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Abstract—Due to the restrictions of computing resources and
energy supply, the wireless communication security of recently
emerging implantable medical devices (IMD) is still an open issue.
In order to ensure privacy and security and reduce transmission
power consumption, we propose a physical layer security (PLS)
scheme called Sparse Learning based Encryption and Recovery
(SLER) to compress and encrypt the sparse IMD sensing signal
at the transmitter, and recover the sparse signal at the receiver.
The encryption stage of the SLER scheme at the transmitter
is conducted by a joint compression and encryption algorithm
based on compressed sensing, which only requires simple matrix
addition and multiplication operations. The decryption stage
at the receiver adopts a pre-trained deep neural network that
evolved from the conventional iterative reconstruction method,
i.e., approximate message passing (AMP), to implement accurate
signal recovery by learning the sparse features of the received
IMD sensing signal. Simulations are performed that have verified
the security performance of the SLER scheme and proved the
prominent accuracy of sparse signal recovery compared with
other state-of-the-art sparse approximation algorithms.

Index Terms—deep learning, compressed sensing, physical
layer security, eavesdropping, sparse recovery, implantable med-
ical device

I. INTRODUCTION

With the rapid development of Internet of Things (IoT) in
the area of healthcare, numerous IoT medical devices have
been applied in hospitals, clinics, and healthcare institutions
to offer timely, convenient and comprehensive service. Benefit
from remarkable miniaturization of basic elements and devel-
opment of high-performance integrated circuits, implantable
medical devices (IMD) are emerging. IMDs can be surgically
implanted into the body, providing many various functions
such as physiological data collection, remote health monitoring
and medical treatment. Comparing with traditional medical
devices, it has many advantages, such as portability, immedi-
acy and proactivity. However, wireless communications used
for data transmission tend to expose the IMDs to malicious
attacks, which may lead to privacy information leakage and
even life-threaten software tampering.

To handle with the potential risk of eavesdropping attacks
threatening security and privacy of the patients, several solu-
tions have been presented, such as biometric authentication
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methods [1], distance-based methods [2] and the external-
device-dependent methods [3], [4]. However, most of the exist-
ing methods rely on external agent devices or require massive
computation resources and auxiliary hardware modules. Extra
embedded sensors, memories, and the execution of compli-
cated softwares will increase the IMD energy consumption
inevitably, which is unfriendly to a battery-charged and long-
term-intended IMD device [5].

Therefore, physical layer security (PLS) techniques without
requiring too much computational resources can be considered,
which can enhance IMD security while reducing the imple-
mentation costs. Exploiting the emerging theory of compressed
sensing (CS), the compression of the sparse IMD sensing
signal can be implemented, and meanwhile the IMD signal
can be encrypted in the framework of CS in a manner of PLS
[6]–[8]. Exploiting the inherent sparsity of the IMD sensing
signal, the spectral efficiency can be improved and the power
consumption can be reduced to extend the life of IMDs.
Specifically, a randomly generated measurement matrix can
be adopted for accurate sparse recovery of the IMD sensing
signal. It can be regarded as a symmetric encryption key to
establish a secure communication link. In this way, a joint
operation of sparse IMD signal compression and encryption
are implemented simultaneously.

In the sparse recovery stage at the receiver, e.g., the pro-
grammer or a controller of a doctor, the compressed IMD
signal should be accurately recovered using sparse recovery
algorithms. There have been several traditional sparse recovery
algorithms, such as CS-based ones like Orthogonal Match-
ing Pursuit (OMP) [9] and Subspace Pursuit (SP) [10], and
iterative sparse approximation algorithms like Approximate
Message Passing (AMP) [11]. To further improve the recovery
performance, the deep learning architecture is introduced to
extract and learn about the sparse feature in the measured
signal. For instance, learned AMP (LAMP) [12] is a deep
learning based algorithm, which utilizes a deep neural network
to emulate the unfolded iterations of the AMP algorithm. The
deep learning based algorithms can improve the inference
accuracy and accelerate the inference process comparing with
traditional iterative methods.

Hence, in order to combat against malicious eavesdropping
attacks on IMDs to protect the privacy and safety of the pa-
tients, in this paper, we propose a secure wireless transmission
scheme for IMDs, which guarantees the privacy using the CS-
based encryption and improves the transmission efficiency and
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Fig. 1. IMD data transmission model with the proposed SLER scheme in the
presence of eavesdropping.

recovery accuracy using sparse learning. Utilizing CS and deep
learning in the encryption and sparse recovery is an efficient
approach to overcome the limitation of computing and energy
resources of the IMDs. The contributions of this paper are
summarized as follows:
• A sparse learning based encryption and recovery (SLER)

scheme is proposed, which can resist eavesdropping at-
tacks via lightweight encryption in the framework of CS.

• A deep learning based decryption and sparse recovery
algorithm is presented for accurate recovery of the origi-
nal sparse IMD sensing signal, which outperforms state-
of-the-art CS-based and iterative sparse approximation
algorithms.

The remainder of this paper is structured as follows. The
system model of the IMD sensing signal transmission system
is presented in Section II. The proposed SLER scheme is
introduced in Section III. Subsequently, simulation results are
reported and discussed about in Section IV, followed by the
conclusion in Section V.

II. SYSTEM MODEL

The system model of IMD signal transmission considering
the presence of eavesdropping in a typical healthcare scenario
is illustrated in Fig. 1, where the proposed SLER scheme is
utilized. There are two legitimate communication entities in
the system: an IMD of the patient and a programmer at the
receiver of the doctor.
• IMD: IMD is a small medical device implanted inside

or on the body of the patient, which is embedded with
modules for sensing, computing, storage and communi-
cation. The physiological data of the patient is collected
by sensors, and sent to the programmer via wireless
communication techniques, probably and favorably after
data compression to save the costs of transmission energy
and spectrum. Constrained by the power consumption and
hardware size, the available computing resource of an

IMD is much limited and thus complicated calculations
cannot be supported.

• Programmer: The programmer is a portable device held
by the doctor, which receives the signal containing the
physiological data sent by the IMD and analyzes it for
diagnosis and treatment. Different from the IMD, the
programmer usually contains sufficient computing and
storage resources, so that complicated calculations such
as the training and inference with deep neural networks
can be supported.

The adversaries are assumed to be able to eavesdrop on the
medical data of the patient by wiretapping the signal transmit-
ted in the wireless channel. The eavesdropper is assumed to
be equipped with normal and limited computational capability,
so the private information cannot be decoded using exhaustive
methods. To be more specific, in this paper, we consider about
the ciphertext-only attack (COA), i.e., the adversaries can
only obtain the ciphertext, but no other information about the
plaintext or the secret key can be obtained by the adversaries.

Let us consider a typical sensing interval of the IMD, and
a length-N sensing signal containing the physiological data
collected by the sensors in the IMD is generated, which can
be modeled as s = [s1, s2, · · · , sN ]

T . Using a certain sparse
representation matrix, the original non-sparse sensing signal s
can be sparsely represented as

s = Ψx, (1)

where Ψ is the sparse representation matrix, which can be,
for instance, an N × N inverse discrete cosine transform
(DCT) matrix for sparse representation of electrocardiogram
(ECG) signals. Then, we can represent the sensing signal s
using a sparse signal x, which is the sparse representation
of the original sensing signal s. Then, using some encryption
algorithm with the private key kA and the private measurement
matrix KC, the original sensing signal s is first mixed up with
the private key kA to generate the private sensing signal s′,
and then converted to a ciphertext signal z′ using the private
measurement matrix KC. Note that the private keys have been
shared in advance between the IMD and programmer so that
the eavesdropper has no access to them.

Subsequently, the ciphertext signal z′ is transmitted from the
IMD to the programmer via a wireless channel, which can be
simply modeled by a transparent channel with additive white
Gaussian noise (AWGN), without loss of generality. Therefore,
the received signal can be expressed as

z = z′ +ω, (2)

where ω represents the AWGN. In the programmer at the
receiver, the original sensing signal s is recovered utilizing
the deep learning based decryption and reconstruction algo-
rithm. Specifically, the received signal z is firstly decrypted
to generate the sparse measurement vector y by eliminating
the private key kA. Then, the sparse sensing signal x can be
obtained from the sparse measurement vector y using a sparse
deep learning based method proposed in this paper, i.e., the



SLER scheme. And thus the original sensing signal s can be
derived from the sparse sensing signal x.

In the system model above, the sparsity of the signal of
interest is very important for the purpose of both signal
compression and sparse recovery. Fortunately, owing to the
temporal correlation of many physiological signals, such as
ECG as a common example, the original sensing signals can
usually be represented as a sparse signal in some transform
domain with a basis matrix, which is a DCT matrix in the case
of ECG signals. The sparsity of physiological signals can be
fully exploited in the proposed SLER scheme to facilitate the
signal compression at the IMD and the sparse recovery at the
receiver, which is described in detail in Section III.

III. SPARSE LEARNING BASED ENCRYPTION AND
RECOVERY SCHEME FOR SECURE IMD TRANSMISSION

In this section, we describe the proposed SLER scheme
in detail, which contains a joint compression and encryption
algorithm in the framework of compressed sensing at the
IMD, and a sparse recovery algorithm based on deep learning
including both training and inference stages at the receiver.
The block diagram of the proposed SLER scheme is illustrated
in Fig. 2.

A. Compressive Encryption of Sensing Signal in Framework
of Compressed Sensing

The encryption algorithm consists of two components, i.e.
private key addition and compressive encryption. In the key
addition process, a pseudo-random signal kA whose each entry
follows a uniform distribution U(ξ r1−r2

2 , ξ r2−r1
2 ) is generated

as the private key, which is used to encrypt the original sensing
signal s to generate the private sensing signal s′ given by

s′ = s + kA, (3)

where r2 and r1 denote the maximum and minimum entry in
original sensing signal s, respectively. And the signal power
of kA can be adjusted by the scale parameter ξ.

In the compressive encryption process, compression and en-
cryption can be conducted in a single operation by multiplying

the signal by an M×N private measurement matrix KC with
M<N , which can be expressed as

z′ = KCs′, (4)

where the private measurement matrix KC is randomly gen-
erated and follows an i.i.d. Gaussian distribution, i.e., KC ∼
N (0, 1/M). Thus, the length-N private sensing signal s′ is
compressed into an M -dimensional ciphertext signal z′. The
compression ratio (CR) γ for this signal compression is defined
as γ = (1−M/N)× 100% in percentage.

The complexity of both steps are moderate, only involved
with simple matrix addition and multiplication, which doesn’t
requires for massive computing resource.

B. Deep Learning Based Decryption and Sparse Recovery

As shown in equation (2), the ciphertext signal z′ is dis-
turbed by AWGN during transmission in the wireless channel,
yielding the received signal z given by (2) at the programmer.
After receiving the signal z, the programmer decrypts the
private key by removing the corresponding key component in
the sparse measurement vector y, and reconstructs the sparse
sensing signal x via deep learning. Thus, the process at the
receiver is composed of two steps, i.e., key elimination and
sparse recovery.

In the key elimination process, the private key kA and the
private measurement matrix KC are utilized for the purpose
of key removing and decryption, which is given by

y = z′ +ω−KCkA. (5)

Then, the sparse measurement vector y that contains the in-
formation of the original sensing signal s and its corresponding
sparse sensing signal x based on (1) can be obtained, which
is given by

y = KCΨ︸ ︷︷ ︸
A

x +ω, (6)

where A is an under-determined M × N observation ma-
trix utilized in the deep neural networks of the proposed
SLER scheme as a parameterized matrix. Then, according
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Fig. 2. The block diagram of the proposed SLER scheme.



to the sparse measurement model in (6), which is an under-
determined linear inverse problem since M<N , the sparse
sensing signal x can be recovered using sparse recovery
methods such as CS-based algorithms. In this paper, in order
to better extract the sparse feature of the sensing signal and
improve the recovery performance in severe conditions, we
propose the SLER scheme based on sparse deep learning to
conduct sparse recovery.

First, a sparsity-aware deep neural network emulating the
iterative sparse approximation algorithm of AMP is trained us-
ing the training data obtained in advance in the training stage.
Then, in the inference stage, the well-trained sparsity-aware
deep neural network is utilized to find the accurate support
for the sparse sensing signal x. Specifically, as illustrated in
Fig. 2, the proposed sparsity-aware deep network is actually
a deep neural network with I layers evolved from the AMP
algorithm with I iterations. The ith layer of the proposed deep
neural network can be expressed as

x̂i+1 = η(x̂i + Bivi;σi, θi), (7)

vi+1 = y −Ax̂i+1 + bi+1vi, (8)

where vi represents residual measurement error of the ith
layer, and x̂i is the reconstructed approximate result of the
ith layer. η(·) denotes the shrinkage function used to infer the
sparse vector x̂i+1, which is fed by the residual measurement
error calculated by ri = x̂i + Bivi, a layer-dependent
learnable tuning parameter θi, and the standard deviation of
the measurement error σi that can be expressed as σi =

‖vi‖2√
M

.
Moreover, bi+1vi is an Onsager correction bypass which is
used to decouple different layers in the network. Here, bi+1

can be calculated as

bi+1 =
1

M

N∑
t=0

∂[η(ri, σi, θi)]t
∂rt

. (9)

Utilizing the deep learning methods over the sparsity-aware
deep neural networks in the proposed SLER scheme, the
support of the sparse sensing signal x, i.e. the locations
of nonzero entries, can be learnt and recovered effectively,
and the accuracy of the sparse recovery can be improved
significantly. The proposed SLER scheme is composed of
two stages, i.e. the training stage and the inference stage, as
described in Algorithm 1 and Algorithm 2, respectively. The
detailed procedures of the two stages are as follows.

In the training stage, the training set
{
xd,yd

}D
d=1

com-
posed of D data samples, with each including the sparse
measurement vector yd and its corresponding sparse sensing
signal xd, is used for the training of the learnable parameters
Θ = {Bi, θi}Ii=0 in the neural network. The normalized mean
square error (NMSE) is utilized as the loss function given by

Li =
1

D

D∑
d=1

∥∥x̂d
i (y

d,Θi)− xd
∥∥2
2

‖xd‖22
. (10)

where x̂d
i (·) represents the output of the ith-layer with the

input of yd and parameters of Θi. For the training of learnable

Algorithm 1 Proposed Sparse Learning based Encryption and
Recovery (SLER) Scheme: Training Stage
Input:

1) Training dataset of size-D, including the sparse mea-
surement vectors {yd}Dd=1 and the corresponding ground-
truth sparse sensing signal {xd}Dd=1

2) Observation matrix A
1: Initialize v0 = 0, x̂0 = 0, B = AT , θi = 1, i = 0
2: repeat
3: (For each layer in the neural network)
4: Obtain the input to shrinkage function ri = x̂i + Bivi

and compute the value of bi+1 by (9)
5: Calculate the value of x̂i+1 and vi+1 by (7) and (8)
6: Compute loss function Li in (10) and update learnable

parameters Θi = {Bk, θk}ik=0 with back propagation
7: Set i = i+ 1
8: until Li ≥ Li−1
9: Set the total number of network layers as I = i− 1
Output:

Trained parameters Θ = {Bi, θi}Ii=0

Algorithm 2 Proposed Sparse Learning based Encryption and
Recovery (SLER) Scheme: Inference Stage
Input:

1) Sparse measurement vector y
2) Trained parameters Θ = {Bi, θi}Ii=0

1: Initialize v0 = 0, x̂0 = 0
2: Perform a single-trip feedforward operation using the

trained network and obtain the final estimated value of
x̂I = η(rI−1;σI−1, θI−1)

3: Calculate the recovered original sensing signal ŝ = Ψx̂I

Output:
Recovered original sensing signal ŝ

parameters in each layer, the previous layers with well-trained
parameters are used as a whole to calculate the loss function
Li. The parameters are updated by using the Adam optimizer
and back propagation (BP) to minimize the loss, and the
training error is gradually reduced until the loss function does
not decrease with the number of layers, i.e., Li ≥ Li−1, to
avoid over-fitting caused by too many layers and parameters.
Consequently, the total number of layers is set to I = i− 1.

In the inference stage, with the well-trained deep network,
we can estimate the original sparse sensing signal s generated
by the IMD. Firstly, the sparse measurement vectors y is input
into the network with the already learnt parameters Θ to infer
the final estimated sparse sensing signal x̂I . Then, we acquire
the support of the original IMD sensing signal by ŝ = Ψx̂I .
With the aid of the sparsity-aware deep networks, the proposed
SLER scheme can reconstruct the original sensing signal with
high accuracy, and achieve higher compression rate with the
same reconstruction error, which is verified by the simulation
results in Section IV.

The security performance of the proposed scheme can be



theoretically guaranteed from the following two perspectives
of view. For one thing, it has been proved that measurement
as a key can achieve Maurer-sense perfect security [13], i.e.,
when N approaches infinity, the mutual information between
the original sensing signal and the eavesdropped signal is
zero, i.e., lim

N→∞
I(s; z) = 0. On the other hand, it is also

verified that the computational security is guaranteed, i.e.,
when an eavesdropper uses exhaustive methods to guess the
key using an incorrect key, the probability of getting a wrong
reconstruction result is 1 [14]. Moreover, the key addition pro-
cess further improves the confidentiality performance through
destroying the sparseness of the plaintext, making it almost
impossible to achieve accurate signal reconstruction even if the
private measurement matrix KC is known by the adversaries.
This is because the KC-known eavesdropping scenario can
be approximately regarded as a sparse reconstruction problem
given by y = KC(s + kA) = Ax + n0 with a white noise
n0 = KCkA, and the noise power is related with the private
key kA. It can be noted that the sparse recovery error is
doomed to be unacceptable due to the intensive noise power.

IV. SIMULATION RESULTS AND DISCUSSIONS

To evaluate the anti-eavesdropping and sparse recovery
performance of the proposed SLER scheme, simulations are
performed using ECG signals as the IMD sensing signal in
the scenario of compressive encryption, wireless transmission
and sparse recovery. The ECG signals are obtained from the
experimental record 100 in the MIT-BIH Arrhythmia database
[15], with a sampling rate of 360 Hz. The ECG signal in the
record is firstly divided into several length-500 signals that
are used as the original sensing signal s as described in (1)
in Section II. They are then used to generate the training and
test datasets.

For the training dataset, we can obtain a training data
sample pair composed of a sparse sensing signal x and the
corresponding sparse measurement vector y using (1) through
(5), where the AWGN ω is generated using standard Gaussian
distribution with zero mean and variance of one, and then
scaled to represent different values of SNR. By repeating this
process 1000 times, we can generate the training set with
1000 samples, i.e., {yd,xd}Dd=1, D = 1000. The test set
is also generated in a similar way. The training process is
implemented in a computing platform with a CPU of Intel
Xeon E5-2620 v4 and a GPU of GeForce GTX 1080Ti running
Tensorflow 1.14.0 in Python. The Adam optimizer and the
gradient descent algorithm are used for the training of the
deep network, and the initial learning rate is 10−3. In order
to further improve the fitting accuracy of the network, the
learning rate is gradually refined by a ratio of 0.5, 0.1 and 0.01,
respectively. Moreover, to prevent over-fitting during training,
the depth of the proposed sparsity-aware deep neural network
is adjusted with a validation set.

We evaluate the simulation results with a metric called
percentage root-mean square difference (PRD), which is an
important indicator of the reconstruction quality of ECG

signals. The PRD denoted by λ between the original sensing
signal s and recovered sensing signal ŝ is defined as

λ =
‖ŝ− s‖2
‖s‖2

× 100%. (11)

Moreover, we adopt a PRD-based evaluation metric proposed
by Zigel et al to reflect the subjective recovery performance,
which classifies the PRD value below 9% as “good”, and “bad”
otherwise [16].

In order to verify the effectiveness and confidentiality of
the proposed SLER scheme, comparative experiments using
SLER and other benchmark schemes including CS-based
algorithms such as OMP [9] and SP [10], and iterative sparse
approximation algorithms like AMP [11], are conducted in
a wireless IMD transmission system in the presence of an
eavesdropper. The reconstruction accuracy with the private key
scale parameters ξ = 1 and ξ = 0.5 are recorded in Figs. 3
and 4, respectively, where the compression rate is γ = 50. The
solid lines represent the signal recovery error of the legitimate
user, while the dashed lines and dotted-dashed lines represent
the accuracy of the signal recovered by the eavesdropper when
the private measurement matrix KC is unknown and known
to the receiver, respectively. Here, without loss of generality,
we assume that the eavesdropper can learn the statistical char-
acteristics of the private keys and use a random guess of the
private keys to perform sparse recovery. Since the adversary
can hardly obtain the confidential personal medical data of
the patients for the purpose of training, it is very difficult for
the adversary to generate the training dataset with sufficient
amount of training data. Thus, the eavesdropper cannot train a
deep neural network eligible for sparse recovery. Only existing
benchmark schemes, including CS-based ones and iterative
sparse approximation, can be used by the eavesdropper.
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To evaluate the sparse recovery performance, the reconstruc-
tion accuracy in terms of PRD of the proposed SLER scheme
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and the existing benchmark schemes indicated by PRD are
compared in Figs. 3 and 4, with different scales of the private
key. It can be seen that compared with the existing methods,
the PRD of the proposed SLER scheme is reduced to less
than 2% at the SNR of 30. Therefore, in harsh communication
environments with intensive background noise, the proposed
SLER scheme can achieve higher reconstruction accuracy.

To evaluate the security performance of the proposed SLER
scheme against eavesdropping, it can be seen from the dashed
lines in Figs. 3 and 4 that the recovery error of the eaves-
dropper without knowing any keys exceeds 110%, which is
far higher than the “bad” criterion, which shows that the
eavesdropper cannot acquire the accurate original sensing
signal. As an obvious contrary, the recovery accuracy of the
proposed SLER scheme is shown to be significantly higher,
which verifies the security performance of the legitimate
receiver against eavesdropping. Subsequently, we assume that
the private measurement matrix KC has been revealed to the
eavesdropper, and the quality of illegally received signal is still
“bad”. Moreover, comparing Fig. 3 and 4, it can be observed
that the encryption using a private key with larger scale ξ will
increase the recovery error of the eavesdropper, which means
the confidentiality is improved using a private key signal with
more power. This leads to an open problem that we can seek
for a tradeoff between the key signal power and the anti-
eavesdropping confidentiality, and thus improving the energy
efficiency while protecting the security.

V. CONCLUSION

In this paper, a physical layer security scheme called SLER
based on sparse deep learning is proposed for secure IMD
sensing signal compression and wireless transmission against
eavesdropping, which significantly improves the confidential-
ity and spectral efficiency. The scheme is composed of a
lightweight compressive encryption algorithm and a decryp-

tion and recovery algorithm based on sparse learning. Joint
compression and encryption are achieved by exploiting the
inherent time correlation and the sparse feature of the sensing
signal in the DCT domain, and accurate sparse recovery is
implemented by learning the sparse feature of the sensing sig-
nal. Simulation results show that the proposed SLER scheme
can resist eavesdropping attacks effectively and improve the
recovery accuracy compared with existing CS-based and
iterative sparse approximation algorithms. Furthermore, the
proposed SLER scheme is promising in other communication
systems, especially for the resource-constrained scenarios like
IoT applications.
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