf)+BZ]sl (8)
-1 _
=2 A-wp,
1=0
where A; and w; are written as
A = ae—(ﬁlﬁmﬁﬁz)w’ )

and

w; = e PIAfst, (10)
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respectively. If the values of 4; are all acquired for 0 </ < L, s; can be recovered by utilizing (9).
By this means, the underwater VLC channel could be recovered which can be used at the receiver
for the equalization. Under this circumstances, the channel estimation problem is converted into a
parameter recovery issue with exponential accumulation. For traditional approaches, the subspace
algorithm [26] is optional without considering the potential sparsity of the channel. To investigate
the advantage of the sparse nature in distance domain, the CS framework is formulated in the
following derivation.

The sampling frequency response can be achieved by allocating frequency pilots in the OFDM
subcarriers. The uniformly-spaced CFR can be acquired by comparing the value of the transmitted
and received pilots. The sampling frequency response can be regarded as a rough channel
estimation. Once the rough estimation is achieved, the uniformly-spaced H (f;) for the sampling
interval Af can be combined as the measurement y, which is given by

y = [H(fo), H(fi), ... H(fp-1)]". (11)

The measurement y can be transformed to the product of a sensing matrix and a vector. If the
vector is sparse and the sensing matrix is a flat matrix, whose height is much smaller than width,
the CS structure can be built.

The key difficulty to build the CS structure is that the distance s; is a continuous coefficient. It
is known that CS theory is only applicable in discrete scenario. Therefore, the continuous distance
has to be quantified firstly. In this condition, the minimum unit of the path As is important for
distance discretization. The relationship between As and s; is expressed as

s; = mAs, (12)

where n; is the quantization coefficient. The value of As should be carefully selected. If a
small value of As is chosen, a high recovery accuracy can be achieved because the distance
representation is more detailed. However, the computational complexity is increased and vice
versa. Accordingly, a compromise plan need to be put forward considering both the accuracy and
the computational complexity. After all, the CS model is presented as

where the sparse vector x and the sensing matrix ® are written by,

T
X= [x()»xl,"',xN—l] ) (14)
Yo Vit YN-1
L) 2
Yo Y1 VNa
=] . . . , (15)
P P P
Yoo Y1 YN-

where xy is equal to 0 or corresponds to 4;. Coefficient N is determined by the maximum channel
length spax satisfying N > spax/As. vi in (15) is the quantified variable from w; and can be
denoted as

v = e PIAASE, (16)

As x is a column vector with only L(0 < L < N) nonzero entries, X has the property of sparse.
For the nonzero entries, if the entry with index of m in x is nonzero, e.g., c(m) # 0, there exist a
reflection paths with length mAs. Therefore, the support S, which is composed of the nonzero
indices, is associated with the channel path, and is given by
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S= HX—Z}IL__OIJ 17)

Under these circumstances, s; can be easily obtained by recovering the entries in S. The channel
path length is finally derived by

S = Sl . AS, (18)
where S is the [-th entry in S.

4. Bayesian CS recovery algorithm

Equation (13) is a typical CS model. To find the solutions for the underdetermined equation,
several different CS recovery algorithms are previously investigated, including the greedy
algorithm and the Bayesian CS approach [27]. Orthogonal matching pursuit (OMP) [28] and
compressive sampling matching pursuit (CoSaMP) [29] are representative greedy algorithms.
In this framework, the so-called restricted isometry property (RIP) [30,31] is one significant
criterion to evaluate the performance of the sensing matrix. Nevertheless, the identification
algorithm with polynomial time complexity for RIP does not exist [31]. Fortunately, the mutual
incoherence property (MIP), which is the sufficient condition for RIP, can be easily evaluated
instead. The optimized parameter, i.e., the coherence of the sensing matrix ® € CP*V is the
maximum coherence between different columns and is defined as

_ |<¢Pj’ ‘Pk>|
0sik=N=-Lj#k ||, - llgklly’

where ¢; and ¢y are the j-th and the k-th column of the sensing matrix, respectively.

However, according to (15), it can be easily verified that the coherence of the sensing matrix
@ is very large and approach to 1. Therefore, the traditional greedy CS recovery algorithms
will probably be failed. In this condition, we choose Bayesian CS algorithm instead, which is
also a well-established CS algorithm and on the basis of relevance vector machine (RVM) [32].
Both the sparse vector and the noise are characterized based on the set up of a statistical model.
When conducting the operation of matrix inversion, which is inevitable for CS recovery, it
takes advantage of the auxiliary information of the noise to solve the problem for the large
coherence value of the sensing matrix. The Bayesian approach does not include the recovery of
the singular value of the sensing matrix, which is usually converted into a high order equation
solving problem. Therefore, it tends to have a superior performance in the scenario of strong
noise. Furthermore, the Bayesian approach requires fewer pilots than traditional ones due to the
utilization of the sparse character of the underwater VLC channel. In summary, the algorithm has
excellent anti-noise performance, which is beneficial to the increase of the spectral efficiency for
the underwater VLC system.

The proposed Bayesian CS approach for underwater VLC channel estimation in this paper is
illustrated in Algorithm 1. The power of the signal is assumed to be a priori vector £© as the
initialization. The noise in the channel is described by a vector w(?) to consider the influence of
the noise, which is initialized to be proportional to the variance of the measurement y. p is the
threshold, which is utilized to obtain the zero support for each iteration. In order to guarantee the
performance of the algorithm, considerable number of iterations is required. As the process goes
on, the result will eventually converge. At that time, the algorithm ends and the recovery result of
the sparse signal is obtained.

After we achieve vector X, the 4;, wy, and the corresponding @ and s; can be calculated. As a
result, the underwater VLC channel is got according to (8).

19)
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Algorithm 1 Bayesian CS for underwater VLC channel estimation.

Inputs:
1) Received pilots y € CF’;
2) Sensing matrix ® € CP*V;
Initialization:
. The noninformative priori vector € =[1,1,...,1] € CV;
: The noise modeling w® = 0.01 x var(y);
: The threshold p;
: Maximum iteration time #,,x;
Iterations:
s fori=0:tpx —1do _
Select the column vectors ¢; and the corresponding elements in & @) satisfying §j(.’) <p

w) — > g;i)qu(p;’ +w®I, where I is a unit matrix
j

W A LN =

N

fork=0:N-1do 1
p =& (‘P(‘P(i)) y)
k

. . A\ 2 N\ -1
el (e o (v) e

o ®

. 2 )
11: f;{”l) = Hpg)Hz + 8](;)
12:  end for
13 wl+D = (”y— (Dp(i)ni + Z§;i+l)) /P
J
14: end for

Output: The sparse signal X = plima=1)

o
3
o
IS

o

)
T

ol
o
w
<]

<)

2
o
w

o
N
@

o
IS

o o
N w
T T
Channel impulse Response
(=]
= o
(&} n

Channel Frequency Response
o

14
o
=}
a

RN ’
- 7 MTTWJM

o 0o
5 10 15 20 25 30 o 0.5 1.5 2 2.5 3
Frequency(MHz) Time(s) %108
(2) (b)

Fig. 2. The snapshot of the typical 3-path underwater VLC equivalent baseband channel in
frequency domain (a) and time domain (b).

5. Simulation results

The simulation results of the the proposed channel estimation for the underwater VLC channel is
provided in the following. The parameters in the simulations are listed in Table 1.

Firstly, the equivalent baseband CFR and CIR for the underwater VLC channel are illustrated
in Fig. 2. It is clear in Fig. 2 that, although the number of paths is limited, the CIR is not sparse
in time domain. This implies that the traditional time-domain-sparsity based CS algorithm is
no longer available. Moreover, according to Fig. 2, the underwater VLC channel is frequency
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Table 1. Coefficients in the Simulations

Length of the GI M 256
Length of the OFDM symbol K 2048
Equivalent baseband central frequency 16 MHz
Equivalent baseband bandwidth fi,ax — fmin 28 MHz
Light carrier wavelength/frequency 450 nm/666.7 THz
Number of paths for VLC channel reflection L 3
(including the line-of-sight link)
1.0 =
.z - /
R
038 =
a7
= B
306 Z
g y
g p
o P
204 y )r/
é ! - -= - |deal case with correct nonzero support

—e— Proposed Bayesian CS based scheme 7|
Conventional OMP
—v— LS algorithm

o
N
A
oW
LN
N

0.0 i

50 55 60 65 70 75 80
Number of Pilots

Fig. 3. Simulation for accurate recovery probabilities when SNR = 20 dB.

selective.

Figure 3 presents the accurate recovery probability of the CIR for the proposed channel
estimation scheme. The performance of the least square (LS) algorithm is also shown as reference,
which can be formulated as

H(f) =Y/ X, (20)

where Y; and X; are the received and transmitted pilot symbol on the i-th (0 < i < P) pilot
subcarriers, respectively. The traditional OMP algorithm, which is a widely used greedy CS
recovery algorithm, fails to recover the sparse underwater VLC channel because the sensing
matrix has large coherence. The accurate recovery here is set as the condition when the MSE is
less than 1072, The signal-to-noise ratio (SNR) is configured to be 20 dB. Different numbers of
pilots are simulated. It is obvious that the proposed Bayesian based CS scheme outperforms the
LS algorithm, and it gets close to the ideal case, which assumes the correct nonzero support is
known at the receiver. Our scheme achieves the accurate recovery probability of 0.9 at the pilot
number of less than 68 when the SNR is 20 dB. The LS algorithm needs around 5 extra pilots.
This shows that our scheme is more capable for underwater VLC channel estimation.

The mean square error (MSE) of CIR simulations for different schemes are illustrated in Fig. 4.
On the one hand, the traditional OMP and LS algorithms are simulated by contrast. On the other
hand, the Cramer-Rao lower bound (CRLB) is also evaluated as a reference. In the ideal situation,
the non-zero support is completely recovered and is represented as D (||D||, = L). Therefore, the
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Fig. 4. The MSE performance of CIR simulations.

elements beyond the support D are configured as 0. In this condition, equation (13) is rewritten as

y = ®pxp. 1)

Utilizing the maximum likelihood criterion, the solution is given by

-1
Xex = ®p°y = (®05®p) @py. (22)

Therefore, the CRLB of x is written as

CRLB = E {||Xes; — X||,} = Lo?/P. (23)

For other coefficients, the number of the pilots is configured as P = 64, while the minimum
unit of the path is As = 1m. It is shown that our scheme has better performance than the OMP
scheme, since it fails to recover the sparse underwater VLC channel due to the large coherence
of the sensing matrix. The MSE gets close to the CRLB and is less than 0.1 dB away from it.
Besides, around 1 dB improvement is obtained compared with the LS algorithm with 20 dB
SNR. Moreover, in the high SNR level like 25 dB, the performance is almost the same with that
of the ideal case. Therefore, the proposed Bayesian CS based scheme is efficient to solve the
underwater VLC channel estimation problem.

6. Conclusions

In this paper, a new underwater VLC channel estimation method based on Bayesian CS is put
forward. The channel estimation can be simplified to a coefficient estimation problem with
exponential accumulation by adopting a linear approximation for the underwater VLC channel.
Taking advantage of the sparsity in the distance domain, the CS model is formulated. To overcome
the difficulty that the coherence of the sensing matrix is large, the Bayesian CS algorithm based
on RVM is put forward. Simulations demonstrate that the our scheme outperforms the traditional
OMP and LS methods in terms of the recovery probability and MSE of the CIR. Consequently,
our scheme is a potential technique for underwater VLC channel estimation.


liusc
高亮


Vol. 26, No. 1 | 8 Jan 2018 | OPTICS EXPRESS 321

Optics EXPRESS

Funding

National Key Research and Development Program of China (YS2017YFGHO000376), Shenzhen In-
ternational Cooperation Project (GJHZ20170314153251478), Guangdong Key Laboratory Project
(2017B030314147), and Young Elite Scientist Sponsorship Program by CAST (YESS20150120).





