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Abstract: The video transmission in the Internet-of-Things (IoT) system must guarantee the video quality and reduce

the packet loss rate and the delay with limited resources to satisfy the requirement of multimedia services. In this

paper, we propose a reinforcement learning based energy-efficient IoT video transmission scheme that protects

against interference, in which the base station controls the transmission action of the IoT device including the

encoding rate, the modulation and coding scheme, and the transmit power. A reinforcement learning algorithm

state-action-reward-state-action is applied to choose the transmission action based on the observed state (the queue

length of the buffer, the channel gain, the previous bit error rate, and the previous packet loss rate) without knowledge

of the transmission channel model at the transmitter and the receiver. We also propose a deep reinforcement

learning based energy-efficient IoT video transmission scheme that uses a deep neural network to approximate Q

value to further accelerate the learning process involved in choosing the optimal transmission action and improve

the video transmission performance. Moreover, both the performance bounds of the proposed schemes and the

computational complexity are theoretically derived. Simulation results show that the proposed schemes can increase

the peak signal-to-noise ratio and decrease the packet loss rate, the delay, and the energy consumption relative to

the benchmark scheme.
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1 Introduction

With the increasing demand of multimedia applications,
such as virtual reality and video surveillance supported
by Internet-of-Things (IoT) systems, the performances
of video quality, packet loss rate, and delay of the
video transmission must be guaranteed to satisfy the
ever stringent quality-of-service requirements, especially
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with limited communication bandwidth and energy of
IoT devices available[1]. However, because the number of
the devices in an IoT system is huge, the used spectrum
tends to be overlapped and in conflict[2], incurring
interference that degrades the performance of the
video transmission. Hence, an energy-constrained IoT
device should apply the techniques of video encoding,
modulation and coding, and power control in video
transmission to guarantee the quality of service and save
energy in the presence of the interference caused by
other ambient devices.

A video encoder that applies the H.265/HEVC[3]

or H.264/AVC[4] coding standard is employed by
the IoT device to compress the captured video data
before transmission to accommodate the source bit
rate to the available bandwidth, thus increasing the
spectral efficiency. The encoding rate controls the
trade-off between the video compression distortion
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and the number of bits which is used to encode
the source video[5], which is usually optimized by
the Lagrangian multipliers based on a predicted rate-
distortion model[6--8]. Besides the compression distortion,
the video transmission suffers from the transmission
distortion due to packet errors at the receiver end under
time-varying and error-prone channels, especially the
channel with interference.

Forward Error Correction (FEC) codes (such as
Reed-Solomon codes and rate-compatible punctured
convolutional codes[9]) are adopted to reduce bit errors
of video data by adding redundant coding bits to
the video streams. The Adaptive Modulation and
Coding (AMC) technique can effectively reduce the
Bit Error Rate (BER) and improve the throughput by
adaptively adjusting the modulation and coding scheme
based on the channel state. For example, high-order
modulation and coding schemes are applied to improve
the throughput for good channel conditions.

Power control is another method to mitigate
interference and thus decrease the transmission error
probability[10]. The base station controls the transmit
power properly to increase the Signal-to-Interference-
plus-Noise Ratio (SINR), thereby improving the video
transmission performance. However, in most existing
studies, the modulation and coding scheme and the
transmit power are fixed or selected according to a
known channel model, which might not adapt to a
dynamic and complex IoT environment in the presence
of many devices and interferences.

In this paper, we propose a Reinforcement Learning
(RL) based Energy-efficient IoT Video Transmission
(REIVT) scheme to guarantee the multimedia service
quality against interference and save energy. This scheme
enables the base station to determine the transmission
action of the IoT device (including the encoding rate,
the modulation and coding scheme, and the transmit
power) without being aware of the transmission channel
model. More specifically, the base station observes the
state that consists of the transmission channel gain,
the queue length of the buffer, the previous Packet
Loss Rate (PLR), and the previous BER. State-Action-
Reward-State-Action (SARSA)[11], an RL algorithm that
avoids the Q value overestimations compared with Q-

learning, is applied to evaluate the long-term expected
utility for each feasible transmission action under the
state; this approach allows the base station to determine
the transmission action of the IoT device. We also
propose a Deep RL based Energy-efficient IoT Video
Transmission (DREIVT) scheme that utilizes a Deep
Neural Network (DNN) to compress the state space
and further accelerate the learning process involved in
choosing the optimal encoding rate, modulation and
coding scheme, and transmit power, thereby improving
the video transmission performance.

Moreover, the performance bounds of the proposed
schemes in terms of the compression distortion, the PLR,
the delay, and the energy consumption are theoretically
derived, and the effect of the channel condition on
the video transmission performance of the proposed
scheme is analyzed. We also compare the computational
complexities of REIVT and DREIVT. Simulation results
of the proposed schemes in a video transmission system
with good channel condition show that REIVT and
DREIVT can achieve the performance bounds. We
use Universal Software Radio Peripheral (USRP) to
collect the raw data of the video transmission (such
as PLR, BER, and channel gain) in an indoor WiFi
video transmission system that involves a smart phone
transmitting context sensing video data encoded by
H.264/AVC to a base station 2 m away. The proposed
schemes are evaluated by simulations in a scenario which
is constructed according to the collected field data.

The rest of this paper is organized as follows. We
review the related work in Section 2 and present the
system model in Section 3. The REIVT and DREIVT
schemes are introduced in Sections 4 and 5, respectively.
The performance bounds and computational complexity
are analyzed theoretically in Section 6. Simulation
results and discussion are given in Section 7. Finally,
Section 8 concludes this paper.

2 Related work

Encoding rate control methods can provide a trade-off
between the bit rate and the video quality to generate a
compressed video stream with little distortion at a given
encoding rate. For example, a Lagrange multiplier based
rate control framework for the high-efficiency video
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coding, which was proposed in Ref. [12], allocates the
encoding rate at the coding tree unit level to minimize
the video distortion variation across video frames and
provide more accurate rate regulations, more stable
buffer fullness, and lower video quality fluctuation. The
end-to-end delay also affects the multimedia service
quality in real-time wireless video communication
systems. In Ref. [13], a delay-rate-distortion based
rate control method involves an algorithm based on
Lagrange multiplier, Karush-Kuhn-Tucker conditions,
and sequential quadratic programming methods. Both
the source coding and the channel coding parameters
are jointly selected to minimize the average total end-
to-end distortion while being subject to the constraints
of the end-to-end delay and the transmission rate.
In Ref. [14], an energy-efficient adaptive source-FEC
coding scheme for video surveillance systems manages
the rate-distortion-power trade-off between the video
encoding and the transmission and jointly controls the
encoding rate and the FEC coding to generate energy-
efficient and high-quality video streams.

AMC switches modulation and coding schemes
adaptively to increase the data rate and satisfy the BER
constraint. For example, a scalable video coding scheme
combined with AMC, which was proposed in Ref. [15],
chooses modulation and coding schemes for each video
coding layer to provide high-quality videos for mobile
devices that are close to the cellular towers and provide
the required video quality for mobile devices in poor
channel states. A multicast video delivery scheme in
Ref. [16] jointly allocates resources and selects the

modulation and coding scheme based on the average
channel conditions of the users to improve the overall
video quality in a multicast group. A Markov decision
process based transmission scheme in Ref. [17] applies
value iteration to determine the modulation and coding
scheme that reduces the transmission cost and improves
the video quality with higher Peak Signal-to-Noise Ratio
(PSNR) for the reconstructed video corresponding to
each channel state and transmission delay.

Power control methods are utilized to combat against
interference and increase the energy efficiency. A
feedback based transmission power control scheme,
which was proposed in Ref. [18], builds a predictive
model between the transmit power and the link quality
by collecting the link quality history and adaptively
adjusts the transmit power according to the observed
link quality. In Ref. [19], the central controller of the
cellular system controls the transmit power of the Device-
to-Device (D2D) transmitter to limit the interference
caused by undelying D2D users and applies convex
programming approaches to maximize the SINR of
the cellular link with the known global channel state
information. The power control framework for wireless
interference networks in Ref. [20] applies a branch-
and-bound procedure to find the bounds for the energy-
efficient maximization problem.

3 System model

3.1 Network model

As shown in Fig. 1, an energy-constrained IoT device
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Fig. 1 Illustration of an IoT video transmission system, in which an IoT device transmits the video stream to the base station
in the presence of interference.
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captures the raw video data with a camera in the
multimedia application such as video surveillance.
At each time slot k, the IoT device employs an
H.265/HEVC or H.264/AVC encoder to encode the
captured video frames during the interval of one time
slot denoted by t . The encoding rate x.k/1 is chosen
from X feasible encoding rates, i.e., x.k/1 2 fRi j1 6

i 6Xg, where Ri is the i-th encoding rate level. The
encoder encodes the video data with the group of pictures
structure[4] and generates the video stream with size
atx

.k/
1 comprised of frame sequences at each time slot,

where a is the ratio of unit time slot that the IoT device
generates the video stream. The encoded video frames
are split into several data packets, each with size Z
and a packet header that includes the information of the
video frame number, the packet number, and the time
stamp[14]. Without loss of generality, the IoT device
has a buffer that stores the video packets to match
the arrival rate and the service rate in a time-varying
channel[21], where the queue length of the buffer is given
by q.k/. In order to protect video transmission against
packet loss, the IoT device uses channel coding, such
as the Reed-Solomon code, and applies the AMC that
chooses the modulation and coding scheme, indexed by
x
.k/
2 , from M feasible schemes, i.e., x.k/2 2f1; : : : ;M g.

As a consistent notation, the modulation and coding
scheme indexed by x

.k/
2 encodes the video packets

with coding rate c.k/ and modulates the video packets
with modulation type m.k/. Afterwards, the IoT device
transmits the video packets to the base station with
transmit power x.k/3 that ranges from P1 to PN and
is quantized into N levels with the i-th level denoted
by Pi , i.e., x.k/3 2 fPi j16 i 6N g. The video packets
are transmitted in the channel at the central frequency
F , bandwidth W , and channel gain h.k/. The video
transmission is interfered by other ambient IoT devices
that transmit messages using the same channel, with the
received interference power denoted by y.k/ at the base
station.

Once receiving the video packets, the base station
demodulates and decodes the received video packets
to reconstruct the video frames and evaluates the BER
denoted by �.k/ and the PLR denoted by �.k/ of
the received video packets during this time slot. The

energy consumption of the IoT device denoted by E.k/

contains the contribution of both the encoding module
and the signal transmitter. More energy-efficient video
transmission saves the battery life of the IoT device. In
order to guarantee the quality of service and increase the
energy efficiency, the base station sends the transmission
action denoted by X .k/, i.e., the parameters used for
transmission (including the encoding rate x

.k/
1 , the

modulation and coding scheme x.k/2 , and the transmit
power x.k/3 ) to the IoT device through the control channel
(X .k/

D Œx
.k/
1 x

.k/
2 x

.k/
3 �).

3.2 Video traffic model

For simplicity, the buffer is assumed to have size large
enough for the IoT transmission scenario. The size of
the arrival data into the buffer is atx.k/1 , and the size
of the departure data from the buffer depending on the
transmit rate r .k/ is determined by the available channel
bandwidth, the modulation type m.k/, and the coding
rate c.k/. Accordingly, the dynamic variation of the
buffer queue is given by

q.kC1/ D maxfq.k/ C atx.k/1 � t r
.k/; 0g (1)

The delay of video packets delivery denoted by T .k/

affects the quality of service and is mainly composed of
the queue delay and the transmission delay. For real-time
video transmission, each packet has a deadline D and
should be delivered beforeD; otherwise, this packet will
be discarded[17]. In the rest of the paper, time slot k will
be omitted for simplicity of notation without ambiguity.
The important parameters are listed in Table 1.

4 REIVT scheme

We propose an REIVT scheme to guarantee the video
quality and save the energy of the IoT device. In
this scheme, the base station applies SARSA to select
the transmission action X .k/ of the IoT device, which
includes the encoding rate, the modulation and coding
scheme, and the transmit power. The Q value of
the current state-action pair is updated using the Q
value of the next state-action pair instead of the
maximum Q value of the next state to avoid the Q value
overestimations suffered in Q-learning.

At time slot k, the base station receives the queue
length q from the IoT device, estimates the channel gain
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Table 1 Summary of the primary notations.

Symbol Definition

x
.k/

1 Encoding rate at time slot k

q.k/ Queue length of the buffer

x
.k/

2 Modulation and coding scheme index

c.k/ Coding rate

m.k/ Modulation type

x
.k/

3 Transmit power

y.k/ Received interference power

�.k/ BER

h.k/ Channel gain of the transmission channel

r.k/ Transmit rate

�.k/ PLR

� .k/ Mean-Square Error (MSE)

T .k/ Packet delay

t Interval of the time slot

X Number of the feasible encoding rates

M
Number of the feasible modulation and

coding schemes

N Transmit power quantization level

R1; RX Minimum and maximum encoding rate

P1, PN Minimum and maximum transmit power

D Packet deadline

h, and formulates the state s.k/ according to �, �, q, and
h as

s.k/ D Œ� � h q� (2)
which are all dynamic because of the time-varying
channel and the dynamic chosen transmission action.
More specifically, the mobility of the IoT device and the
dynamic of the environment determine the dynamic of
the channel gain. The BER and PLR are determined by
the channel gain, the chosen modulation and coding
scheme, and the transmit power. The queue mainly
depends on the encoding rate and the modulation and
coding scheme. Because the transmission action is
chosen dynamically over the time, the resulting state
is dynamic.

The base station selects the transmission action X .k/

from the feasible transmission action space denoted
by ˝ consisting of all the feasible encoding rates,
modulation and coding schemes, and transmit power
levels via the "-greedy exploration[22] according to the
Q values of state-action pairs. The chosen X .k/ is sent
back to the IoT device.

Once receiving the transmission action, the encoder in

the IoT device compresses the raw visual data captured
by the camera with the encoding rate x1. The IoT
device applies the modulation and coding scheme x2
to encode the video packets with channel coding rate c
and modulate them with modulation type m, and then
transmits the video packets in the buffer to the base
station at transmit power x3. Upon receiving the video
packets, the base station estimates the MSE denoted
by � between the raw video frames and the encoded
video frames that indicates the video distortion using a
predicted rate-distortion model in Ref. [23]. The base
station also evaluates the packet delay T according to
the packet header information, the energy consumption
E, �, and �. The aim of this scheme is to reduce the
compression distortion and the transmission distortion,
decrease the delay, and improve the energy efficiency.
Hence, the utility of the base station that guides the
system to achieve the aim is given by

u.k/ D
!0

!1 � x1
� !2T � !3� � !4E (3)

where the first term is the estimated compression MSE
and !0, !1, !2, !3, and !4 represent coefficients.

The next state s.kC1/ is formulated in a manner similar
to Eq. (2), and the next transmission action X .kC1/ is
selected via the "-greedy exploration approach similar
to the selection of X .k/. The video transmission
experience Œs.k/X .k/ u.k/ s.kC1/X .kC1/� is stored in
a first-in-first-out experience pool D that can store K
experiences on a rolling basis.

As shown in Algorithm 1, this scheme estimates the
Q value of the transmission action X .k/ under state s.k/

according to previous K experiences and the Q value of
the next state-action pair and updates the Q value with

Q.s.k/;X .k// ˛

kX
iDk�KC1

 i�kCK�1u.i/C

.1 � ˛/Q.s.k/;X .k//C ˛KQ.s.kC1/;X .kC1// (4)

where ˛ is the learning rate and  is the discounted
factor.

5 DREIVT scheme

We propose a DREIVT scheme to further accelerate
the learning process of the base station in choosing
the encoding rate, the modulation and coding scheme
index, and the transmit power. This scheme utilizes
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Algorithm 1 REIVT
1: Initialize �, �,  , ˛, K and Q D 0 for all state-action pairs
2: for k D 1; 2; 3; : : : do
3: Receive the queue length q from the IoT device
4: Estimate h
5: Formulate s.k/ via Eq. (2)
6: if k D 1 then
7: Select X .k/ via the "-greedy exploration
8: else
9: X .k/

D X .k�1/

10: end if
11: Send X .k/ to the IoT device
12: Estimate MSE between the raw video frames and the

encoded video frames
13: Evaluate T , E, �, and �
14: Calculate u.k/ via Eq. (3)
15: Formulate s.kC1/ similar to Eq. (2)
16: Select X .kC1/ via the "-greedy exploration
17: if k > K then
18: Remove Œs.k�K/ X .k�K/ u.k�K/ s.k�KC1/ X .k�KC1/�

from D
19: end if
20: Store Œs.k/ X .k/ u.k/ s.kC1/ X .kC1/� in D
21: if k > K then
22: Estimate and update Q value via Formula (4)
23: end if
24: end for

a deep neural network to compress the state space
and approximate Q value more accurately, thereby
obtaining better video transmission performance against
interference than REIVT for base stations with sufficient
computational resources.

As shown in Algorithm 2, the base station receives
the queue length q from the IoT device, estimates the
channel gain h, and formulates the state s.k/ via Eq. (2)
at time slot k. This scheme inputs s.k/ into a three-layer
fully connected DNN with parameters denoted by ��� and
consisting of an input layer, a hidden layer, and an output
layer to obtain Q value Q.s.k/; �; ���/ under the current
state. More specifically, the input layer involves 4 nodes,
the hidden layer contains f nodes with each activated
by a rectified linear unit, and the output layer contains
XMN nodes, as shown in Fig. 2. The transmission action
X .k/ is selected according to the "-greedy exploration
and the output of the DNN, i.e., the Q value for each
feasible transmission action, is sent to the IoT device.

The IoT device encodes the captured video data at

Algorithm 2 DREIVT
1: Initialize  , ��� , D D ∅, �, �, and B
2: for k D 1; 2; 3; : : : do
3: Receive the queue length q from the IoT device
4: Estimate h
5: s.k/ D Œ� � h q�

6: Input s.k/ to the DNN
7: obtain Q.s.k/; �; ���/

8: Select X .k/ via "-greedy exploration according to
Q.s.k/; �; ���/

9: Same as Lines 11–15 in Algorithm 1
10: D D [ Œs.k/ X .k/ u.k/ s.kC1/�

11: for i D 1; 2; 3; : : : ; B do
12: Choose Œs.b.i// X .b.i// u.b.i// s.b.i/C1/� from D

randomly
13: end for
14: Update the DNN parameters via Formula (5)
15: end for

the encoding rate x1, uses the modulation and coding
scheme x2 to modulate and encode the video packets,
and transmits the video packets to the base station at
transmit power x3. Upon receiving the video packets, the
base station estimates � , T , E, �, and �. The utility and
the next state are given by Eqs. (3) and (2), respectively.
The base station stores the video transmission experience
eee.k/ D Œs.k/ X .k/ u.k/ s.kC1/� in a memory pool D.

A minibatch is formulated by randomly and uniformly
choosing B experiences from D, i.e., Œeee.b.i//�16i6B ,
where b.i/ � U.1; k/. Similar to the scheme of Ref.
[22], this scheme uses the stochastic gradient descent
algorithm to train the DNN. The DNN parameters ��� are
updated to minimize the error between the target Q value
and the estimated Q value with the minibatch:

���  arg min
���
0

1

B

BX
iD1

.Q.s.b.i//;X .b.i//; ���/�

u.b.i// �  max
X 0

Q.s.b.i/C1/;X 0; ���//2 (5)

6 Performance evaluation

We evaluate the performance bounds of REIVT and
DREIVT, including the compression distortion, the PLR,
the energy consumption, and the utility of the base
station. The computational complexity of each proposed
scheme is analyzed.

At time slot k, the base station chooses the encoding
rate x1 2 ŒR1; RX � and the transmit power x3 2
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Fig. 2 Illustration of DREIVT scheme.

ŒP1; PN � for the IoT device to compress the video and
transmit the video packets under channel gain h with
the received interference power denoted by Y . The IoT
device uses the M -order modulation and coding scheme
to encode and modulate the video packets to guarantee
the throughput, resulting in the transmit rate rM of the
video packets. Assuming that rM is higher than the
maximum encoding rate RX , i.e., rM > RX , and then
the number of arrival video packets to the buffer is less
than that of departure video packets from the buffer at
each time slot. The queue delay is negligible and the
delay of the video packets is equal to the transmission
delay given by T D Z=rM . The data rate is assumed
to be high enough so that the maximum delay is less
than the packet deadline D, i.e., Z < DrM . Thus, the
packet loss is only caused by the packet error during
transmission, which is approximated as Formula (6)
according to Ref. [24],

� D

8̂<̂
:ˇ0exp

�
�ˇ1W hx3

� C Y

�
; if Whx3 > ˇ2.� C Y /I

1; otherwise

(6)

where ˇ0, ˇ1, and ˇ2 are positive fitting parameters for
the M -th modulation and coding scheme, and � is the
noise.

The energy consumption of the IoT device mainly
contains the consumption of encoding given by ˇ3x1t C

ˇ4t and the consumption of transmission given by x3t ,
where ˇ3 and ˇ4 are fitting parameters.

Theorem 1 The bounds of the performance metrics
of the proposed schemes are given by

� D
!0

!1 �RX
(7)

� D ˇ0 exp
�
�ˇ1P1W h

� C Y

�
(8)

E D ˇ3RX t C ˇ4t C P1t (9)

u D
!0

!1 �RX
� !2

Z

rM
� !3ˇ0 exp

�
�ˇ1P1W h

� C Y

�
�

.ˇ3RX C ˇ4 C P1/!4t (10)

if

RX �

vuut!0P1 exp
�
ˇ3P1Wh
�CY

�
ˇ0ˇ1ˇ2ˇ3!3

6 !1 < R1 (11)

Proof Based on Eq. (3) and Formula (6), the utility
of the base station is given by

u.x1;M; x3/ D
!0

!1 � x1
� !2

Z

rM
� !3�

!3

�
ˇ0exp

�
�ˇ1W hx3

� C Y

�
� 1

�
I�

.ˇ3x1 C ˇ4 C x3/!4t (12)

where I is an indicator function that is equal to 1 if
W hx3=.� C Y / > ˇ2 is satisfied and is equal to 0
otherwise.

We denote u1.x1/, u2.M/, and u3.x3/ as the
functions of x1, M , and x3, respectively, given by
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u1.x1/ D
!0

!1 � x1
� ˇ3!4tx1 (13)

u2.M/ D �
!2Z

rM
(14)

u3.x3/ D �!3 � !4tx3�

!3

�
ˇ0exp

�
�ˇ1 Whx3
� C Y

�
� 1

�
I (15)

By Eq. (15), if Formula (11) holds, we have

du1 .x1/
dx1

D
!0

.!1 � x1/
2
� ˇ3!4t > 0 (16)

Thus, x�1 D RX is the maximum of u1.x1/. If
Formula (11) holds, we have

du3 .x3/
dx3

D
!3ˇ0ˇ1W h

� C Y
exp

�
�ˇ1W hx3

� C Y

�
� !4t60

(17)
Thus, x�3 D P1 is the maximum of u3.x3/.
Because du2.M/=dx2 D 0 and u.x1;M; x3/ D

u1.x1/Cu2.M/Cu3.x3/, ŒRX M P1� is the maximum
of u.x1;M; x3/.

Thus, 8x1 2 ŒR1; RX � and x3 2 ŒP1; PN �; as a result,
we have

u.RX ;M;P1/ > u.x1;M; x3/ (18)

Using Formula (6) and Eq. (12), we have the
performance bounds of the proposed schemes given by
Eqs. (7)–(10). �

Remark 1 If the channel condition between the
IoT device and the base station is good compared
with a threshold determined by the channel bandwidth,
the noise, and the minimum transmit power of the
IoT device, as shown in Formula (11), the minimum
encoding rate and the maximum encoding rate satisfy
Formula (11), and then the IoT device chooses the
maximum encoding rate and the minimum transmit
power to achieve a lower PLR and energy consumption
to guarantee the received video quality and save energy
of the IoT device.

Figure 3 shows that the performances of MSE, PLR,
energy consumption, and utility of both REIVT and
DREIVT converge to the bounds provided in Eqs. (7)–
(10) after approximately 2000 time slots.

According to Ref. [25], the computational complexity
of REIVT mainly depends on the number of the
feasible encoding rates X , the feasible modulation and
coding schemes M , and the transmit power quantization
level N , and is given by O.XMN/. The computational
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Fig. 3 Performance of DREIVT and REIVT encoded with
H.264/AVC using 2 MHz bandwidth, Quadrature Phase Shift
Keying (QPSK), and code rate 3/4 against interference.
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complexity of DREIVT is determined by the number
of multiplications in both the forward propagation
and the back propagation of the DNN[26]. Hence,
the computational complexity of DREIVT given by
O.BXMNf/ linearly decreases with the number of
experiences in a minibatch B , the number of feasible
actions XMN, and the number of neural nodes f in the
hidden layer of the DNN.

7 Simulation result and discussion

Simulations were performed to evaluate the proposed
REIVT and DREIVT in an indoor WiFi-based video
transmission system created by field data, such as
channel gain, PLR, and BER, collected on a USRP
platform, in which a smart phone executes a context
sensing task and transmits video packets to the base
station 2 m away. The smart phone captures the video
with a resolution of 352�288 at 15 frames/s and encodes
them with H.264/AVC. The encoding rate is chosen
from f300, 500, 700, 1000, 1200g kbps in each time
slot with the duration of 400 ms. The smart phone
chooses a modulation and coding scheme from 2 feasible
modulation and coding schemes including Binary Phase
Shift Keying (BPSK) and QPSK with the code rate of
3/4, and transmits video packets with the power of 9,
36, or 100 mW in the channel with the center frequency
2.412 GHz and the bandwidth 2 MHz.

Let the discounted factor  D 0:5, the learning rate of
REIVT ˛ D 0:4, and K D 10. The initial exploration
rate is " D 0:9, and the rate linearly decreases to 0.1
after 2000 time steps. In DREIVT, the number of nodes
in the hidden layer f D 256, and the size of memory
pool D is 5000. Similar to the approach of Ref. [23],
we use PSNR denoted by � to measure the video quality
given by

� D 10 lg
2552

�
(19)

As shown in Fig. 4, REIVT outperforms the
benchmark scheme � Domain Rate Control (LDRC)[8]

in PSNR, PLR, delay, energy consumption, and utility
because LDRC only controls the video encoding rate to
optimize the rate-distortion trade-off without controlling
the video transmission scheme. For instance, this scheme
improves the video quality after compression by 5.8%,

reduces the PLR of the video packets by 86.7%, reduces
the delay by 73.9%, reduces the energy consumption
of the IoT device by 8.5%, and increases the utility by
50.1% after 3000 time slots.

DREIVT further accelerates the learning process
of choosing the optimal action and improves the
performance; at time slot 2000, it improves the video
quality after compression by 1.43% and 6.67%, reduces
the PLR of the video packets by 88.6% and 97.8%,
reduces the delay by 35.1% and 78.6%, saves energy
of the IoT device by 1.94% and 10.1%, and increases
the utility by 19.2% and 56.4%, compared to the REIVT
and the LDRC scheme, respectively.

Considering that the estimated channel gain in the
proposed REIVT is not perfectly accurate in practical
IoT systems, we provide the performance of REIVT and
DREIVT under different levels of channel estimation
error in Fig. 5, where the channel estimation error is
calculated with the estimated channel gain and the actual
channel gain and normalized to the range between 0
and 1.

The performances of REIVT and DREIVT (including
the PSNR, PLR, delay, energy consumption, and utility)
get worse as the channel estimation error increases. For
example, for REIVT, the PSNR decreases from 48.2 to
46.8 dB, the PLR increases by 1.8 times from 0.042 to
0.119, the delay increases by 81.1% from 9.5 to 17.2 ms,
the energy consumption increases from 64.2 to 67.7 �J,
and the utility decreases from �15:3 to �19:5 as the
channel estimation error changes from 0 to 1. In addition,
REIVT and DREIVT outperform LDRC even if the level
of channel estimation error is high. For example, the
PLR of REIVT is 15.1% lower than that of LDRC and
the delay of REIVT is 13.5% lower than that of LDRC
when the channel estimation error is 1. DREIVT is
more robust than REIVT against the channel estimation
error. For example, the PLR of DREIVT is nearly 200%
lower than that of REIVT and the delay of DREIVT is
approximately 100% lower than that of REIVT when the
channel estimation error is 1.

8 Conclusion

In this paper, we proposed an REIVT scheme for IoT
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Fig. 4 Performance of REIVT and DREIVT for IoT system in which the IoT device transmits the encoded video packets to the
base station 2 m away using the bandwidth of 2 MHz with the center frequency 2.412 GHz.

systems, in which the base station chooses the encoding
rate, the modulation and coding scheme, and the transmit
power for the IoT device to compress the video data
and protect the video transmission against interference.
We also proposed a DREIVT scheme that uses a deep

neural network to compress the state space, thereby
improving the video transmission performance for base
stations with sufficient computational resources. By
analyzing the performance of the proposed schemes
theoretically, we provided the performance bounds that
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Fig. 5 Averaged performance of REIVT and DREIVT for IoT systems against interference with respect to channel estimation
error in range between 0 and 1.

contain the MSE, PLR, energy consumption, and utility.
We also analyzed the computational complexity of the
proposed schemes. Simulations on a video transmission
scenario built by the data collected in an indoor WiFi-
based video transmission system showed that our scheme

outperforms the benchmark scheme. For example, the
DREIVT scheme was found to improve the video quality
by 6.67%, reduce the PLR by 97.8%, reduce the delay
by 78.6%, and save energy by 10.1% compared with
LDRC.
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