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Abstract—The estimation of the massive multiple input mul-
tiple output (MIMO) channel for vehicular communications
is very challenging due to the variation of the channel and
the requirement of low latency. To improve the accuracy and
reduce the delay of the massive MIMO channel estimation, the
recently emerging and popular deep neural network is exploited
in this paper to learn the sparse structural information of
the MIMO channel and estimate the channel more accurately
and more rapidly. Firstly, a novel deep learning based massive
MIMO channel estimation (DLCE) scheme is proposed, which
achieves an efficient trade-off between the accuracy and the
delay in channel estimation. Furthermore, exploiting the spatial
correlation of the multiple antennas channel, an enhanced
scheme called spatial-correlated DLCE (SC-DLCE) is proposed
to further improve the channel estimation accuracy, especially
in low signal-to-noise ratio environment. Simulation results
demonstrate that the two proposed schemes can significantly
improve the accuracy of massive MIMO channel estimation
with a much shorter processing delay in practical vehicular
communications terminals compared with the state-of-the-art
benchmark schemes.

Index Terms—vehicular communications, massive MIMO,
channel estimation, deep learning, sparse recovery.

I. INTRODUCTION

Vehicular communication is regarded as a dominant area
of ultra-reliable low latency communications (URLLC) sce-
narios in the 5G wireless communications [1]. With the rapid
development of the internet of vehicles, the channel estimation
scheme with higher accuracy and lower delay is a popular
research direction for vehicular communications and particu-
larly V2X communications [2]. The techniques of orthogonal
frequency division multiplexing (OFDM) and multiple input
multiple output (MIMO) have gained great popularity from
both academia and industry due to the anti multipath fading
capability and high spectral efficiency. Combining their ad-
vantages, MIMO-OFDM has been widely adopted in the latest
and next-generation wireless communication systems [3], [4].

In URLLC scenarios, the major challenge of practical
MIMO-OFDM systems is to achieve reliable and realtime
channel estimation. As reported in literature, the conventional
channel estimation methods for MIMO-OFDM systems are
often based on the training sequences (TS), i.e. the preamble
in the time domain or the pilots in the frequency domain [5],
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[6]. However, a major drawback is that, the overhead of
the required length of the training sequences will drastically
increase when the number of multiple antennas is large, which
will significantly reduce the spectral efficiency.

To solve this problem, the compressed sensing (CS) the-
ory, which is a recently emerging sparse signal processing
technique, is introduced to MIMO channel estimation to
reduce the time and frequency training resource overhead
and improve the spectral efficiency [7]. Previous research
has proven that the CS methods can improve the estimation
performance by utilizing the sparsity structure of the MIMO
channels [8], [9]. Nevertheless, the classical CS algorithms
still cost high computational complexity and limited recovery
accuracy at low signal-to-noise ratio (SNR), especially for
the V2X communication scenario which requires low latency.
Although the structured CS methods exploit the structural
sparse correlation of multiple channel measurements from
a certain domain to further improve the sparse recovery
accuracy [10]–[12], the processing delay and a large number
of iterations are still the bottlenecks for CS-based methods.
How to achieve a good trade-off between the estimation
accuracy and the delay of vehicular communications channels
has not been sufficiently addressed in literature yet.

Recently, the popular emerging deep learning techniques
have been utilized to deal with the sparse recovery prob-
lems. By unfolding the iterations of the iterative shrinkage
thresholding algorithm (ISTA) [13] and the approximate
message passing (AMP) algorithm [14], the learned ISTA
(LISTA) [15] and learned AMP (LAMP) [16] have been
proposed to solve the convex sparse optimization problem
in the framework of deep learning. Although the state-of-the-
art conventional iterative algorithms of AMP and ISTA both
utilize the structural sparse prior of the signal and employ
recursive method to converge to sparse solutions, the delay
caused by the repeated iterations is still preventing them from
being applied in delay-sensitive vehicular communications.
Compared with the conventional iterative methods, the deep
learning based algorithms utilizing the neural networks can
significantly reduce the processing delay.

In order to solve the problems of the existing iterative and
CS-based sparse recovery methods, in this paper, the deep
learning (DL) theory [17] and neural networks are exploited in
the estimation of massive MIMO channels and two DL-based
massive MIMO channel estimation schemes for vehicular
communications are proposed, which are aimed to reduce the
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Fig. 1. The signal model of the massive MIMO-OFDM based vehicular communications system and deep learning based channel estimation.

delay and improve the accuracy of channel estimation. The
contribution of this paper is summarized twofold as follows.
• A DL-based MIMO channel estimation (DLCE) scheme

is proposed. The channel impulse response (CIR) of
the MIMO channel, which is sparse in the tap delay
domain, is acquired through the feed-forward calculation
in the well-trained LAMP neural network with a series
of network learnt parameters.

• To further improve the channel estimation accuracy,
especially with low SNR, an enhanced neural networks
based scheme called spatially correlated DLCE (SC-
DLCE) is proposed. Making use of the spatial correlation
of the sparse support structures of the channel CIR
between different antennas, the desired sparse support
of the MIMO channels is more efficiently learnt and
predicted, both in the training and estimation phases.

Notation. Matrices and column vectors are denoted by
boldface letters; frequency-domain and time-domain vectors
are denoted by boldface vectors with tilde ṽ and without
tilde v, respectively; (·)†, (·)T and (·)H denote the pseudo-
inversion, transpose and conjugate transpose operations, re-
spectively; Πc denotes the complementary set of the set Π;
AΠ represents the sub-matrix comprised of the columns of
the matrix A indexed by the set Π; max{v,S} is an operator
that returns the set composed of the indices of the largest S
entries of the vector v.

II. SYSTEM MODEL

Considering the massive MIMO enabled vehicular commu-
nications scenario as illustrated in Fig. 1, a Nt ×Nr MIMO
transmission system with Nt transmit and Nr receive antennas
is utilized. The L-length CIR associated with the t-th transmit
antenna and a certain receive antenna during the i-th symbol
can be modeled as

h(t)
i =

[
h
(t)

i,1,h
(t)

i,2, · · · ,h
(t)

i,L

]T
(1)

Without loss of generality, the method of channel estimation
for each receive antenna is identical, so the receive antenna
index is omitted in the CIR given by (1) and also in the
following content, expect for explicitly stated otherwise. As
illustrated in Fig. 1, the i-th time-frequency training OFDM

signal structure of the t-th transmit antenna [10], with time
domain training sequences in the preamble and frequency
domain pilots, is composed of an M-length preamble c =
[c1,c2, ...,cM]T and an N-length OFDM symbol xi given by

xi =
[
x(t)i,1 ,x

(t)
i,2 , ...,x

(t)
i,N

]T
= FH x̃(t)i (2)

where F is the N × N discrete Fourier transform (DFT)
matrix and N is the number of OFDM sub-carriers. All
transmit antennas share the same time-domain preamble. The
frequency-domain OFDM symbol x̃(t)i ∈ CN contains a small
number of Np pilots on the sub-carrier location set given by

D(t) = {d(t)
n }

Np
n=1 (3)

where d(t)
n is an index integer from 0 to N − 1 denoting a

pilot location. The pilots of different transmit antennas are
distributed in the sub-carriers in an orthogonal pattern as
illustrated in Fig. 1.

After cyclicity reconstruction implemented by extending
the overlap-and-adding operation (OLA) [18] to retrieve the
time-domain cyclic convolution between the transmitted sig-
nal and the channel CIR, the received frequency-domain
OFDM symbol ỹi ∈ CN at a certain receive antenna can be
represented as

ỹi =
Nt

∑
t=1

diag(x̃(t)i )FLh(t)
i +wi (4)

where diag(x̃(t)i ) is the diagonal matrix with the diagonal
given by the vector x̃(t)i , and FL is the N × L partial DFT
matrix composed of the first L columns of the N×N DFT
matrix F. Since the pilots patterns of different transmit
antennas are orthogonal to each other, the received pilots
located at D(t) from the t-th transmit antenna can be extracted
in the frequency domain, and represented as

u(t)
i = Fph(t)

i +w(t)
i , 1≤ t ≤ Nt (5)

where u(t)
i = [ỹi,d1/x̃(t)i,d1

, ỹi,d2/x̃(t)i,d2
, · · · , ỹi,dNp

/x̃(t)i,dNp
]T ∈ CNp

denotes the pilots normalized by the transmitted original pilot
power to represent channel measurements at the receiver, and
Fp is the Np×L partial DFT matrix with its entry in row-n and
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Fig. 2. The training phase and prediction (estimation) phase for massive
MIMO channel estimation exploiting the LAMP networks (two layers within
the LAMP networks depicted).

column-k being exp (− j2πd(t)
n (k−1)/N)/

√
N. Stacking all

the channel CIRs of all the transmit antennas {h(t)
i }

Nt
t=1 yields

the MIMO channel matrix given by Hi = [h(1)
i ,h(2)

i , · · · ,h(Nt )
i ].

The wireless channel is concentrated on only a few domi-
nant taps in the delay domain, which makes the channel CIR
as a sparse vector in essence [19]. Usually, the antennas of
massive MIMO systems are much closer to each other com-
pared with the propagation distance between the transmitter
and the receiver, especially in the mmWave bands, so the CIRs
of all transmit-receive antenna pairs share similar multipath
propagation paths and characteristics, and thus share identical
sparse common support in the delay domain [20]. This is
called the spatial correlation of the MIMO channel, and it
will facilitate the proposed algorithm as will be presented in
the next section.

III. PROPOSED DEEP LEARNING BASED MASSIVE MIMO
CHANNEL ESTIMATION SCHEME

In this section, two effective deep learning based MIMO
channel estimation schemes are proposed for vehicular com-
munication, utilizing the trained deep neural networks to
estimate the support of the MIMO channel.

A. Deep Learning Based Channel Estimation Scheme

Considering equation (5), a sparse inverse problem is
formulated, where the channel CIR ĥi should be recovered
from the received noisy measurements ui at the corresponding
pilots. Different from the state-of-the-art CS-based and itera-
tive methods for sparse recovery, a novel deep learning based
channel estimation scheme of DLCE is proposed in this work
to estimate the MIMO channel more accurately with much
shorter delay. In the proposed DLCE scheme, the recently
emerging LAMP networks [16] are well incorporated to find
the support of the MIMO channel.

As illustrated in Fig. 2, the LAMP neural networks consist
of NL neural layers, which is used to mimic the iterative
process of the sparse recovery algorithm AMP, where the
linear transforms and the shrinkage functions are jointly learnt
through training. The LAMP networks unfold the multiple

iterations of the AMP algorithm into multiple layers of the
neural networks, and decouple the linear transform denoted
by the observation matrix AT (let A ∆

= Fp) to the dependent
learnable parameters AT

l at the l-th iteration, l = 1,2, · · ·NL
in Fig. 2. Moreover, different layers of the networks adopt
the same generic shrinkage function η (·), which is used to
estimate the channel CIR ĥl . The shrinkage function η (·)
is fed by a variable (the intermediate quantities) given by
rl = ĥl +AT

l zl and the learnable parameters Θl =
{

AT
k ,θk

}l
k=0

to make the optimization tractable.
For the l-th layer of the LAMP networks, the channel CIR

ĥl of a certain transmit-receive antenna pair in the massive
MIMO system can be estimated by

ĥl+1 = η
(
ĥl +AT

l zl ;σl ,θl
)

(6)

zl+1 = ui−Aĥl+1 +bl+1zl (7)

where ĥl and ĥl+1 are the channel information at the input
and output of the l-th layer, zl and zl+1 denote the residual
vector at the input and output of the l-th layer, σl =

∥zl∥2√
Np

can

be regarded as an estimate of the standard deviation of zl ,
and θl is a tuning parameter of the shrinkage function.

Exploiting its iterative behavior and the capability of ap-
proaching sparse solutions, the LAMP networks are utilized
to estimate the support, i.e. the locations of nonzero entries,
of the MIMO channel CIRs. The pseudo-codes of the training
phase and the prediction (estimation) phase of the proposed
DLCE scheme are summarized in Algorithm 1 and Algo-
rithm 2, respectively. During the training phase as shown in
Fig. 2, the linear transform matrix AT used in the networks is
decoupled into matrices AT

l in multiple layers that are implic-
itly learnt, rather than learning some network weights directly
as is done in the conventional deep learning framework. Note
that the learnable parameters Θl =

{
AT

k ,θk
}l

k=0 of the LAMP
networks contain all layers up to and including l-layer, which
are updated through back-propagation.

The training data of the LAMP networks are the noisy
measurements u(t)

i of each antenna (t = 1,2, · · ·Nt ) and the
corresponding ground-truth channel information h(t)

true. For
each transmit antenna t, we have a training data set {u(t),d

i ∈
CNp}D

d=1 and {h(t),d
true ∈ CL}D

d=1 to train the neural networks
for the channel estimation of the corresponding MIMO sub-
channel. The loss function is actually the normalized mean
square error (NMSE) of the estimation, which is given by

Ll =
1
D

D

∑
d=1

∥∥∥h(t),d
true − fl(u

(t),d
i ,Θl)

∥∥∥2

2∥∥∥h(t),d
true

∥∥∥2

2

(8)

where fl(u
(t),d
i ,Θl) denotes the channel CIR ĥl estimated

and output by the LAMP networks composed of l layers
with parameters Θl and input u(t),d

i . The parameters Θl are
learnt by minimizing the loss function over the training data
set {u(t),d

i }D
d=1 in the training phase. The training phase is

continued when the loss function Ll decreases with the

Authorized licensed use limited to: Xiamen University. Downloaded on January 13,2021 at 08:09:18 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Deep Learning Based Channel Estimation for
MIMO Systems (DLCE-Training Phase)
Input:

1) Mini-batch of size D noisy measurements {u(t),d
i }D

d=1
for training of all antennas (t = 1,2, · · ·Nt ), the ground-
truth channel information {h(t),d

true }D
d=1

2) Observation matrix A ∆
= Fp

Initialization:
1: ĥ0← 0,z−1← 0,AT

0 ← AT ,b0← 0
2: l← 0

Iterations:
3: repeat
4: (Training for each neural network layer)
5: Compute the input to shrinkage function rl = ĥl +AT

l zl
6: Generate the coarse channel estimated

value ĥl+1 and zl+1 by (6) and (7) with

bl+1 =
1

Np

N
∑
j=1

∂ [η(rl ;σl ,θl)] j
∂rl j

∣∣∣rl=ĥl+AT
l zl

7: Calculate loss function Ll given by (8) and up-
date Θl =

{
AT

k ,θk
}l

k=0 through back-propagation using
mini-batch training data

8: if Ll < Ll−1, l← l +1
9: until loss function does NOT decrease, i.e. Ll ≥Ll−1

10: Set final number of trained network layers as NL← l−1
Output:

Learned parameters ΘNL=
{

AT
k ,θk

}NL
k=0

Algorithm 2 Deep Learning Based Channel Estimation for
MIMO Systems (DLCE-Prediction/Estimation Phase)
Input:

1) The noisy measurements u(t)
i in (5)

2) Learned parameters ΘNL=
{

AT
k ,θk

}NL
k=0

Initialization:
1: Ĥi← 0L×Nt

2: for t = 1 : Nt do (prediction for each transmit antenna)
3: Use trained networks with learned parameters ΘNL

to generate the estimated channel CIR ĥ(t)
i in (6)

4: Select the S largest entries of ĥ(t)
i to formulate

dominant support Π(t)
S ←max{ĥ(t)

i ,S}
5: Estimated support Π(t)←Π(t)

S
6: Solve least squares problem:

ĥ(t)
i

∣∣
Π(t) ← A†

Π(t)u
(t)
i = (AH

Π(t)AΠ(t))−1AH
Π(t)u

(t)
i

7: ĥ(t)
i

∣∣
Π(t)c ← 0(L−K)×1

8: end for
Output:

Estimated MIMO channel matrix
Ĥi←

[
ĥ(1)

i , ĥ(2)
i , · · · ĥ(Nt )

i

]

increase of the number of layers l, which means that the
more network capacity will better approach the ground-truth
channel and the generalization capability is improved. The
training phase terminates when the loss function does NOT
decrease anymore with the number of layers, i.e. Ll ≥Ll−1,
since at this moment overfitting might have occurred and we
have successfully found the best network structure (number
of layers) with the optimal capacity, i.e. NL ← l − 1. This
criterion therein is utilized to determine the hyperparameter
l and the network depth, which might have played a similar
role as the validation set, which is also utilized for preventing
overfitting.

With the trained LAMP network, the MIMO channel can be
estimated accurately in the subsequent prediction phase. First,
the channel CIRs for each antenna are estimated respectively
using the trained LAMP networks. Then, the S largest entries
in the estimated CIR formulate the dominant support Π(t)

S ,
where S can be chosen and adjusted properly according to
the empirically set threshold [18]. The desired estimated
support is then obtained, i.e. Π(t)←Π(t)

S . Then the originally
intractable under-determined problem given by (5) can be
turned into an least squares (LS) problem to obtain the
amplitude of the nonzero entries at the support, and thus the
CIR h(t)

i for the t-th transmit antenna is achieved. Finally, the
MIMO channel matrix containing Nt CIRs can be represented
as

Ĥi =
[
ĥ(1)

i , ĥ(2)
i , · · · , ĥ(Nt )

i

]
(9)

Due to the utilization of the LAMP networks, the proposed
DLCE scheme is able to predict the massive MIMO channels
more stably and more accurately than the conventional CS-
based methods. Moreover, since the prediction phase only
requires an end-to-end feed-forward calculation in the neu-
ral networks rather than a large number of iterations, the
proposed DLCE scheme costs much shorter delay than the
CS-based and iterative schemes.

B. Spatially Correlated Deep Learning Based Massive MIMO
Channel Estimation Scheme

The DLCE scheme estimates the CIR for each antenna
separately and does not consider the inter-antenna correlation,
so the performance is limited for MIMO systems with spatial
correlation. To further improve the estimation accuracy of
massive MIMO channels, the SC-DLCE scheme is devised,
which jointly estimates the CIRs of different antennas by
utilizing the spatial correlation of the MIMO channel.

Stacking by column all the channel measurements u(t)
i , t =

1,2, · · ·Nt , the received MIMO channel measurements matrix
can be represented as

Ui =
[
u(1)

i ,u(2)
i , · · · ,u(Nt )

i

]
(10)

Specifically, the CIRs for each antenna is predicted first
by the LAMP networks in the SC-DLCE scheme, which is
similar to the training procedure of DLCE. Since the channels
of different antennas share the same support due to the spatial
correlation as described in Section II, the SC-DLCE algorithm
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will be approaching the ground-truth channel information in
the training phase more rapidly. In the prediction phase, by
obtaining the intersection of the CIRs predicted for all the
Nt antennas, the spatially correlated common support for the
SC-DLCE scheme can be generated as

Π̄S =
Nt∩

t=1
Π(t) (11)

Then, by obtaining the MIMO channel desired support Π̄←
Π̄S, the corresponding channel amplitude can be directly
estimated by solving the formulated multiple measurement
LS problem as

(Ĥi)
T |Π̄ ←

(
A†

Π̄Ui

)T
=
(
(AH

Π̄AΠ̄)
−1AH

Π̄Ui

)T
(12)

Compared with the DLCE scheme, the desired support
of the MIMO channel in the SC-DLCE scheme is more
accurately obtained by jointly considering the contributions of
all the MIMO channels at different spatially located antennas.
Hence, the enhanced SC-DLCE scheme has an advantage in
the accuracy of MIMO channel estimation over the DLCE
scheme, especially in the low SNR region. Moreover, the
required additional operation given by (11) only involves a
low complexity calculation, which shows the efficiency of
the proposed enhanced scheme.

IV. SIMULATION RESULTS

In this section, the performance of the proposed DL-based
MIMO channel estimation schemes is evaluated through sim-
ulations, and also compared with the state-of-the-art schemes
for the massive MIMO enabled vehicular communication
scenarios. The simulation parameters are summarized as
follows. The system bandwidth is B = 8 MHz, located at
the central frequency of fc = 780 MHz. The number of
OFDM sub-carriers and the preamble length are N = 4096
and M = 256, respectively. The maximum delay spread length
of the vehicular communications multipath channel, which
is to be estimated, is L = 256 [21]. The number of pilots
for channel measurements in the frequency domain is set
as Np = 25. The antenna scale of the MIMO system is
Nt = Nr = 32.

The training data sets {u(t),d
i ∈ CNp}D

d=1 and {h(t),d
true ∈

CL}D
d=1, with D = 2000, are randomly generated, where

each training sample d in the training data set includes a
ground-truth CIR vector h(t)

true and the corresponding pilot
measurement vector u(t)

true obtained based on (5). The channel
support of the CIR vector h(t)

i of each training sample can be
uniformly distributed in the L delay taps and the amplitude
follows a Rayleigh fading distribution [19]. The testing data
sets for evaluation are generated in a similar way, i.e. the
CIR vectors and the pilot measurement vectors are randomly
generated. The observation matrix is a partial DFT matrix
A ∆
= Fp ∈ Np×L. The learning rate of the training phase is set

to α = 10−3. The parameters are learnt by minimizing the
loss function given by (8) over the training data sets, and the
gradient descent method and the Adam optimizer are utilized
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to train the LAMP networks. Note that the number of layers
of the LAMP networks should be decided properly based on
the validation set performance in order to avoid overfitting in
the phase of training.

The NMSE performance comparison of different schemes
under the vehicular multipath fading channel in 32× 32
MIMO systems, is reported in Fig. 3 to show the accuracy
of different channel estimation schemes. The state-of-the-art
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structured CS-based MIMO channel estimation method [10]
utilizing the structured CS algorithm of SOMP [22], where the
same number of pilots is adopted, is evaluated for comparison,
which is a representative benchmark scheme for CS-based
methods since structured CS is an enhanced CS framework.

It can be noted from Fig. 3 that, the proposed DLCE and
SC-DLCE schemes outperform the state-of-the-art CS-based
method by approximately 0.6 dB and 0.8 dB, respectively, in
the 32× 32 MIMO system. With the increase of SNR, the
estimated channel obtained through the LAMP networks in
the two schemes become more and more accurate, and finally
approaches a lower bound (as indicated by a black dotted line)
obtained by assuming perfect support available at the receiver,
i.e. the NMSE is caused by only background noise in the
pilots. It is also demonstrated that the SC-DLCE scheme has
better performance of MIMO channel estimation compared
with the DLCE scheme, especially in the low SNR region,
since the spatial correlation is fully exploited to estimate the
MIMO channel more stably and more accurately.

In addition, the NMSE performance comparison for the
channel estimation schemes with respect to different number
of pilots, i.e. size of channel measurement data, at the SNR of
15 dB in a wireless vehicular 16×16 MIMO communication
system is depicted in Fig. 4. Compared with the state-of-
the-art structured CS-based method, the proposed DL-based
schemes are able to achieve a much higher channel estimation
accuracy with only a small number of available pilots, which
greatly improves the spectrum efficiency of the massive
MIMO system, especially reducing the requirement of or-
thogonally patterned pilots greatly for large antenna arrays.
Moreover, since the implementation of the proposed schemes
only needs to conduct a single-trip forward propagation in
the trained neural networks in realistic channel estimation
scenarios rather than a time-consuming iterative process of
CS-based methods, the two proposed schemes have much
shorter delay than the CS-based and iterative schemes.

V. CONCLUSION

In this paper, a novel DL-based massive MIMO channel
estimation scheme has been proposed by exploiting the neu-
ral networks to estimate the sophisticated multipath fading
MIMO channels with much higher accuracy and much smaller
delay than state-of-the-art conventional, iterative and CS-
based methods. To further improve the estimation accuracy for
massive antenna arrays, especially in the low SNR environ-
ment, an enhanced scheme of SC-DLCE has been proposed to
make full use of the spatial correlation between the massive
antennas for a more robust recovery of the channel support.
Simulation results have verified that, the two proposed DL-
based schemes can significantly improve the accuracy of
MIMO channel estimation compared with the state-of-the-
art benchmark schemes in realistic vehicular communications
scenarios. Furthermore, the proposed DL-based sparse recov-
ery framework is promising in other communication systems
with high accuracy and stringent low-latency requirements.
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