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Abstract—Estates, especially those of public security-
related companies and institutes, have to protect their
privacy from adversary unmanned aerial vehicles (UAVs).
In this paper, we propose a reinforcement learning-based
control framework to prevent unauthorized UAVs from
entering a target area in a dynamic game without being
aware of the UAV attack model. This UAV control scheme
enables a target estate to choose the optimal control policy,
such as jamming the global positioning system signals,
hacking, and laser shooting, to expel nearby UAVs. A deep
reinforcement learning technique, called neural episodic
control, is used to accelerate the learning speed to achieve
the optimal UAV control policy, especially for estates with
a large area, against complicated UAV attack policies. We
analyze the computational complexity for the proposed
UAV control scheme and provide its performance bound,
including the risk level of the estate and its utility. Our
simulation results show that the proposed scheme can
reduce the risk level of the target estate and improve its
utility against malicious UAVs compared with the selected
benchmark scheme.

Keywords—unmanned aerial vehicles, security, rein-
forcement learning, nec, privacy

I. INTRODUCTION

U nmanned aerial vehicles (UAVs) can perform data ac-
quisition for civilian and commercial operations, such

as weather monitoring, traffic control, and communication re-
laying, with high mobility and low cost[1,2]. However, camera-
equipped UAVs are sometimes used to violate user privacy
and security[3-5], such as in illegal surveillance and reconnais-
sance operations, smuggling, mid-air collisions, and eaves-
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dropping attacks[6-8]. For example, at least two UAVs entered
the restricted airspace at the White House, which can cause
severe issues because criminals can carry out such violations
via overflights. The continuous use of such overflight strate-
gies can reveal political secrets, and if sensitive photographs
are uploaded to the Internet, they may compromise the safety
of the country[9].

Unauthorized UAV intrusions to an estate can be addressed
by attacking the malicious UAVs by, for example, jamming its
radar and radio signals, hijacking the global positioning sys-
tem (GPS) signals, and using netguns and lasers[10-12]. For
instance, the UAV capture and control strategy proposed in
Ref. [13] takes over the controller of a rotorcraft UAV via a
destructive GPS-spoofing attack. These UAV control policies
vary in terms of UAV expel strength and costs. For exam-
ple, laser shooting is more expensive and harder to operate
than others policies, while jamming and GPS spoofing are
cheaper and more portable. However, laser shooting can be
used to intercept malicious UAVs more accurately and is more
destructive[6]. Therefore, UAV control systems have to opti-
mize their UAV control policies to expel or destroy UAVs with
different attack and flight patterns, especially during security-
sensitive time periods in which privacy is highly critical in the
target estate.

In this paper, we propose a UAV control framework that in-
corporates existing UAV detection, identification, and track-
ing methods, such as acoustic sensing, radio frequency emis-
sion sensing, and electro-optical sensing, to protect the pri-
vacy of the target estate[6]. This framework chooses the con-
trol policy to expel the unauthorized UAV, such as command
jamming, GPS spoofing, hacking electronics and shooting
laser beams, without being aware of the attack model[14]. The
UAV control policy is chosen based on the security level of
the estate in the protected area and the distance between the
unauthorized UAVs and the estate to reduce the risk level of
the protected estate and improve its utility. In state-of-the-
art methods, the optimal control policy depends on accurate
knowledge of the attack model in each time slot, which is hard
to acquire, especially in dynamic UAV control systems.

Control policy selections in a dynamic game can be approx-
imately formulated as a Markov decision process (MDP) with
finite states, in which the estate observes the states consist-
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ing of the previous attack mode of the UAV and the current
security level of the target estate. Therefore, reinforcement
learning (RL) techniques can be applied to defend against an
unauthorized UAV in a dynamic game and help the estate de-
rive the optimal control policy in an MDP[15].

The reinforcement learning-based control framework pro-
posed in Ref. [16] exploits the Q-learning algorithm, which
is a model-free RL technique, to achieve the optimal con-
trol policy in a dynamic game without being aware of the at-
tack model of the unauthorized UAV. To improve its perfor-
mance in large-scale networks, we propose a neural episodic
control (NEC)-based[17] unauthorized UAV control scheme,
which employs a convolutional neural network (CNN) to gen-
erate the key to search the memory module called differen-
tiate neural dictionary (DND). The outputs of the DND are
the estimated long-term expected utilities of each control pol-
icy. By applying this deep reinforcement learning technique,
the NEC-based UAV control algorithm is able to significantly
compress the state space observed by the estate and thus re-
duce the time required to achieve the optimal control policy.

We prove that the proposed scheme achieves an optimal
control policy selection after enough time slots have elapsed
in the dynamic game. The control performance bound is pro-
vided in terms of the risk level and the utility of the estate.
The proposed RL-based UAV control algorithm can improve
the utility of the estate and decrease its risk level. The utility
achieved by this scheme depends on the security level of the
estate and has a negative linear correlation with the control
policy. Simulation results show that the proposed RL-based
scheme decreases the risk level of the estate and increases
its utility more than the benchmark scheme as proposed in
Ref. [16] and prove its convergence to optimal performance.

The main contributions of this paper are summarized as fol-
lows:

(1) We formulate a UAV control framework in which an
estate applies different control methods to prevent an unau-
thorized UAV from stealing data.

(2) We propose a Q-learning-based UAV control scheme to
achieve the optimal control policy, in which the estate chooses
the control method according to the previous location of the
UAV and the current security level of the target estate. This
scheme enables the estate to achieve the optimal control per-
formance without knowing the attack model in a dynamic con-
trol game.

(3) We develop an NEC-based UAV control scheme for the
estate with enough computational resources to support deep
learning to further accelerate the learning speed, reduce the
risk level of the estate, and improve its utility.

(4) We provide the performance bound of the RL-based
UAV control scheme and prove its convergence to optimal per-
formance.

The rest of this paper is organized as follows. We review

related work in section II and present the system model in
section III. The Q-learning based UAV control scheme and
the NEC-based UAV control scheme are developed in section
IV and section V, respectively. We analyze the performance
bound of the RL-based UAV control scheme in section VI.
Simulation results are provided in section VII and the conclu-
sions of this work are drawn in section VIII.

II. RELATED WORK

The real-time UAV anomaly detection system proposed in
Ref. [18] uses the recursive least squares method to estimate
UAV parameters. The three-dimensional guidance law for ro-
tary UAV interception proposed in Ref. [19] combines propor-
tional navigation-based guidance and velocity feedback. The
theory and practice of UAV capture and control via GPS sig-
nal spoofing are analyzed and demonstrated in Ref. [13]. GPS
spoofing signals on autonomous UAVs was verified and as-
sessed via experimental results in Refs. [20,21], which show
that spoofing signals can affect the navigation system of UAVs
so that they go off course or show abnormal operation. Sev-
eral methods that can take down the malicious UAVs are de-
scribed in Ref. [22], such as jamming, GPS spoofing, hacking,
netguns, laser and so on.

RL techniques have been used to improve network se-
curity. The minimax Q-learning-based spectrum allocation
method developed in Ref. [23] increases the spectrum effi-
ciency in cognitive radio networks[24]. The two-dimensional
Q-learning-based anti-jamming communication scheme pro-
posed in Ref. [25] can increase the signal-to-interference-
plus-noise ratio of secondary users against cooperative jam-
ming in cognitive radio networks. The spoofing detection
schemes proposed in Ref. [12] use Q-learning and Dyna-Q
techniques to obtain the optimal test threshold of the physical-
layer authentication in wireless networks. The deep Q-
network-based transmission scheme developed in Ref. [26]
achieves optimal power and node mobility control to address
jamming in the underwater acoustic networks. A deep Q-
learning based UAV power allocation strategy is proposed
in Ref. [27] to achieve the optimal power allocation against
smart attacks without knowing the attack model and the chan-
nel model. The hotbooting policy hill climbing (PHC)-based
UAV relay strategy[28] helps vehicular ad-hoc networks resist
jamming in a dynamic game.

A Q-learning-based malicious UAV control scheme is pro-
posed in Ref. [16] to select the optimal control policy based
on the system state, which consists of the previous UAV loca-
tion and the current security level of the estate in the protected
area without knowing the attack model of the malicious UAV.
Compared with our previous work in Ref. [16], this work in-
vestigates unauthorized UAV control based on NEC to ac-
celerate the learning speed of the unauthorized UAV control
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scheme so as to reduce the risk level of the estate in the pro-
tected area and improve the utility of the estate. Simulation re-
sults show that the proposed schemes can achieve a better per-
formance compared with the benchmark scheme we selected
against unauthorized UAVs.

III. SYSTEM MODEL

A smart UAV control system consisting of a target estate, an
unauthorized UAV, and UAV detection devices, such as satel-
lites, is considered in this paper. The estate applies multiple
control methods to prevent the unauthorized UAV from steal-
ing data, such as command jamming, GPS spoofing, hack-
ing electronics for the takeover of controllers, and shooting
an electromagnetic (EM) laser beam, as shown in Fig. 1. The
control policies vary in terms of UAV expel strength and cost.
For instance, though the laser shooting method suffers from
higher energy consumption and more complicated operation
than the GPS spoofing method, it can destroy the unautho-
rized UAV more accurately.
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Figure 1 Smart UAV control system that uses RL to choose the control
policy x(k), such as command jamming, GPS spoofing, and laser shooting
to defend against the unauthorized UAV, which is y(k) meters away from the
protected area of the target estate

The control policies are split into different categories ac-
cording to their impact strength on the unauthorized UAV.
Without loss of generality, let Level-(i+1) control policy de-
note a stronger control policy against the unauthorized UAV
than that of Level-i. For example, laser shooting can be la-
beled with a higher level than GPS spoofing if the former is
considered to be stronger to defend against a given unautho-
rized UAV.

Once an unauthorized UAV has been identified, the smart
UAV control system chooses a control policy at time k, de-
noted by x(k) ∈ X = {0,1,2, · · · ,M}, where X is the action set
of the estate. The smart unauthorized UAVs control system
takes no action if x = 0 and defends against the UAV with the
Level-x control policy if x > 0.

The state of the unauthorized UAV at time k observed by
the estate is denoted by y(k) ∈ Y = {0,1,2, · · · ,D}, in which
the UAV is crashed if y(k) = 0, and is y(k) meters away from
the estate if 1 6 y(k) 6 D. More specifically, the UAV is able
to move away from the attack target area (i.e., y(k) > D) or
stay in the area of interest (i.e., 1 6 y(k) < D ). The next state
of the UAV depends on the current control policy and the cur-
rent state of the unauthorized UAV (i.e., the distance between
the unauthorized UAV and the estate). The state transfer prob-
ability is denoted by Px,y,y′ = Pr(y′|x,y), where y′ is the next
state of the unauthorized UAV if the estate applies the Level-x
control policy against the UAV at the present state y.

For ease of reference, the commonly used notations are
summarized in Tab. 1. The time index k in the superscript
is omitted if there is no possibility of confusion.

Table 1 List of notations

symbol description

C(k)(x,y) control cost

G(k)(y) control gain

R(k)(y) risk level

U (k) utility of the estate

η cost coefficient of the control policy

µ
cost coefficient of the distance between
the unauthorized UAV and the estate

φ security level of the estate

s state of the estate

Kx key vector of the NEC

Vx Q values of NEC

ϕ experience sequence

θ weights of the CNN

IV. Q-LEARNING-BASED UAV
CONTROL SCHEME

We propose a Q-learning-based UAV control scheme to
choose the control policy via trial and error. The control pol-
icy is chosen based on the state, which consists of the previ-
ous UAV location and the current security level of the target
estate. The next state observed by the estate is independent
of the previous states and actions for a given estate state and
UAV control policy in the current time slot. Therefore, the
unauthorized UAV control process can be viewed as an MDP,
in which the Q-learning technique can derive the optimal pol-
icy without being aware of the attack model.
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Figure 2 Reinforcement-learning-based UAV control framework

As illustrated in Fig. 2, we initialize the distance between
the unauthorized UAV and the estate according to the track-
ing report, and the learning parameters are set to achieve a
good control performance. The smart UAV control system
observes the state of the estate at time k, denoted by s(k),
which consists of the previous location of the unauthorized
UAV and the current security level of the target estate, i.e.,
s(k) = [y(k−1),φ (k)] ∈Λ , where Λ is the state set of the estate.
Based on the estate state, the UAV control system chooses
control policy x(k) ∈ X .

The UAV control system observes the current location of
the unauthorized UAV, and evaluates the security level of the
target estate in the protected area to determine its utility. In-
tuitively, the estate obtains more control gains if a UAV that
is closer is crashed, because such a UAV is more likely to
steal sensitive information. For simplicity, the control gain of
the UAV control system at time k denoted by G(k)(y) is mod-
eled as a linear function of the distance between the unau-
thorized UAV and the protected estate y(k−1) at the previous
time slot, i.e., G(k)(y) = A−By(k−1), where A and B are con-
stant. The control cost of the UAV control system at time k de-
noted by C(k)(x,y) is a function of the control policy x(k) and
the distance between the UAV and the estate y(k). We model
the cost of the estate as C(k)(x,y) = ηx(k) + µy(k), where η

and µ are the cost coefficients. The risk level of the estate
in the protected area is denoted by R(k)(y) and is given by
R(k) = νy(k)/D, showing that the closer the UAV gets to the
target estate, the easier it can be destroyed, and thus there is
less risk for the estate, where ν is the risk coefficient.

The utility of the UAV control system at time k based on
the control gain and the control cost is denoted by U (k) and
given by

U (k) = I
(
y(k) = 0

)(
A−By(k−1))

φ
(k)−ηx(k)−µy(k), (1)

where φ (k) ∈ (0,1] indicates the security level of the estate in
the protected area at time k and I(σ) is the indicator function,
which equals 1 if σ is true and 0 otherwise.

The proposed Q-learning-based UAV control system main-
tains a Q-function for each action-state pair, denoted by
Q(s,x), which is the expected discounted long-term reward
observed by the UAV control system. The Q-function is up-
dated at time k according to the iterative Bellman equation as
follows:

Q
(
s(k),x(k)

)
←
(
1−α

)
Q
(
s(k),x(k)

)
+α

(
U (k)+ γV

(
s′
))
,

(2)
where s′ is the next state if the estate applies the Level-x con-
trol policy to intercept the unauthorized UAV at state s(k), the
learning rate α ∈ (0,1] is the weight of the current experi-
ence, the discount factor γ ∈ [0,1] indicates the uncertainty of
the estate on future rewards, and the value function denoted
by V (s) maximizes Q(s,x) over the action set given by

V
(
s(k)
)
= max

x′∈X
Q
(
s(k),x′

)
. (3)

To make a tradeoff between exploitation and exploration,
the UAV control policy is chosen according to the ε-greedy
policy. More specifically, the UAV control policy x(k) that
maximizes the Q-function is chosen with a high probability of
1− ε , while other actions are selected with a low probability
to avoid staying in a local maximum, i.e.,

Pr
(
x(k) = x̂

)
=


1− ε, x̂ = argmax

x′
Q
(
s(k),x′

)
,

ε

|X |−1
, o.w.

(4)

The proposed Q-learning-based UAV control scheme is sum-
marized in Algorithm 1.
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Figure 3 Illustration of the NEC-based UAV control scheme for an estate to choose its UAV control policy, such as shooting an electromagnetic laser beam,
GPS spoofing, command jamming, and hacking electronics for the takeover of controllers

Algorithm 1 Q-learning-based UAV control algorithm

1: Initialize α and γ

2: Q= 0

3: Randomly choose s(0) ∈Λ

4: for k = 1,2,3, · · · do
5: Measure the previous location of the UAV y(k−1)

6: Estimate the current security level of the estate φ (k)

7: s(k) =
[
y(k−1),φ (k)]

8: Choose x(k) via (4)
9: Apply control policy x(k)

10: Observe the current location of the UAV y(k)

11: Estimate the risk level of the estate R(k)

12: Evaluate U (k) via Eq. (1)
13: Update Q(s(k),x(k)) via Eq. (2)
14: Update V (s(k)) via Eq. (3)
15: end for

V. NEC-BASED UAV CONTROL SCHEME

We propose an NEC-based UAV control scheme to accel-
erate the learning speed of the estate with a larger state-action
space. This scheme uses a CNN to compress the state space
and a DND to store similar past experiences. The UAV con-
trol system chooses the control policy x(k) ∈ X based on a
DND denoted by (Kx,Vx), whereKx saves the keys produced
by the CNN to look up the estimated Q values stored in the
database denoted by Vx.

The smart UAV control system observes the current state
of the estate s(k) = [y(k−1),φ (k)]. The estate state s(k) is pro-
cessed by the CNN to produce the keys denoted by ĥ. The
experience sequence ϕ(k) is based on the current state and

the previous W state-action pairs, i.e., ϕ(k) = {s(k−W ),x(k−W ),
s(k−W−1),x(k−W−1), · · · ,x(k−1),s(k)}.

The estate reshapes the state sequence ϕ(k) into an n1×n1

matrix and inputs it to the CNN, as shown in Algorithm 2.
The CNN consists of two convolutional (Conv) layers and two
fully connected (FC) layers. The first Conv layer has f1 filters,
each of size n2×n2 and stride 1, while the second Conv layer
has f2 filters, each of size n3×n3 and stride 1. Both layers use
rectified linear units (ReLUs) as their activation function. The
first FC layer involves r1 ReLUs, and the second FC layer has
r2 ReLUs.

The estate uses the output of the CNN as the lookup key ĥ
for the DND, which generates the weight for the jth Q-value,
with 1 6 j 6 ζ and ζ 6 k, in Vx of the DND denoted by ω j

and given by

ω j =
k
(
ĥ,h j

)
∑p k

(
ĥ,hp

) , (5)

where h j is the jth corresponding key stored in Kx of the
DND and k(ĥ,h j) is a kernel function measuring the distance
between the lookup key and the corresponding key in memory
given by

k
(
ĥ,h j

)
= exp

(
−
‖ĥ−h j‖2

2
2

)
. (6)

The Q-value of the action x(k) under current state s(k) is esti-
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Algorithm 2 NEC-based UAV control algorithm

1: Initialize α , γ , θ, T , and W
2: for k = 1,2,3, · · · do
3: Measure the previous UAV distance y(k−1)

4: Estimate the current security level of the estate φ (k)

5: s(k) =
[
y(k−1),φ (k)]

6: if k 6W then
7: Select x(k) at random
8: else
9: ϕ(k) = {s(k−W ),x(k−W ), · · · ,x(k−1),s(k)}

10: Add {ϕ(k),x(k),U (k),ϕ(k+1)} to the experience pool
11: for t = 1,2, · · · ,T do
12: Randomly sample e(t) from the experience pool
13: end for
14: Formulate T with {e(t)}16t6T
15: Input ϕ(k) to the CNN
16: Get the output of the CNN as the key ĥ
17: Generate ω

(k)
j via Eq. (5)

18: Calculate the Q values for x(k) via Eq. (7)
19: Add

(
ĥ,Q

(
s(k),x(k)

))
to (Kx,Vx)

20: Update θ(k) using the SGD algorithm via Eq. (8)
21: Select x(k) via Eq. (4)
22: Apply the control policy x(k) to expel the unauthorized UAV
23: Observe the UAV location y(k)

24: Estimate the risk level of the estate R(k)

25: Evaluate U (k) via Eq. (1)
26: end if
27: end for

mated according to

Q
(
s(k),x(k)

)
= ∑

j
ω jv j, (7)

where v j is the jth element in vector Vx. The new key-value
pair (ĥ,Q(s(k),x(k))) is then added at the end of the respective
vectors (Kx,Vx). If key ĥ already exists in Kx, the DND
updates the corresponding Q value denoted by v̂ in Vx with
Q(s(k),x(k)).

The architecture is replicated once for each control policy,
with the CNN being shared between each separate (Kx,Vx).
The estate chooses the control policy x(k) according to the ε-
greedy strategy, measures the distance between the UAV and
the estate, estimates the security level of the data in the target
estate, and evaluates its reward or utility U (k) via Eq. (1).

The estate saves the current experience sequence ϕ(k), the
control policy x(k), and the utility U (k) as a control experience
denoted by {ϕ(k),x(k),U (k),ϕ(k+1)}. The estate randomly se-
lects a control experience from the experience pool, which
stores the control experiences of the previous k time slots.
The weights of the CNN used to compress the state space
shown in Fig. 3 and denoted by θ(k) are updated according to a
stochastic gradient descent (SGD) algorithm similar to the one
in Ref. [29]. More specifically, the estate randomly chooses T
experience sequences from the experience pool E to formulate
a minibatch denoted by T with {e(t)}16t6T , where e(t) is the
tth selected control experience including the control policy,
the utility, and the previous and new experience sequences.

The loss function of the minibatch T represents the squared
error of the target optimal Q-value. The estate chooses the
CNN weights θ(k) that minimize the loss function as follows,

θ(k) = argmin
θ

ET

[(
U−Q

(
ϕ,x;θ(k)

)
+

γ max
x′

Q
(
ϕ′,x′;θ(k−1)

))2
]
, (8)

where ϕ′ is the next state sequence according to the chosen
experience from the experience pool, x′ is the next control
strategy, and γ is the discount factor of the learning process,
as shown in Algorithm 2.

The NEC-based UAV control scheme does not always out-
perform the Q-learning based scheme. More specifically, the
NEC-based scheme can decrease the risk level of the estate
and increase the utility of the estate at the cost of higher com-
putational complexity compared with the Q-learning-based
scheme. Therefore, the NEC-based control policy selec-
tion scheme is more suitable for estates with sufficient com-
putational resources. On the other hand, estates with re-
stricted computational resources cannot afford using the com-
plicated NEC algorithm and have to resort to the Q-learning
based scheme with less complexity and computational costs to
choose the control policy in time. For example, the Q-learning
algorithm takes 95% less time on average to choose the con-
trol policy in a time slot compared with the NEC-based algo-
rithm, as shown in the experiment in which the same amount
of computational resources are consumed.

VI. PERFORMANCE EVALUATIONS

We analyze the performance bound of the RL-based UAV
control scheme regarding the risk level and the utility of
the estate and discuss the computational complexity of the
scheme. Repeated control policy selection in a dynamic game
against UAVs can be viewed as an MDP, because the future
state observed by the estate, including the location of the UAV
and the security level of the estate, is independent of the pre-
vious states for a given current state and UAV control policy.
Therefore, according to Refs. [16,17], reinforcement-learning
techniques, such as Q-learning in Algorithm 1 and NEC in Al-
gorithm 2, enable the estate to achieve the optimal UAV con-
trol policy after enough time slots have elapsed with a proba-
bility of 1.
Theorem 1 Let D0 represent the distance between the unau-
thorized UAV and the estate at the previous time slot. An
estate using Algorithm 1 and 2 in the dynamic game can carry
out policy x∗ = 1 after enough time slots have elapsed to de-
stroy UAVs (y = 0) and achieve a risk level of R = 0 and a
utility given by

U = (A−BD0)φ −η , (9)
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if

φBD0 < Aφ −µ−η . (10)

Proof By Eq. (1), if y = 0, we have

U(x) = (A−BD0)φ −ηx. (11)

It is clear that the utility of the control system has a negative
linear correlation with x; thus we have, for any x ∈ X ,

U(1) =(A−BD0)φ −η > (A−BD0)φ −ηx =U(x). (12)

Similarly, if y 6= 0, we have

U =−ηx−µy. (13)

It is also clear that the utility of the control system has a neg-
ative linear correlation with x; thus we have, for any x ∈ X ,

U(0) =−µy >−ηx−µy =U(x). (14)

Therefore, U(0) is maximum at min
16y6D

y, i.e., U(0) = −µ .

Thus, we have U(1)>U(0), if expression (10) hold.
According to Ref. [16], the RL-based control scheme can

achieve the optimal control policy x∗ = 1 in the MDP after a
sufficiently long time. Therefore, the proposed algorithm can
achieve x∗ = 1. By Eq. (1), we have y = 0, R = 0, and thus
Eq. (9) is proven.
Remark 1 A UAV control system applies the RL-based con-
trol scheme to achieve the optimal policy without being aware
of the attack model in the dynamic control game. If the unau-
thorized UAV is near the protected area, as shown in Fig. 1,
the estate will choose the control policy with lower cost x = 1
to intercept the unauthorized UAV.

The computational complexity of the NEC-based UAV con-
trol system presented in Algorithm 2 mostly depends on the
CNN. Let mψ−1 be the number of the inputs to the CNN in
Algorithm 2, fψ be the number of the filters in the CNN, nψ

be the spatial size of each filter, and mψ be the spatial size of
the output feature maps of Conv layer ψ .
Theorem 2 The computational complexity of the CNN de-
noted by Γ in Algorithm 2 is given by

Γ = O
(

f1 f 2
2 n2

3(n1−n2 +1)2(n1−n2−n3 +2)2) . (15)

Proof According to Ref. [17], the total complexity of the
CNN is O(∑2

(ψ=1) mψ−1 fψ n2
ψ mψ). The first Conv layer in-

cludes f1 filters each of size n2×n2 with an n1×n1 matrix as
the input and f1(n1−n2 +1)2 feature maps as the output, and
the second Conv layer has f2 filters each of size n3×n3 with
f2(n1−n2−n3+2) feature maps as the output. Therefore, we
have

Γ = O
(

f1(n1−n2 +1)2( f1n2
1n2

2+

f 2
2 n2

3(n1−n2−n3 +2)2)). (16)

According to the CNN architecture in Ref. [29], we have
f1n2

1n2
2� f 2

2 n2
3(n1−n2−n3+2)2, and thus the computational

complexity is given by Eq. (15).

VII. SIMULATION RESULTS

Simulations were carried out to evaluate the proposed RL-
based UAV control scheme for an estate with a topology as
shown in Fig. 4. The estate and the detection devices were dis-
tributed around residential areas to protect themselves against
the unauthorized UAV. In these simulations, the cost coef-
ficients η and µ were 0.1 and 2.0, respectively. We sup-
posed that the estate applies four control methods to prevent
the unauthorized UAV from stealing data, namely command
jamming, GPS spoofing, hacking electronics, and shooting an
electromagnetic laser beam.

protected area

detection device

(50, 20, 200)

(140,100,0)

malicious

UAV

x/m

y/m

z/m

x(k) = 1, command jamming

x(k) = 2, GPS spoofing

x(k) = 3, hacking electronics

x(k) = 4, shooting an EM laser beam

target estate

Figure 4 Initial topology of the control system in our simulation

Unless otherwise specified, the learning rate was 0.7 and
the discount factor was 0.3. The estate reshapes the state se-
quence into a 6×6 matrix. The first Conv layer was set to have
20 filters of size 3× 3 and 180 ReLUs, and the second Conv
was set to have 40 filters of size 2× 2 and 180 ReLUs. The
discount factor in the updating process for the CNN weights
was set as 1.0, the minibatch size was set as 4, and the number
of previous state-action pairs was 11, according to the deep-Q
network design method presented in Ref. [29].

The unauthorized UAV is more likely to be destroyed with
a stronger control policy and at a shorter distance from the
estate. As a special case, we set Px,y,y′ as follows,

Px,y,y′ = Pr(y′|x,y) =


exp(mx

ny )

1+ exp(mx
ny )

, y′ = 0,

1
(|Y |−1)(1+ exp(mx

ny ))
, o.w.

(17)
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Figure 5 UAV control scheme performance in our simulations against an unauthorized UAV with its settings configured as shown in Fig. 4, with α = 0.7,
γ = 0.3, A = 2.8, B = 0.5, η = 0.1, and µ = 2.0: (a) risk level of the estate; (b) utility of the estate
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Figure 6 Performance of the UAV control system for the given security level of the estate, averaged over 400 time slots: (a) risk level of the estate; (b) utility
of the estate

where m and n represent the impact weights of the control
policy x and the distance y on the control results, respectively.

As shown in Fig. 5, the proposed NEC-based UAV control
scheme converges to the performance bound given by Theo-
rem 1. The NEC-based scheme outperforms the Q-learning-
based scheme, yielding a lower risk level and higher util-
ity, and both outperform the random strategy. As shown in
Fig. 5(a), the risk level decreases over time with our proposed
NEC-based UAV control scheme and converges to 2.0% after
approximately 100 time slots, which is approximately 87.4%
lower than for the Q-learning-based strategy. The risk level of
the Q-learning based strategy converges after approximately
300 time slots, which is approximately 76.1% lower than the
risk level of the random strategy.

As shown in Fig. 5(b), the utility of the estate when us-
ing the NEC-based UAV control scheme increases quickly af-
ter the start of the learning process and converges to a cer-
tain value that is much higher than that for the Q-learning-
based strategy. For example, the utility of the estate with our
proposed NEC-based scheme exceeds the Q-learning-based

scheme by 65.0% at the 100th time slot. This is because the
estate adjusts the control policy via the NEC technique. The
Q-learning-based scheme requires less computational com-
plexity than the NEC-based one. For example, the Q-learning-
based strategy takes 94.9% less time to choose the control
strategy in a time slot compared with the NEC-based scheme.

The average performance over 400 time slots, presented in
Fig. 6, shows that the risk level decreases with the importance
of the protected estate while the utility of the estate increases
with the importance of the protected estate. For instance, if the
importance of the protected estate is 0.9 instead of 0.1, the risk
level of the estate using the NEC-based technique decreases
by one time and the utility of the estate increases by 13 times.

If the security level of the protected estate is measured
as 0.7 in each time slot as show in Fig. 6, the Q-learning-
based UAV control scheme has a 1.5-times higher utility and
54.7% lower risk level compared with the random strategy.
The NEC-based scheme further decreases the risk level by
50.4% and increases the utility by 40.7% compared with the
Q-learning-based UAV control scheme.
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VIII. CONCLUSION

In this paper, we have proposed an RL-based control
system to defend against unauthorized UAVs exploiting Q-
learning to improve the control performance without being
aware of the attack policy in a dynamic game. The NEC
technique was adopted to further accelerate the learning speed
and improve the performance of the estate. Simulation results
show that the proposed RL-based UAV control scheme can re-
duce the risk level of the target estate of a protected area and
increase the utility of the estate more than the selected bench-
mark scheme. For instance, the risk level of the proposed
NEC-based UAV control scheme converges to 2.0% after ap-
proximately 100 time slots, which is approximately 87.4%
lower than that of the Q-learning based strategy. Moreover,
the utility of the NEC-based scheme exceeds the Q-learning-
based scheme by 65.0%.
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