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Eliminating NB-IoT Interference to LTE System:
A Sparse Machine Learning-Based Approach
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Abstract—Narrowband Internet-of-Things (NB-IoT) is a com-
petitive 5G technology for massive machine-type communication
scenarios, but meanwhile introduces narrowband interference
(NBI) to existing broadband transmission such as the Long
Term Evolution (LTE) systems in enhanced mobile broadband
(eMBB) scenarios. In order to facilitate the harmonic and fair
coexistence in wireless heterogeneous networks, it is impor-
tant to eliminate NB-IoT interference to LTE systems. In this
paper, a novel sparse machine learning-based framework and
a sparse combinatorial optimization problem is formulated for
accurate NBI recovery, which can be efficiently solved using the
proposed iterative sparse learning algorithm called sparse cross-
entropy minimization (SCEM). To further improve the recovery
accuracy and convergence rate, regularization is introduced to
the loss function in the enhanced algorithm called regularized
SCEM. Moreover, exploiting the spatial correlation of NBI, the
framework is extended to multiple-input multiple-output systems.
Simulation results demonstrate that the proposed methods are
effective in eliminating NB-IoT interference to LTE systems, and
significantly outperform the state-of-the-art methods.

Index Terms—Cross-entropy (CE), Long Term Evolution
(LTE) advanced, narrowband interference (NBI), narrowband
Internet-of-Things (NB-IoT), sparse machine learning.

I. INTRODUCTION

W ITH the rapid development of the upcoming tech-
nologies of 5G new radio, the extensive research on

enhanced mobile broadband (eMBB), massive machine-type
communications (mMTCs), and ultrareliable low latency com-
munications (URLLCs) has drawn dramatically increasing
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attention from both academia and industry [1]–[3]. To satisfy
the prospects of 5G, not only tremendous improvements of
the aforementioned new radio techniques need to be achieved,
but also the harmonic and fair coexistence of heterogeneous
networks and the compatibility between 4G and 5G systems
should be taken great care of [4]. Due to the scarcity of the
spectrum suitable for wireless electromagnetic transmission,
many various existing and emerging communication systems
are deployed close to each other, or even overlapping in spec-
trum, which inevitably results in intensive interference [5]. As
a typical example, the NB-IoT system is deployed reusing the
spectrum of Long Term Evolution (LTE), occupying the spec-
trum of LTE when operating in the “in-band” mode [6]–[8].
Narrowband Internet of Things (NB-IoT) is a promising and
emerging technology to support the prospect of mMTC in
5G new radio, capable of interconnecting a large amount of
nodes with very low power consumption and narrow band-
width [9]–[11]. Since LTE and LTE-Advanced (LTE-A) with
the cyclic-prefixed orthogonal frequency division multiplexing
(CP-OFDM) modulation are dominating technologies in 4G
era [12]–[14], the interference from NB-IoT systems should be
properly tackled so that the smooth transition from 4G to 5G
can be done [15], [16]. In the process of the deployment of 5G
eMBB facilities, it is also important to mitigate the interference
from NB-IoT if the utilized spectrum is overlapping.

However, how to mitigate or eliminate the interference
between NB-IoT and LTE systems still remains an open issue,
which has not been sufficiently investigated in literature yet.
Since the bandwidth of NB-IoT is sufficiently small com-
pared with that of LTE, the interference from NB-IoT can be
regarded as a certain kind of narrowband interference (NBI).
Although there are plenty of conventional methods to com-
bat against NBI in [17]–[21], useful data might be lost using
the conventional methods, or the information of statistics or
locations of the NBI should be priorly known, or a large
amount of virtual subcarriers were consumed, which limited
the efficiency and applicability of the conventional methods.

Recently, emerging sparse recovery methods are intro-
duced to NBI estimation, exploiting the sparsity property of
NBI, especially the CS theory-based methods are drawing
great attention [22]. Nevertheless, the state-of-the-art CS-based
methods are mostly designed for non-CP-OFDM systems, or
the estimation is carried out at the preamble, which might
turn out inaccurate for the payload data frames. Besides, it
is difficult to design a practical observation matrix with satis-
factory RIP required by CS-based methods [22]. Thus, the
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performance is limited when the conditions of background
noise or sparsity level are unideal. Sparse Bayesian learning
(SBL), as another sparse recovery theory, was proposed [23]
to solve block sparse recovery problems, but prior information
of the block partition and the statistics of the unknown signal
were required, and the stringent parametric assumptions of the
NBI were impractical.

Different from the aforementioned existing schemes, the
emerging and powerful machine learning theory and tech-
niques, drawing tremendous research attention recently, can
be a great inspiration to achieve a both efficient and reli-
able method of NBI recovery. In the research on machine
learning, CE has been exploited as the loss function to train
deep neural networks [24]. Nevertheless, the conventional CE
method was not designed for sparse approximation. Moreover,
the state-of-the-art research on sparse machine learning-based
NBI recovery using iterative CE guided training is insuffi-
cient in literature. To fill this gap, a sparse machine learning
inspired probabilistic framework is formulated, and a novel
algorithm called sparse cross-entropy minimization (SCEM)
is proposed to iteratively learn the support distribution. The
proposed method is capable of learning and recovering the
NBI more efficiently and more accurately than state-of-the-art
counterparts, supporting the harmonic coexistence of NB-IoT
and LTE systems.

The main contributions are listed as follows.
1) The theory of sparse machine learning with the method

of CE-guided training is introduced to the area of
NBI recovery for the first time. A novel probabilistic
framework of sparse machine learning is formulated to
recover and eliminate the NB-IoT interference to the
LTE system, with higher spectral efficiency and recovery
accuracy than the existing methods.

2) A novel algorithm called SCEM based on sparse
machine learning is proposed for NBI recovery, which
iteratively learns the NBI support distribution guided
by the CE as the loss function. An enhanced algo-
rithm called RSCEM is proposed by regularizing the
loss function, which achieves better recovery accuracy
and convergence rate.

3) The proposed framework is extended to MIMO systems
to utilize the spatial correlation of the NBI at multianten-
nas. Thus, the S-SCEM algorithm is formulated, which
combines the contributions from multiple antennas and
simultaneously recovers the common support of the NBI
to further improve the spectral efficiency and accuracy.

The rest of this paper is organized as follows. The related
works are presented in Section II. The system model is
presented in Section III. The main contribution of this
paper, the proposed probabilistic framework formulation and
the proposed algorithms of sparse machine learning for
NBI recovery, are described in detail in Section IV. The
performance of the proposed algorithms is evaluated through
computer simulations in Section V, which is followed by the
conclusions in Section VI.

Notation: Matrices and column vectors are denoted by bold-
face letters; frequency-domain and time-domain vectors are
denoted by boldface vectors with tilde ṽ and without tilde
v, respectively; (·)† and (·)H denote the pseudo-inversion

TABLE I
FREQUENTLY USED SYMBOLS

operation and conjugate transpose, respectively; ‖ · ‖r repre-
sents the �r norm operation; |�| denotes the cardinality of the
set �; v|� denotes the entries of the vector v in the set of �;
A� represents the submatrix comprised of the columns of the
matrix A indexed by �; �c denotes the complementary set of
�; and supp(v) denotes getting the support of v. The symbols
are listed in Table I.

Synonyms
BSBL Block sparse Bayesian learning.
CE Cross-entropy.
CP Cyclic prefix.
CRLB Cramer–Rao lower bound.
CS Compressed sensing.
FTE Frequency threshold excision.
IBI Interblock interference.
INR Interference-to-noise ratio.
LTE Long Term Evolution.
MIMO Multiple-input multiple-output.
MSE Mean square error.
NBI Narrowband interference.
NB-IoT Narrowband Internet-of-Things.
NLL Negative logarithm likelihood.
OFDM Orthogonal frequency division multiplexing.
PA-SAMP Priori aided sparsity adaptive matching pursuit.
RIP Restricted isometry property.
RSCEM Regularized sparse cross-entropy minimization.
SCEM Sparse cross-entropy minimization.
S-SCEM Simultaneous sparse cross-entropy minimiza-

tion.
SAMP Sparsity adaptive matching pursuit.

II. RELATED WORKS

Some coexistence simulation results for in-band and guard
band scenarios between NB-IoT and legacy systems are
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provided for initial analysis in the 3GPP technical doc-
ument [25], which shows significant interference between
NB-IoT and LTE systems. Ratasuk et al. [26] provided an
analysis of the impacts of the NB-IoT signal on the link
budget and block error rate performance of the LTE system.
Kim et al. [27] investigated the interference between NB-IoT
and LTE systems in the in-band mode. Wang and Wu [28]
gave an analysis of the coexistence between NB-IoT and LTE
for the stand-alone mode, and studied the effects of NB-IoT
to the performance of uplink LTE transmission.

Since the problem of the coexistence between NB-IoT
and LTE systems is vital, there have been some conven-
tional methods to combat against NBI. A commonly adopted
approach is to directly null out the subcarriers where NBI
is present, called FTE [17]. Nilsson [18] proposed a linear
minimum MSE-based method to estimate NBI. A successive
interference cancellation approach mitigating the NBI in a
recursive manner was introduced in [19]. A soft decision-based
successive NBI cancelation method was further proposed by
Darsena and Verde [20]. Coulson [21] designed a time-domain
notch filter for NBI suppression based on linear prediction cri-
terion before discrete Fourier transform at the transmitter. The
limitation of conventional methods mainly lies in that useful
data might be lost, and that the statistics information or plenty
of virtual subcarriers are required.

To overcome the limitations of conventional methods,
the CS theory, as a newly emerged powerful approach for
sparse recovery, can be utilized to deal with the NBI esti-
mation problem. CS-based methods were first investigated
by Al-Dhahir et al., utilizing the null space to obtain the
measurements of NBI for OFDM systems [29], [30]. In
this paper, the NBI could be recovered by using CS-based
greedy algorithms. There have been studies on different
CS-based greedy algorithms, such as subspace pursuit (SP)
proposed by Dai and Milenkovic [31] and SAMP proposed
by Do et al. [32]. The SP algorithm is able to recover sparse
signals with or without noise disturbance costing low com-
plexity [31]. The SAMP algorithm is designed to be adaptive
to variant sparsity levels of the NBI. By dividing the iteration
process into multiple stages, the SAMP algorithm is able to
recover the sparse signal by iterative matching pursuit of the
support basis without knowing its sparsity level [32].

Other CS-based methods were proposed to estimate the
NBI, exploiting the time-domain training guard interval of
time-domain synchronous OFDM (TDS-OFDM) systems [33]
or the preamble in the frame header [34]. In the work of [33],
the algorithm of PA-SAMP was proposed as an improvement
of the classical algorithm SAMP [32], which makes use of the
prior information of the partial NBI support acquired by the
coarse power threshold method. Then the prior information
was exploited in the initialization and iteration process to
reduce the complexity and improve the accuracy. The 2-D cor-
relation of the NBI was exploited in the framework of multiple
measurements and structured CS in [34]. The 2-D measure-
ment data were obtained from the preambles in multiple
receive antennas, and then utilized for the structured CS-based
recovery of the NBI. Another sparse recovery theory, SBL, was
proposed in [23] and has been utilized to effectively estimate

the impulsive noise [35]. A BSBL-based method of estimating
the NBI generated by NB-IoT was proposed in [36], which
is an improvement of the SBL-based method in [23]. The
BSBL-based method employed parametric Bayesian inference
iteratively to estimate the unknown deterministic parameters
of the block sparse NBI [36]. However, the major limitation of
CS-based methods is that the CS theory requires that an obser-
vation matrix with satisfactory RIP should be designed [22],
which is difficult in practice. Furthermore, the performance is
limited when the intensity of the background noise or sparsity
level is large.

Machine learning has become a popular research trend in
recent years, with many applications in the area of sparse com-
posite regularization [37], anti-jamming [38], [39], as well as
wireless communications [40]. A reinforcement learning-based
scheme was proposed in [38] for ultradense networks, which
adaptively learns the policy of power control to improve the
efficiency while mitigating the intercell interference. A 2-D
anti-jamming mobile communication scheme based on rein-
forcement learning was proposed in [39], where a mobile
device can achieve an optimal communication policy with-
out the need to know the jamming and interference model in a
dynamic game framework. As an important method in machine
learning, the CE method is usually utilized for training deep
neural networks and machine learning models, which has
well solved many learning tasks, such as pattern recognition,
object classification, and so on [41], [42]. Recently, a machine
learning-based method exploiting CE was proposed in [43] to
improve hybrid precoding performance for mmWave massive
MIMO systems, which introduced it to wireless communica-
tions research. Previously, the CE method was also adopted to
solve combinatorial optimization problems in literature, which
outperforms the brute-force approach [24], [44]. Different
from the state-of-the-art methods, the proposed solution in this
paper introduces sparse machine learning to NBI estimation,
and a novel algorithm based on CE minimization is proposed
to efficiently learn the NBI support, which improves both the
spectral efficiency and the estimation accuracy compared with
existing approaches.

III. SYSTEM MODEL

A. Signal Model of LTE

As adopted in 3GPP standards of LTE [12], [13], the CP-
OFDM frame structure is composed of the length-N OFDM
block, where N is the number of subcarriers with the subcarrier
spacing of �fsc, and the length-V CP in front, which is formed
by the last V samples of the OFDM block, as illustrated in
Fig. 1.

After transmitted in the wireless multipath fading chan-
nel with the channel impulse response (CIR) hi =
[hi,0, hi,1, . . . , hi,L−1]T in the presence of the NBI gener-
ated by the NB-IoT signal, the received ith CP ci =
[ci,0, ci,1, . . . , ci,V−1]T before the ith OFDM block xi is
represented as

ci = �CPhi + ei + wi (1)
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Fig. 1. Temporal differential measuring of NBI from CP-OFDM frames and
sparse machine learning-based framework formulation for NBI recovery in
LTE systems.

where ei = [ei,0, ei,1, . . . , ei,V−1]T denotes the time-domain
NBI vector located at the CP, wi denotes the additive white
Gaussian noise (AWGN) vector with zero mean and variance
of σ 2

w, and �CPhi denotes the received CP, with the matrix
�CP ∈ C

V×L represented as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi,N−V xi−1,N−1 xi−1,N−2 · · · xi−1,N−L+1

xi,N−V+1 xi,N−V xi−1,N−1 · · · xi−1,N−L+2

xi,N−V+2 xi,N−V+1 xi,N−V · · · xi−1,N−L+3
...

...
...

. . .
...

xi,N−V+L−2 xi,N−V+L−3 xi,N−V+L−4 · · · xi−1,N−1

xi,N−V+L−1 xi,N−V+L−2 xi,N−V+L−3 · · · xi,N−V

xi,N−V+L xi,N−V+L−1 xi,N−V+L−2 · · · xi,N−V+1
...

...
...

. . .
...

xi,N−1 xi,N−2 xi,N−3 · · · xi,N−L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The entries {xi−1,n}N−1
n=N−L+1 in the matrix �CP above rep-

resent the last L−1 samples of the preceding (i−1)th OFDM
block xi−1, which causes IBI on the following ith CP. Since
xi−1 only causes IBI on the first L− 1 samples of the ith CP
as illustrated in Fig. 1, the last G = V − L+ 1 samples of ci

will form the IBI-free region given by

pi =
[
ci,L−1, ci,L, . . . , ci,V−1

]T = SG,Vci (2)

where SG,V denotes the selection matrix composed of the last
G rows of the V × V identity matrix IV . The IBI-free region
exists in practical broadband transmission systems because
a common rule for system design is to configure the guard
interval length V to be much larger than the maximum chan-
nel delay spread L in the worst case to avoid IBI between
OFDM symbols, which is specified in standards and supported
in [12], [36], and [45].

For simplicity of notations, the subscript of i denoting the
frame number is omitted in the following content of this paper
when there is no ambiguity about the current frame number,
unless otherwise clearly stated. Then the IBI-free region can

be rewritten as

p = SG,V�CPh+ e+ w (3)

where p, e, and w consist of the last G entries of ci, ei, and
wi in (1), respectively, while SG,V�CP ∈ C

G×L is composed
of the last G rows of �CP without the IBI component. Since
the CP is the same with the last V samples of the OFDM
block, there is a duplicate of the IBI-free region p at the last G
samples of its subsequent OFDM block, which can be denoted
by pX given by

pX = SG,V�CPh+ eX + wX (4)

where eX and wX denote the length-G time-domain NBI and
AWGN vectors at the end of the OFDM block, respectively.

B. NBI Model Generated by NB-IoT

In LTE systems, the NB-IoT signal working in the in-band
mode at the spectrum of LTE generates NBI to the receivers of
the LTE system [46]. The widely adopted model of the NBI in
the frequency domain is the superposition of several tone inter-
ferers, and each tone interferer is modeled by a band-limited
Gaussian noise (BLGN) with the power spectral density (PSD)
of N0,NBI = σ 2

e [47]. The frequency-domain location of the
tone interferers can be randomly distributed among all N sub-
carriers [47], [48], and different tone interferers are mutually
independent [48]. Let ẽi = [ẽi,0, ẽi,1, . . . , ẽi,N−1]T denote the
frequency-domain NBI vector associated with the CP, and then
each entry of the corresponding time-domain NBI signal ei can
be represented as

ei,n =
∑
k∈�

ẽi,k · exp

(
j2πkn

N

)
, n = 0, 1, . . . , V − 1 (5)

where � = {k|ẽi,k �= 0, k = 0, 1, . . . , N − 1} is the set of the
indices of nonzero entries, which is defined as the support.
The sparsity level K is defined by the number of nonzero
entries, which is much smaller than the signal dimension,
i.e., K = |�| � N. The INR γ is used to represent the
intensity of the NBI, defined by γ = E{Pe}/σ 2

w, where
Pe = ∑

k∈� |ẽi,k|2/K denotes the average power. Since the
tone interferers are BLGN as described, the average power is
E{Pe} = σ 2

e , yielding the INR γ = σ 2
e /σ 2

w.
Since the bandwidth of NB-IoT is sufficiently small com-

pared with that of LTE [49], the NBI generated by NB-IoT
can be modeled as a sparse vector in the frequency domain,
which has only few nonzero entries compared with the num-
ber of subcarriers. The nonzero entries of the NBI are not
necessarily located exactly at the frequencies of the OFDM
subcarriers in LTE, because in practice there might be a frac-
tional frequency offset (FO) for the NB-IoT working frequency
with respect to the OFDM subcarriers. Thus, the generalized
NBI model will become a block sparse vector due to the spec-
tral leakage [50]. Then the frequency-domain block sparse NBI
vector ẽB = [ẽB,0, ẽB,1, . . . , ẽB,N−1]T associated with the CP
can be represented as

ẽB = FH
N�FOFN ẽi (6)
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where FN denotes the N×N inverse discrete Fourier transform
(IDFT) matrix with the entry {FN}m,n = exp(j2πmn/N)/

√
N,

and �FO = diag{1, exp(j2πα/N), . . . , exp(j2πα(N − 1)/N)}
is the FO matrix, whose value of offset frequency can
be modeled by a uniformly distributed variable α ∈
U(−1/2, 1/2] [50]. Transforming the frequency-domain NBI
signal (6) to the time domain by partial IDFT, the NBI vector
associated with the IBI-free region in (3) is obtained as

e = SG,NFN ẽB. (7)

There is a useful feature of NBI called temporal correlation,
which can be utilized for measuring the NBI from the com-
pound received signal containing both the NBI and the data
components. The temporal correlation claims that, the NBI
signal usually has invariant support and amplitude over one
received OFDM frame of interest. This is because according to
experiments and observations, the coherence time of the NBI
signal is normally much larger than that of one OFDM symbol,
and the working band of the NBI source such as NB-IoT is
not changing so fast [36], [51], [52]. It is observed that usually
the NB-IoT signal working in-band in LTE spectrum is located
fixed in certain frequency locations [8], [11]. Temporal corre-
lation is also verified by substantial field tests and experimental
observations in real house and apartments [53].

Because of the temporal correlation, the frequency-domain
NBI vectors associated with the CP part and the follow-
ing OFDM block part share the same support and ampli-
tude, with only a phase shift in between: let ẽBX =
[ẽBX,0, ẽBX,1, . . . , ẽBX,N−1]T denote the frequency-domain
NBI vector associated with the CP’s duplicate in the OFDM
block given by (4), where the time-domain representation of
ẽBX is given by

eX = SG,NFN ẽBX. (8)

Hence, ẽBX can be derived by the phase shift of ẽB

associated with the CP in (3), which can be represented as

ẽBX,k = ẽB,k exp

(
j2π(k + α)�lB

N

)
, k = 0, 1, . . . , N − 1 (9)

where the value of FO α determines the phase to shift, and
�lB is the corresponding time-domain distance between the
CP and its duplicate in the OFDM block.

Note that �lB = N as illustrated in Fig. 1, so it can be
further derived that ẽBX,k = ẽB,k exp(j2πα), which yields a
simpler relation only related with α given by

ẽBX = exp(j2πα)ẽB. (10)

IV. PROBABILISTIC SPARSE MACHINE LEARNING-BASED

FRAMEWORK FORMULATION AND ALGORITHMS

FOR NBI RECOVERY

In this section, the probabilistic framework of sparse
machine learning as well as the sparse combinatorial
optimization problem for NBI recovery is first formulated in
Section IV-A. Then, the proposed sparse machine learning-
based iterative algorithm called SCEM is introduced in detail
in Section IV-B, followed by the enhanced algorithm of
RSCEM imposing regularization on the loss function in

Section IV-C. Afterward, the extension of the proposed
method to MIMO systems is presented in Section IV-D.

A. Probabilistic Sparse Machine Learning Framework
Formulation for NBI Recovery

The ultimate goal of this paper is to accurately recover
the NBI vector ẽBX located at the OFDM data block and
eliminate it from the data, which can be done by estimating
ẽB and using the relation in (10). Hence, first the measure-
ment of the NBI ẽB should be obtained, and a probabilistic
sparse machine learning-based framework can be formulated
to efficiently recover the NBI using the proposed algorithms.

The measurement vector of the NBI can be obtained
using the temporal differential measuring operation [36].
Specifically, as illustrated in Fig. 1, the measurement vec-
tor can be obtained by the differential operation between the
received IBI-free region p in (3) and its duplicate pX in (4)
at the end of the OFDM block, which nulls out the cyclic
data component SG,V�CPh, yielding the measurement vector
of the NBI

�p = �e+�w (11)

where �e = e − eX and �w = w − wX . Thus, by substi-
tuting (7) and (8) into (11), the measurement vector can be
rewritten as

�p = SG,NFN�ẽB +�w (12)

where �ẽB is given by

�ẽB = ẽB − ẽBX = (1− exp(j2πα))ẽB (13)

whose support is the same with that of ẽB and ẽBX.
After obtaining the measurement of the NBI in (12),

the probabilistic sparse machine learning framework of NBI
recovery can be formulated, by which the support distribu-
tion of the NBI can be learned using the proposed algorithms.
Because of the sparsity of the frequency-domain NBI vector,
it is crucial to recover its support, i.e., the set of the indices
of the nonzero entries. Since the sparsity level of the NBI is
K, it is required that the unknown NBI vector �ẽB ∈ C

N to
be reconstructed in (12) should satisfy

∥∥�ẽB
∥∥

0 ≤ K (14)

where ‖ · ‖0 denotes the �0-norm, i.e., the number of nonzero
entries. To recover the optimal NBI vector based on the mea-
surement in (12), we should solve the optimization problem
given by

�ê∗B = arg min
�ẽB

∥∥�p− SG,NFN�ẽB
∥∥

2, s.t.
∥∥�ẽB

∥∥
0 ≤ K

(15)

where �ê∗B denotes the optimal NBI vector to be recovered
from the measurement �p in (12) that minimizes the residue
error norm r, with r given by

r = ∥∥�p− SG,NFN�ẽB
∥∥

2. (16)

In the conventional perspective of signal processing, the
problem in (15) is intractable, because of the nonconvex con-
straint of �0-norm. Since the constraint is a sparse one, it can
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be regarded as a sparse combinatorial optimization problem.
Let 	 denote the set of all possible supports of sparse vectors
satisfying the constraint in (14), we have

	 = {
supp

(
�ẽB ∈ C

N)∣∣∥∥�ẽB
∥∥

0 ≤ K
}

(17)

so the size of the set 	 of possible solutions is given by

|	| =
k=K∑
k=0

Ck
N =

k=K∑
k=0

N!

(N − K)!K!
. (18)

It can be noted from (18) that the possible supports of the
solution space is exponentially and combinatorially increasing
with the problem size N and K.

Some sparse approximation methods, including the popular
CS-based theory, have been exploited to relax the noncon-
vex optimization problem to a tractable one in literature. For
instance, the nonconvex �0-norm constraint in (15) can be
relaxed to the convex �1-norm minimization problem [22] as

arg min
�ẽB

∥∥�ẽB
∥∥

1, s.t.
∥∥�p− SG,NFN�ẽB

∥∥
2 ≤ ε (19)

where ε denotes the error norm bound due to the background
AWGN noise �w, and thus convex programming can be
exploited to solve it [54]. However, the performance of the
CS-based methods is dependent on the RIP of the observa-
tion matrix [22], [55]. Besides, performance degradation could
be caused due to intensive background noise and large spar-
sity level [22]. The spectral efficiency could still be improved
because many measurement samples have to be reserved in
the guard interval for CS-based methods [33].

To overcome the difficulties of state-of-the-art methods, a
probabilistic sparse machine learning-based approach called
SCEM is proposed for NBI recovery, which is able to effi-
ciently solve the nonconvex sparse combinatorial optimization
problem in (15) without strict prior RIP requirements for
the observation matrix SG,NFN , and much more spectrum-
efficient by reducing the cost of measurement data. The
proposed algorithm significantly develops the conventional CE
method [24] to accommodate the sparse recovery problem, and
the unknown sparse NBI signal can be accurately recovered,
as described in detail in the next section.

B. Proposed Sparse Machine Learning Inspired Algorithm:
Sparse Cross-Entropy Minimization

Based on the probabilistic framework of sparse learning, the
purpose of the SCEM algorithm proposed in this paper is to
efficiently solve the sparse combinatorial optimization problem
in (15) by iteratively minimizing the CE between the current
support distribution and the one minimizing the residue error
norm. The pseudocode of the proposed SCEM algorithm is
summarized in Algorithm 1, and the computing flowchart of
the essential computing modules, parameters, nodes, and data
flows of the algorithm is illustrated in Fig. 2.

It can be observed from Fig. 2 that the proposed sparse
machine learning algorithm iteratively learns the probability
distribution of the NBI support by minimizing the loss func-
tion (i.e., the CE). In each iteration within the algorithm loop,
the algorithm generates a set of candidate supports randomly

Algorithm 1 SCEM for Sparse Machine Learning-Based NBI
Recovery
Input:

1) Measurement vector �p
2) Observation matrix � = SG,NFN

3) Threshold for residue error norm ε

4) Candidate supports number Nc, favorable supports
number Nf , maximum iteration number Im
Initialization:

1: q(0) ← 1
2 ·
−→
1 N×1 (initial probability distribution of the

NBI support)
2: k← 0 (iteration count number)

Iterations:
3: repeat
4: Randomly generate Nc candidate supports {�(k)

j }Nc
j=1

based on the current support distribution q(k), where
each candidate support is generated in a recursive way
s.t. |�(k)

j | ≤ K, j = 1, · · ·Nc

5: Compute the corresponding NBI vectors {�ẽ(k)
B,j}Nc

j=1, s.t.

�ẽ(k)
B,j

∣∣∣
�

(k)
j

← �
†

�
(k)
j

�p, �ẽ(k)
B,j

∣∣∣
�

(k)c
j

← 0

6: Calculate the corresponding residue error norms r(k)
j =∥∥∥�p−��ẽ(k)

B,j

∥∥∥
2
, j = 1, · · ·Nc

7: Sort {r(k)
j }Nc

j=1 in the ascending order as

r(k)
[1] ≤ r(k)

[2] ≤ · · · ≤ r(k)
[Nc]

8: Select the Nf smallest residue error norms {r(k)
[j] }

Nf
j=1,

and set the corresponding supports {�(k)
[j] }

Nf
j=1 as the

favorable supports
9: Update the probability distribution of NBI support to

q(k+1) by minimizing the CE based on (23)
10: k← k + 1
11: until r(k−1)

[1] ≤ ε or k > Im (halting condition)
Output:

1) Learnt support probability distribution q̂ = q(k)

2) Recovered NBI support �̂ = �
(k−1)
[1]

3) Recovered sparse NBI vector �êB = �ẽ(k−1)
B,[1]

based on the current support distribution q(k) [initialized by
q(0)], and computes the corresponding residue error norms
using the measurement vector from the input. After sorting the
residue error norms, the set of favorable supports is selected
out, which serves as the training data set. Then, the loss func-
tion is computed by calculating the CE between the training
data set and the estimated output. By minimizing the loss
function using gradient descent, the support distribution is
backward updated to q(k+1) for the next iteration. This pro-
cess will drive the support distribution gradually to be trained
toward the one with minimum estimation error. The iterations
continue until the halting condition of the algorithm is met,
and the output of the algorithm is thus achieved.

The overall structure and explanations of Algorithm 1 are
described as follows.

Phase 1 (Input): The measurement vector �p, the observa-
tion matrix �, the residue error norm threshold ε given in (19),
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Fig. 2. Computing flowchart of the iterative sparse machine learning-based
algorithm of SCEM for NBI recovery.

and the number of candidate supports and favorable supports,
i.e., Nc and Nf , are input to the algorithm.

Phase 2 (Initialization): The initial probability distribution
of the NBI support is set as q(0) ← (1/2) · −→1 N×1, where
q(k) = [q(k)

0 , q(k)
1 · · · q(k)

N−1]T , and q(k)
n denotes the probability

that the nth entry is in the NBI support �(k), i.e.,

Pr
(

n ∈ �(k)
)
= q(k)

n , n = 0, . . . , N − 1. (20)

Since the nonzero entries can be randomly distributed in the
support, assuming each entry has an initial probability of 0.5
to be nonzero is rational without loss of generality.

Phase 3 (Main Iterations): The main process is composed
of multiple iterations, and terminates until the halting condi-
tion of the algorithm is met. The main process includes the
following steps.

1) Candidate Supports Generation (Line 4): Nc candi-
date supports {�(k)

j }Nc
j=1 are generated based on the support

distribution q(k). Each candidate support �
(k)
j is generated

in an efficient and simple recursive manner to obtain a K-
sparse support. Let πl denote the current temporary support
in the recursive generation process, where the initial tem-
porary support π0 = {0, 1, . . . , N − 1}. Then, based on the
current temporary support πl and its corresponding probabil-
ity {q(k)

n }n∈πl derived from the current support distribution q(k),
a more sparse temporary support πl+1 can be generated by a
Bernoulli trial on each entry n ∈ πl as

πl+1 =
{

n|n ∈ πl and f (πl)
n = 1

}
(21)

where the {0, 1}-valued parameter f (πl)
n is the outcome of the

Bernoulli trial on entry n ∈ πl with Bernoulli probability q(k)
n .

Afterward, l← l+ 1 and keep doing this until |πl| ≤ K, and
then the candidate support is set as �

(k)
j = πl.

2) Computing NBI and Residue (Lines 5 and 6): The esti-
mated NBI vectors {�ê(k)

B,j}Nc
j=1 corresponding to the candidate

supports are calculated based on the least squares principle
implemented on the candidate supports {�(k)

j }Nc
j=1, and the cor-

responding residue error norms {r(k)
j }Nc

j=1 are calculated by (16)
using the estimated NBI vectors.

3) Favorable Supports Selection (Lines 7 and 8): The can-
didate supports are sorted by the residue error norms in the
ascending order in order to pick out the best Nf candidate sup-
ports with smallest estimation error, which is closest to the real
NBI support and regarded as the favorable supports {�(k)

[j] }
Nf
j=1.

The implicit probability distribution implied by the favorable
supports is the training target of the current support distribu-
tion q(k), which is gradually driven toward the ground-truth
distribution by iteratively minimizing the CE between them.

4) Learning Support Distribution by Minimizing CE
(Line 9): The CE is utilized as the loss function L(�

(k)
[j] ;q(k))

in the perspective of machine learning theory, which is given
by

L
(
�

(k)
[j];q(k)

)
= − 1

Nf

Nf∑
j=1

ln Pr
(
�

(k)
[j]

∣∣∣q(k)
)

(22)

where {− ln Pr(�(k)
[j] |q(k))} is the NLL of the favorable support

�
(k)
[j] conditioned on the current probability distribution q(k).

By minimizing the loss function in (22), the current support
distribution q(k) is updated to q(k+1), which is given by

q(k+1) = arg min
q(k)

⎧⎨
⎩−

1

Nf

Nf∑
j=1

ln Pr
(
�

(k)
[j]

∣∣∣q(k)
)
⎫⎬
⎭. (23)

Let a {0, 1}-valued length-N vector f[j] denote the favorable
support �

(k)
[j] , where its nth entry f[j],n = (f[j])n satisfies

f[j],n =
{

1, n ∈ �
(k)
[j]

0, n /∈ �
(k)
[j] .

(24)

Then the conditional probability Pr(�(k)
[j] |q(k)) in the CE

in (23) is given by

Pr
(
�

(k)
[j] |q(k)

)
= Pr

(
f[j]|q(k)

)
(25)

where f[j],n is a Bernoulli random variable given by

Pr
(

f[j],n = 1
)
= q(k)

n Pr
(

f[j],n = 0
)
= 1− q(k)

n . (26)

Thus, one can derive that

Pr
(

f[j]|q(k)
)
=

N−1∏
n=0

(
q(k)

n

)f[j],n
(

1− q(k)
n

)1−f[j],n
. (27)

By substituting (27) into (23), the first derivative of the CE
with respect to q(k)

n can be derived as

∂

∂q(k)
n

⎧⎨
⎩−

1

Nf

Nf∑
j=1

ln Pr
(

�
(k)
[j]

∣∣∣q(k)
)
⎫⎬
⎭

= ∂

∂q(k)
n

⎧⎨
⎩−

1

Nf

Nf∑
j=1

[
f[j],n ln q(k)

n +
(

1− f[j],n
)

ln
(

1− q(k)
n

)]
⎫⎬
⎭

= − 1

Nf

Nf∑
j=1

[
f[j],n

q(k)
n

− 1− f[j],n

1− q(k)
n

]
. (28)

To minimize the CE, the first derivative (28) is set to zero,
so the updated support distribution q(k+1) can be learned by

q(k+1)
n = 1

Nf

Nf∑
j=1

f[j],n, n = 0, 1, . . . , N − 1. (29)
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5) Iteration Switching (Lines 10 and 11): If the halting
condition is satisfied when r(k−1)

[1] ≤ ε or k > Im, the algorithm
ends. Otherwise, the algorithm goes into the next iteration.

Phase 4 (Output): The output of the algorithm includes the
learned support probability distribution q̂ = q(k), the recovered
NBI support �̂ = �

(k−1)
[1] , and the recovered sparse NBI vec-

tor �êB = �ẽ(k−1)
B,[1] , which obtains the solution of the sparse

combinatorial optimization problem in (15) as �ê∗B = �êB.
Afterward, ẽB can be calculated by (13) and the NBI

ẽBX associated with the OFDM block can be calculated
through (10). Then, the NBI can be directly eliminated from
the information data in the frequency domain just by sub-
tracting ẽBX from the received frequency-domain OFDM
subcarriers X, which is given by

X0 = X− ẽBX (30)

where X is the DFT of the received OFDM block xi as illus-
trated in Fig. 1, while X0 is the frequency-domain OFDM data
block free from the NB-IoT interference. Thus, the NBI-free
OFDM data block can be then used for information demapping
and decoding.

C. Enhanced Sparse Machine Learning-Based Algorithm:
Regularized SCEM

In the proposed SCEM algorithm where the CE plays the
important role of loss function, each NLL corresponding to
each favorable support �

(k)
[j] has an average contribution to

the CE given in (23), so the favorable supports with different
residue error norms contribute the same to the loss function.
In fact, different supports should reflect different contributions
on the loss function so as to encourage the algorithm to learn
the support with less error. Out of this insight, an enhanced
sparse learning algorithm of RSCEM is proposed, in which
the loss function in (22) is regularized by multiplying with
the weighting parameter λ[j] to generate the regularized loss
function Lreg(�

(k)
[j] ;q(k)) given by

Lreg

(
�

(k)
[j];q(k)

)
= − 1

Nf

Nf∑
j=1

λ[j]ln Pr
(
�

(k)
[j]

∣∣∣q(k)
)

(31)

where the regularization weighting parameter λ[j] is given by

λ[j] =
r(k)

r(k)
[j]

, j = 1, 2, . . . , Nf (32)

where r(k) is the average residue error norm over the favorable
supports given by

r(k) = 1

Nf

Nf∑
j=1

r(k)
[j] . (33)

Note that a smaller residue error norm r(k)
[j] leads to a larger

weighting parameter λ[j] in (32). Hence, the NLL correspond-
ing to a more accurate support will have a larger contribution
to the regularized loss function in (31), which will drive the
support distribution q(k) to converge to the ground-truth sup-
port more accurately and more efficiently. The pseudocode of
RSCEM is thus similar to that of SCEM given in Algorithm 1

except for the procedure of minimizing the loss function in
line 9, where the regularized loss function is now adopted to
update the distribution as given by

q(k+1) = arg min
q(k)

− 1

Nf

Nf∑
j=1

λ[j]ln Pr
(
�

(k)
[j]

∣∣∣q(k)
)
. (34)

To calculate the minimum regularized loss function in (34),
the same notation as in the previous section, i.e., the Bernoulli
vector f[j] in (24) denoting the favorable support �

(k)
[j] , is

inherited. Through similar deduction from (24) to (27), and
substituting (27) into (34), the first derivative of the regu-
larized loss function with respect to q(k)

n can be obtained,
represented as

∂

∂q(k)
n

⎧⎨
⎩−

1

Nf

Nf∑
j=1

λ[j]ln Pr
(

�
(k)
[j]

∣∣∣q(k)
)
⎫⎬
⎭

= ∂

∂q(k)
n

⎧⎨
⎩−

1

Nf

Nf∑
j=1

λ[j]
[
f[j],n ln q(k)

n +
(

1− f[j],n
)

ln
(

1− q(k)
n

)]
⎫⎬
⎭

= − 1

Nf

Nf∑
j=1

λ[j]

[
f[j],n

q(k)
n

− 1− f[j],n

1− q(k)
n

]
. (35)

Setting the first derivative of the regularized loss function
given in (35) to zero, the regularized loss function can be min-
imized, yielding the updated support probability distribution
q(k+1) given by

q(k+1)
n =

∑Nf
j=1 λ[j]f[j],n∑Nf

j=1 λ[j]
, n = 0, 1, . . . , N − 1. (36)

Comparing (36) with (29), it can be observed that, for the
algorithm of SCEM, all the entries {f[j],n}Nf

j=1 have the same

contribution to the updating of q(k+1)
n in (29), so the different

accuracy among favorable supports are not taken into consider-
ation. On the other hand, for the enhanced RSCEM algorithm,
a more accurate support �

(k)
[j] will impose a larger weighting

parameter λ[j] on and have a larger contribution to the updat-
ing of q(k+1)

n as implied by (36). In fact, (29) can be regarded
as a special case of (36) when λ[j] = 1, j = 1, 2, . . . , Nf .
Consequently, it can be derived that the enhanced RSCEM
algorithm will learn the ground-truth support distribution more
accurately and more efficiently than SCEM, which is also
validated in the simulation results in the next section.

D. Extension to MIMO: Simultaneous Multiantenna NBI
Recovery Algorithm

The proposed method can be extended to MIMO systems
to further improve the estimation accuracy by exploiting the
spatial correlation of the NBI. Due to the spatial correlation,
the received NBI signals at different receive antennas in the
MIMO system share the same support, i.e., the locations of
nonzero entries are the same, although their amplitudes might
be different [34]. One can make use of the spatial correlation
in the iterations of the proposed sparse machine learning algo-
rithm to simultaneously recover the NBI signals contaminating
multiple receive antennas.
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Algorithm 2 (S-SCEM) for NBI Recovery in MIMO System
Input:

1) Measurement vectors {�pt}NR
t=1 at NR receive antennas

2) Observation matrix � = SG,NFN

3) Threshold for residue error norm ε

4) Parameters Nc, Nf , Im
Initialization:

1: q(0)← 1
2 ·
−→
1 N×1

2: k← 0
Iterations:

3: repeat
4: Randomly generate Nc candidate supports {�(k)

j }Nc
j=1

based on the current support distribution q(k) s.t.
|�(k)

j | ≤ K, j = 1, · · ·Nc

5: For each candidate support �
(k)
j , j = 1, · · ·Nc, compute

NR NBI vectors {�ẽ(k)
B,j(t)}NR

t=1, s.t.

�ẽ(k)
B,j(t)

∣∣∣
�

(k)
j

← �
†

�
(k)
j

�pt, �ẽ(k)
B,j(t)

∣∣∣
�

(k)c
j

← 0

6: For each candidate support �
(k)
j , j = 1, · · ·Nc, calculate

NR residue error norms:
{r(k)

j(t) = ‖�pt −��ẽ(k)
B,j(t)‖2}NR

t=1
7: Calculate the weighted average residue error norms
{r̄(k)

j }Nc
j=1 by:

r̄(k)
j =

∑NR
t=1 βt · r(k)

j(t), with βt given by (37)
8: Sort the weighted average residue error norms in the

ascending order as
r̄(k)

[1] ≤ r̄(k)
[2] ≤ · · · ≤ r̄(k)

[Nc]
9: Select the Nf smallest weighted average residue error

norms {r̄(k)
[j] }

Nf
j=1, and set {�(k)

[j] }
Nf
j=1 as the favorable

supports
10: Update the probability distribution of NBI support to

q(k+1) by minimizing the CE based on (23)
11: k← k + 1
12: until r̄(k−1)

[1] ≤ ε or k > Im (halting condition)
Output:

1) Learnt support probability distribution q̂ = q(k)

2) Estimated common sparse NBI support �̂ = �
(k−1)
[1]

3) Estimated NR NBI vectors {�êB(t) = �ẽ(k−1)
B,[1](t)}NR

t=1

Specifically, the SCEM algorithm in Algorithm 1 can be
extended to the MIMO system to formulate the algorithm
called S-SCEM, whose details are presented in Algorithm 2.
The input includes the measurement vectors at NR receive
antennas, denoted by {�pt}NR

t=1, obtained by the temporal dif-
ferential measuring operations on the NR receive antennas as
in (12) for the single antenna case. Other input parameters
and the initialization process are similar to those of SCEM.
For the kth iteration in the repeated loop, first, the Nc candi-
date supports {�(k)

j }Nc
j=1 are generated in the same way as that

of SCEM. Then, for each candidate support �
(k)
j , the NR NBI

vectors {�ẽ(k)
B,j(t)}NR

t=1 and residue error norms {r(k)
j(t)}NR

t=1 corre-
sponding to the NR receive antennas are calculated. Note that
the method of sorting the residue error norms is different from
SCEM in the MIMO case. In order to take the contributions of

all the receive antennas into account, the residue error norms
over the NR receive antennas can be summed up for each
candidate support �

(k)
j before sorting them. An alternative

approach is weighted averaging, where the weights {βt}NR
t=1

are proportional to the signal-to-noise ratio (SNR) given by

βt = ρt∑NR
r=1 ρr

, t = 1, . . . , NR (37)

where ρt is the SNR at the t-th receive antenna and can be
estimated through the pilot power versus the noise floor level.
Thus, the weighted average r̄(k)

j of the residue error norms for

candidate support �
(k)
j is given by

r̄(k)
j =

NR∑
t=1

βt · r(k)
j(t). (38)

In Algorithm 2, the weighted average is adopted to deter-
mine the average residue error and sort the candidate supports.
After summing or weighted averaging, the information of
the residue error norms from all the receive antennas can
be exploited to sort the candidate supports, and generate Nf

favorable supports {�(k)
[j] }

Nf
j=1 by picking out the best Nf ones.

Afterward, the current probability distribution of the support is
similarly updated by minimizing the CE according to (23). The
halting condition is similar to that of SCEM when weighted
average is adopted, while the threshold should be NR ε when
summing is adopted before sorting. Finally, the output of
S-SCEM is the estimated common NBI support �̂ and the
estimated NR NBI vectors {�êB(t)}NR

t=1 that can be utilized
to eliminate all the NBI signals at the NR receive antennas,
respectively.

V. PERFORMANCE EVALUATION AND

SIMULATION RESULTS

A. Computational Complexity Analysis

The computational complexity of the proposed algorithms
are theoretically and numerically analyzed and compared as
follows.

For the proposed algorithms, considering the complexity
of each iteration of SCEM in Algorithm 1: line 4 (gener-
ating Nc candidate supports)—O(Nc); line 5 (calculating Nc

NBI vectors)—O(NcGK2); line 6 (calculating Nc residue error
norms)—O(NcGK); lines 7 and 8 (sorting Nc residue error
norms and selecting Nf smallest ones)—O(Nc log Nc); line 9
(updating the NBI support distribution)—O(NNf ). Therefore,
summing them together, the total complexity of each iteration
of SCEM is O(NcGK2 + NNf ). Similarly, since RSCEM
only involves the calculation of Nf weighting parameters
in (32) with the complexity of O(Nf ), one can derive that
the total complexity of each iteration of RSCEM is also
O(NcGK2 + NNf ). Then, considering the maximum iteration
number Im, the total complexity of the SCEM and RSCEM
algorithms are O(Im(NcGK2 + NNf )). The complexity of
the S-SCEM algorithm for MIMO systems can be simi-
larly derived as O(Im(NRNcGK2 + NNf )). Compared with
the existing block SBL-based algorithm which costs a com-
plexity of O(u2N2G), where u is another parameter related
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with the NBI block distribution [36], the proposed algo-
rithms can recover the NBI with an acceptable and comparable
complexity.

From the above analysis, it can be noted that apart from
the sparsity level K of the NBI, the complexity performance
of the proposed algorithm is mainly dependent on the choice
of the parameters Nc, Nf , and Im. If a larger value of Nc

and Nf is chosen, the computational complexity will be lin-
early increased. On the other hand, since more candidate
supports are generated from the distribution, and more favor-
able supports with smallest estimation error are selected to
calculate the CE for the learning and training process, each
iteration will be further approaching the ground-truth distri-
bution, which makes the algorithm to converge more rapidly.
Thus, the required total maximum iteration number Im can be
reduced in order to reach the halting condition of estimation
error given by r(k−1)

[1] ≤ ε in Algorithm 1.
Therefore, there is a tradeoff between the computational

complexity of each iteration and the total number of itera-
tions Im. If the learning agent (e.g., LTE base station) has
more available computing resource and hopes to deal with a
real-time NBI estimation and cancellation, then choosing a
larger Nc and Nf is more suitable. Otherwise if computing
resource is the bottleneck but longer delay is tolerable such as
for some cost-effective terminal, Nc and Nf can be set smaller.
Empirically, Nc = 70, Nf = 15, and Im = 15 are set in the
following simulations in this paper, which leads to a moderate
computational complexity and convergence rate.

Furthermore, the performance of the parameters influencing
the computational complexity of the proposed algorithm is
evaluated through numerical analysis as follows.

First, the parameters of the number of candidate and favor-
able supports Nc, Nf , and the maximum iteration number Im

are investigated in order to reach successful NBI estimation.
A successful NBI estimation is recognized if the support is
recovered correctly and the MSE of estimation is smaller than
10−3. The numerical analysis result for the parameters is listed
in Table II, where the NBI signal dimension N is assumed to
be fixed at 600. As specified in the 3GPP LTE standards [12],
the active data OFDM subcarrier number is set as N = 600
(when the number of resource block is 50), which is the signal
dimension of the NBI. It can be observed that the numeri-
cal analysis is consistent with the theoretical analysis above.
For example, when considering K = 26, if a larger value of
Nc = 98 and Nf = 26 is chosen, Im can be reduced to 15
compared with 23. In this way, the convergence rate is faster
due to fewer iterations, but the cost is that each iteration is
more computationally complicated. Besides, when we inves-
tigate all over the three sparsity levels K = 13, 26, 39, it can
be observed that when Nc = 70 and Nf = 15 are fixed, then
Im should be set larger for a larger K to allow more iterations
and longer algorithm delay.

However, the overall computational complexity
O(Im(NcGK2 + NNf )) has similar order for different
parameter choices with the same sparsity level because it
is observed from Table II that Im changes in the opposite
direction to Nc and Nf . Moreover, it can be noted that with the
rapid linear increase of K, the parameters required to reach

TABLE II
PARAMETERS OF PROPOSED ALGORITHM TO REACH SUCCESSFUL NBI

RECOVERY WITH DIFFERENT SPARSITY LEVEL K

TABLE III
AVERAGE NUMBER OF ACTUAL ITERATIONS OF DIFFERENT NBI
RECOVERY ALGORITHMS WITH RESPECT TO SPARSITY LEVEL K

successful NBI estimation is not increasing as fast and the
overall complexity is kept at an acceptable level in different
conditions. This validates the advantage and efficiency of the
proposed sparse machine learning algorithm in training and
approximating the ground-truth distribution rapidly compared
with blind random exploration.

Second, the actual number of iterations needed upon suc-
cessful estimation (MSE < 10−3) with respect to sparsity level
K is investigated for both state-of-the-art and the proposed
algorithms through numerical analysis, as shown in Table III.
The performance of the state-of-the-art CS-based algorithms
called SAMP [32] and PA-SAMP [33] is also evaluated for
comparison. It is shown that the actual number of iterations
for CS-based algorithms increase approximately linear with
sparsity level K. On the other hand, the actual number of
iterations needed by the proposed algorithms, which reflects
the convergence rate, almost keeps invariant, which is consis-
tent with the theoretical analysis. This is because Nc and Nf

can be adjusted accordingly with the increase of K, although
each iteration will cost more computational complexity. It
is also verified that setting the maximum iteration number
as Im = 15 for all the three proposed algorithms is suf-
ficient to recover the NBI accurately. Thus, the processing
delay of the proposed algorithms in the learning agent is
properly guaranteed and constrained. Besides, it is observed
from Table III that, the proposed enhanced algorithms of
RSCEM and S-SCEM need fewer iterations than SCEM and
thus converge faster, which shows that the regularization of
the loss function and the exploitation of the spatial correla-
tion can bring significant benefit to the training and learning
process.

B. Simulation Results of NBI Estimation and Elimination

The performance of the proposed methods for the estimation
and elimination of the NB-IoT interference to the LTE system
is evaluated by extensive simulations. The proposed algorithms
of SCEM and RSCEM are simulated in the single-input single-
output (SISO) system, while the proposed S-SCEM algorithm
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is simulated in a 4 × 4 MIMO system with NR = 4 using
weighted averaging given in (38) as the criterion of sorting
and selecting the favorable supports.

As specified in the 3GPP LTE standards [12], the length
of each CP is set as V = 144 when the active data OFDM
subcarrier number is N = 600. The subcarrier spacing is
15 kHz, so the occupied active data bandwidth is configured
as 9.0 MHz [12], leading to a CP duration of 4.68 μs. In this
operation mode of LTE, the total number of subcarriers con-
sidering inactive and other ones is 1024, and the total channel
bandwidth is 10.0 MHz [12], [13]. The equivalent baseband
multipath six-tap channel called the ITU-R Vehicular-A chan-
nel model [56], which is widely used to emulate the wireless
mobile channel, is applied, where the UE receiver velocity of
20 km/h is used to present the typical low-speed mobile chan-
nel. The maximum delay spread of the Vehicular-A channel
is 2.51 μs, which is equivalent to the channel length L = 76,
so the size of the IBI-free region is G = 68. In the simula-
tions, the size of the IBI-free region can be predetermined
according to the system configuration of frame length and
the maximum channel delay spread of the adopted channel.
According to the CS theory in literature, the CS-based meth-
ods require the measurement vector length G to be in order
of O(K log(N)) [22], which means the size of the IBI-free
region is sufficient for effective recovery with overwhelming
high probability. Based on the simulation results that will be
reported in Fig. 4, setting the measurement vector length G to
be 68 is more than sufficient for accurate recovery using the
proposed sparse machine learning-based algorithms. In real-
istic implementation, the maximum channel delay spread can
also be obtained from the a priori knowledge of the channel
environment and channel statistics, or from the coarse channel
estimation of the path delays using the correlation of training
sequences at the receiver [57]. The turbo code with code rate
of 1/3 as well as the 64-QAM modulation as specified in the
LTE standards [12] are adopted.

As described in Section III-B, each tone interferer of the
NBI generated by the NB-IoT signal follows a Gaussian dis-
tribution. The FO of the NBI is configured to be a priori
known as α = 0.20 in the simulations, while it can also be
effectively estimated at the receiver through the grid search
method [29] in realistic implementation. Since each NB-IoT
service occupies a bandwidth of 200 kHz according to the
NB-IoT specifications [8], which is equivalent to 13 subcar-
riers in the LTE spectrum, the sparsity level of the NBI is
assumed to be K = 13. To make the NBI model more gen-
eral, the support � of the NBI is assumed to follow a uniform
distribution U[0, N − 1] among all the N subcarriers. Unless
otherwise specifically stated, the INR of the NBI is configured
as γ = 15 dB in the simulations.

As described in the previous numerical analysis, the param-
eters Nc = 70, Nf = 15, and Im = 15 are proper configuration
for the proposed algorithms of SCEM, RSCEM, and S-SCEM.
The performance of the state-of-the-art CS-based algorithms,
including SP [31], SAMP [32], and PA-SAMP [33], as well
as the block SBL-based algorithm called BSBL [36], is also
evaluated and reported for comparison. The simulation is
carried out by MATLAB R2017b on the platform of Intel

Fig. 3. MSE performance comparisons of the proposed sparse machine
learning-based method and the conventional counterparts for NBI recovery in
the LTE system under the wireless Vehicular-A channel.

Core i7 with frequency of 2.80 GHz and RAM of 8.00 GB.
In the evaluation, the learning agent is the agent operating the
proposed sparse machine learning algorithms on a wireless
cellular transmission terminal specified by 3GPP LTE stan-
dards [12], in the presence of the interference from NB-IoT
system.

The MSE performance of NBI recovery using the proposed
methods are shown in Fig. 3, with the y-axis being logarithmic.
The performance of the proposed sparse machine learning-
based methods (SCEM, RSCEM, and S-SCEM with 4 × 4
MIMO configuration), the conventional SBL-based algorithm
BSBL [36], and the conventional CS-based methods (PA-
SAMP [33] and SAMP [32]) are depicted. The theoretical
CRLB calculated by 2σ 2

w(K/G) [33], [58] is also included
as a benchmark. It is noted from Fig. 3 that the proposed
algorithms of S-SCEM, RSCEM, and SCEM achieve a target
MSE of 10−3 at the INR of 8.6, 9.3, and 10.4 dB, respectively.
It is demonstrated that the proposed S-SCEM algorithm has
the best performance by exploiting the spatial correlation of
the NBI to simultaneously improve the estimation accuracy. It
is also shown that the proposed enhanced algorithm RSCEM
achieves a further INR gain of about 1.1 dB over the SCEM
algorithm, by imposing regularization on the loss function.
Moreover, it can be observed that the proposed approaches out-
perform the conventional sparse approximation algorithms of
BSBL, SP, PA-SAMP, and SAMP by approximately 3.3, 4.0,
4.5, and 5.3 dB, respectively. It is also noted from Fig. 3
that the MSE of the proposed algorithms are asymptotically
approaching the theoretical CRLB with the increase of the
INR, which verifies the high accuracy of the proposed sparse
learning method for NBI recovery.

Moreover, it is shown in Fig. 4 that the MSE of the proposed
algorithms decreases fast with the increase of the measurement
vector length G, i.e., the length of the received IBI-free region
p in (3) utilized for NBI measurement as shown in Fig. 1,
whereas the decrease of the MSE of the coventional sparse
approximation methods is much slower. At the MSE of 10−3,
the proposed algorithms of S-SCEM, RSCEM, and SCEM cost
only G = 20, 28, and 35 time-domain samples of the IBI-
free region, respectively, whereas the SBL-based and CS-based
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Fig. 4. MSE performance of the NBI recovery using the proposed and
conventional algorithms with respect to the measurement vector length G.

Fig. 5. Probability of NBI recovery using the proposed and conventional
methods in the LTE system under the wireless Vehicular-A channel.

algorithms cost more than 55 and 65 samples. Hence, it can
be concluded that the introduction of sparse machine learning
will greatly reduce the amount of measurement data required
for accurate recovery, achieving higher spectral efficiency than
conventional counterparts.

The recovery probability of the proposed method for NBI
recovery versus the sparsity level K under the Vehicular-A
channel is depicted in Fig. 5. The recovery probability is
defined as the probability of the effective NBI estimation (i.e.,
correct support estimation and MSE < 10−3), which is calcu-
lated by the ratio of the number of effective NBI estimations
to the total 103 simulations in Fig. 5. It is noted that the
proposed algorithms reach a successful recovery probability of
0.90 at the sparsity level of K = 45, which significantly outper-
forms the conventional SBL-based and CS-based algorithms
with K = 26 and K = 22, respectively. It is thus validated
that the proposed methods can accurately recover the NBI
with much larger sparsity levels using limited measurement
data compared with the conventional sparse approximation
algorithms. Since each NB-IoT signal occupies 13 subcarri-
ers in the LTE spectrum, it can be inferred that the proposed
method is capable of effectively recovering and eliminating
at least 3 in-band NB-IoT interfering signals in the LTE
system.

Fig. 6. BER performance comparison of different NBI mitigation schemes in
the LTE system under wireless Vehicular-A channel in the presence of NBI.

The bit error rate (BER) performance of the proposed
method at the UE receiver in the LTE system under
the wireless Vehicular-A channel is illustrated in Fig. 6.
Apart from the conventional CS-based and SBL-based algo-
rithms [32], [33], [36], the BER performance of the conven-
tional FTE method [17] is also reported for comparison. The
worst case ignoring NBI and the ideal case without NBI are
also depicted as benchmarks. It can be observed that at the
target BER of 10−4, the proposed sparse machine learning-
based algorithms significantly outperform the state-of-the-art
SBL-based algorithm, the existing CS-based algorithms, the
traditional FTE method, and the case ignoring NBI by about
0.5, 0.7, 1.5, and 1.8 dB, respectively. This implies that the
NBI can be more effectively recovered and eliminated in the
proposed probabilistic framework of sparse machine learning
using the iterative learning algorithms compared with state-
of-the-art counterparts. Furthermore, it is shown in Fig. 6
that the gap between the curves of the proposed algorithms
and the ideal case without NBI is only about 0.2 dB, validat-
ing the accuracy and effectiveness of the proposed schemes
for NBI mitigation in the heterogeneous networks composed
of NB-IoT and LTE systems.

VI. CONCLUSION

In this paper, a novel sparse machine learning-based proba-
bilistic framework of NBI recovery is formulated for harmonic
coexistence of NB-IoT and LTE systems. The original non-
convex sparse combinatorial optimization problem of NBI
recovery is efficiently and accurately solved by the proposed
sparse learning algorithm of SCEM, which iteratively learns
the probability distribution, i.e., the sparse pattern, of the NBI
support by minimizing the loss function of CE. By imposing
regularization on the loss function, the enhanced algorithm of
RSCEM is proposed to further improve the convergence rate
and accuracy. Furthermore, the spatial correlation of the NBI
in multiple receive antennas of the MIMO system is exploited
to simultaneously recover the NBI signals more accurately and
efficiently. It is verified by theoretical analysis and numeri-
cal simulation results that the proposed algorithms outperform
state-of-the-art counterparts in spectrum efficiency, estimation
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accuracy and computational complexity. Using the proposed
method, both the UEs and the base stations in LTE systems can
be protected from the contamination of NB-IoT interference.
Moreover, the proposed scheme can also be widely applied in
other wireless heterogeneous networks and broadband systems
contaminated by NBI.
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