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Abstract—The densification deployment of small cells emerg-
ing into 5G cellular networks can achieve high capacity, but is
faced with the challenge of how to manage energy consumption
and inter-cell interference well in time-varying channels. In this
paper, we propose a reinforcement learning based downlink
power control algorithm to manage interference for the ultra-
dense small cell networks. More specifically, base stations of
the small cells use Q-learning to select the downlink transmit
powers. A transfer learning method called hotbooting is applied
to further accelerate the learning speed and save the energy
consumption based on the estimated user density without being
aware of the network and channel model of the other small
cells. Simulation results demonstrate this scheme significantly
improves the network throughput and saves the energy con-
sumption compared with the benchmark, a data-driven based
transmission power adaptation scheme.

Index Terms—Ultra-dense small cells, interference, energy
consumption, power control, reinforcement learning.

I. INTRODUCTION

The fifth generation (5G) mobile communication systems

can apply ultra-dense small cells with low-cost and low-power

cellular base stations (BSs) to improve the user capacity if

the interference in the ultra-dense cell deployments is well

managed. Therefore, power control is critical for interference

management and energy saving in ultra-dense small cell

systems [1]. A power control algorithm as proposed in [2]

uses the power update function and noncooperative game

theory to choose the transmit power for each user in the

target cell to mitigate the inter-cell interference. A mean-

filed approach based power control as presented in [3] uses

Lax-Friedrichs scheme and Lagrange relaxation to choose the

downlink transmit power for saving the energy consumption

and mitigating the interference in a highly dense network.

A cooperative optimal power control scheme in [4] applies

the cost index and quadratic programming framework for

interference management in cellular networks.
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Nevertheless, the interference control in the ultra-dense

small cell systems has to address the huge signaling and

computation overhead to collect the communication and in-

terference information from the small cells, the time-varying

radio channels and the dynamic user density in each small

cell.

The power control process in the ultra-dense small cell

system can be formulated as a Markov decision process

(MDP), in which future network state is independent of the

previous state for the given current power control policy and

the inter-cell interference of the small cell system. Thus, a BS

can use reinforcement learning (RL) such as Q-learning for

interference management without knowing the network and

channel model of the other small cells.

In this paper, we propose a hotbooting Q based downlink

power control algorithm for outdoor ultra-dense small cell

systems. Based on the hotbooting technique, the Q-value

is initialized with the relay power control experiences in

similar 5G communication scenarios [5] to save the random

explorations at the beginning of the process and accelerate

the learning speed. Each small cell BS chooses the down-

link transmit power based on the state of the time slot,

which consists of the local user density and the signal-to-

interference-plus-noise ratio (SINR) of the signals fed back by

the users. This algorithm maintains a Q-function or expected

long-term discount utility for each state and action pair via

iterative Bellman equations. Each BS evaluates the utility

that depends on the SINR of the signals from the target

BS to served users, the transmit cost of the target cell and

the interference from the target BS to the users in the other

cells, which is the basis to update the Q-values in each time

slot. Simulation results show that this algorithm reduces the

inter-cell interference, increases the system throughput and

saves the energy consumption compared with the data-driven

transmit power adaptation (TPA) scheme as presented in [6].

The reminders of this paper are organized as follows. We

review the related work in Section II and present the system

model in Section III. We present the hotbooting Q based

downlink power control algorithm in Section IV. Simulation

results are given in Section V, followed by the conclusion in

Section VI.
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Fig. 1: Illustration of the interference mitigation in a ultra-dense small cell system, in which the BS of the target small cell

with N
(k)
0 mobile users chooses its P

(k)
0,n to mitigate the interference to the neighboring G small cells at time slot k, and the

user n returns the estimated SINR γ
(k)
n to the BS.

II. RELATED WORK

Power control is a key technique to reduce the inter-cell

interference in ultra-dense small cell systems. In particular,

a mixes-integer programming based power control scheme as

investigated in [7] combines the user association to reduce the

interference in millimeter-wave systems. A dynamic pricing

based power control scheme as proposed in [8] can reach the

Nash equilibrium of the non-cooperative game. A data-driven

BS power control scheme as proposed in [6] uses statistics

analysis approach to save the energy cost for ultra-dense small

cell system.

Reinforcement learning approaches have been applied in

the power control problem of wireless networks. For instance,

the downlink power control and rate adaptation scheme as

presented in [9] uses Lagrange duality theory and artificial

neural network to improve the resource allocation utility.

A centralized Q-learning with compact state representation

algorithm is investigated in [10] where the network controller

solves the optimal traffic offloading strategy based on the

traffic observations to minimize the energy cost and main-

tain the quality-of-service. A fuzzy Q-learning based power

control scheme as proposed in [11] formulates the inter-cell

interference coordination issue as a cooperative MultiAgent

control problem to improve the performance of the cellular

systems. A RL based decentralized power control strategy is

proposed in [12], in which small cells jointly estimate time-

average performance and optimize probability distributions

for interference management in closed-access small cell net-

works. A dynamic Q-learning based interference coordination

algorithm as proposed in [13] smartly offloads traffic to open

access picocells and then improves the system throughput.

III. SYSTEM MODEL

The BS of the target small cell (i.e., BS0) is assumed to

N
(k)
0 mobile users at time slot k, and its signals can reach G

neighboring cells in the small cell system as shown in Fig.

1. Mobile user n measures the bit error rate (BER) of the

message, then estimates the SINR of the signals, denoted by

γ
(k−1)
n , and returns such information to the serving BS.

Orthogonal Frequency Division Multiple Access technol-

ogy has been selected for ultra-dense small cell networks.

Equipped with multiple isotropic antennae, the BS0 assigns

transmission channel bandwidth B to users in the cell. Similar

to [14], the cellular system has reciprocal radio channel

model, and thus the BS0 can estimate the downlink channel

state to the user n, denoted by h
(k)
0,n. Similarly, the channel

gain between the other small cell i and the user n at time slot

k is denoted by h
(k)
i,n . For simplicity, we assume a constant

noise power denoted by σ at each user.

Upon receiving the feedback control information from the

N
(k)
0 users at time slot k, the BS0 formulates the SINR vector

denoted by γ(k−1) = [γ
(k−1)
1 , · · · , γ(k−1)

N0
]. The user density

of the G neighboring cells changes over time, i.e., the number

of the active users in cell i at time slot k denoted by ρ
(k)
i .

According to [15], the user density ρ
(k)
i is assumed to follow

the independently and identically distributed two-dimensional
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TABLE I: Summary of symbols and notations

N
(k)
0

Num. users in the target small cell

at time slot k

ρ
(k)
0 User density of the target small cell

φ0 Area of the target small cell

γ(k) SINR from the mobile users

PM Maximum BS transmit power

L Num. the feasible transmit power levels

P(k) Transmit power of the BS

Ω Feasible BS transmit power set

α Learning rate in Algorithm 1

β Discount factor in Algorithm 1

u(k) Utility of the BS

Cs Transmit cost per unit power of the BS

B Downlink bandwidth for a user

Poisson point process. The number of users N
(k)
0 of the target

cell with area φ0 is given by

Pr{N (k)
0 = λ|φ0} =

(ρ
(k)
0 φ0)

λ

λ!
e−ρ

(k)
0 φ0 . (1)

To minimize the interference, the target BS uses the average

interference factor denoted by τ
(k)
i , to judge its interference

to non-served users in the other cell i. According to [16] and

[17], the average interference factor τ
(k)
i at time slot k is

given by:

τ
(k)
i =

g
(k)
i

√
η

l
(k)
i

√|G+ 1|
, (2)

where η is the small cell density and η/|G + 1| is the

normalization factor. The g
(k)
i denotes the large-scale fading

gain from the BS0 to other small cell i, and the l
(k)
i is the

path loss from the BS0 to other small cell i at time slot k.

To this end, the BS0 has to choose its transmit power

denoted by P
(k)
0,n from the action set Ω = [lPM/L]0≤l≤L,

where PM is the maximum downlink transmit power of the

BS and L is the number of the feasible transmit power level.

The interference power to the user n from the BS in the

surrounding cell i at time slot k is denoted by P
(k)
i,n .

For ease of reference, we summarize our commonly used

notation in Table 1.

IV. HOTBOOTING Q BASED POWER CONTROL

ALGORITHM

In this section, we propose a hotbooting Q based power

control scheme to manage interference and reduce energy

cost, in which each BS exploits the SINR sent by users and

estimates user density to achieve an optimal power control

solution via trial without knowledge of the network and

channel model.

In the dynamic power control process, the BS in the target

cell estimates the user density ρ
(k)
0 of the target small cell by

statistic law according to Eq. (1) at time slot k. Meanwhile

the BS requires the served users to provide the SINR. Once

receiving the BS’s request, all served users send the SINR

γ(k−1) to the BS at that time. Thus, the state observed by

the BS at time slot k, denoted by s(k), consists of the current

user density and the previous SINR of the users, i.e., s(k) =[
ρ
(k)
0 ,γ(k−1)

]
.

As power control decision of the BS has impacts on

the future state of the target small cell, the power control

process of the BS in the dynamic game can be formulated

as a MDP. Therefore, the BS can apply RL techniques such

as hotbooting Q to derive the optimal strategy via trials

without knowledge of the network and channel model. The

hotbooting technique is used to initialize the Q-value with

the power control experiences in similar environments to save

the random explorations at the beginning of the interference

control process and then accelerate the learning speed [18].

The output of the hotbooting Q technique, i.e., Q∗ is the initial

Q-value.

Based on the system state, the BS in the target cell chooses

the transmit power for N0 users at time slot k, denoted by

P(k) =
[
P

(k)
0,1 , P

(k)
0,2 , . . . , P

(k)
0,N0

]
and sends a message to each

user n with P
(k)
0,n . The BS then evaluates its utility obtained

at the time slot k, denoted by u(k) based on the user density

at time slot k, the current SINR of users, the transmit power

chose by the BS and given by

u(k) =

N
(k)
0∑

n=1

γ(k)
n − Cs

N
(k)
0∑

n=1

P
(k)
0,n

(
G∑
i=1

τ
(k)
i N

(k)
i + 1

)
, (3)

where the first term represents the SINR sent by the served

users at time slot k, N
(k)
i is the number of users in the other

cell i. The second term stands for the energy consumption

of the target cell and the interference from the target cell to

non-served users in the other cells. Cs is the transmit cost per

unit power of the BS.

The power control process with hotbooting Q is based

on the learning rate, denoted by α ∈ (0, 1], which shows

the weight of the current experience. The discount factor

β ∈ [0, 1] indicates the uncertainty of the regarding the

future utility. The Q-function of the transmit power vector

P(k) at state s(k) is denoted by Q
(

s(k),P(k)
)

and is updated

according to iterative Bellman equation as follows:

Q
(

s(k),P(k)
)
← (1− α)Q

(
s(k),P(k)

)
+ α

(
u(k) + βV

(
s(k+1)

))
(4)

V (s(k)) ← max
P⊆Ω

Q
(

s(k),P
)
, (5)

where the value function V (s(k)) is the maximal Q-function

over the feasible power control scheme at state s(k).
The BS in the target cell applies the ε-greedy policy to de-

termine the optimal transmit power that maximizes the utility

with a high probability 1 − ε, and chooses the suboptimal

transmit power with a small probability ε to avoid staying in
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the local maximum, i.e.,

Pr
(

P(k) = Θ
)
=

{
1− ε, Θ = argmax

P∈Ω
Q(s(k),P)

ε
|L| , o.w.

(6)

The detailed power control processes with hotbooting Q

algorithm is summarized in algorithm 1.

Algorithm 1 Hotbooting Q based BS interference control

Algorithm for ultra-dense small cell systems

1: Initialize α, β, Ω, Q = Q∗, V = 0, and γ(k−1) = 0
2: for k = 1, 2, ... do
3: Estimate the current user density ρ(k) of the target

small cell via Eq. (1)

4: Receive the SINR γ(k−1) from the served users

5: Obtain the current system state s(k) =
[
ρ(k),γ(k−1)

]
of the target small cell

6: Select the transmit power P(k) ∈ Ω via Eq. (6) for the

served users

7: Evaluate the total transmit cost of target small cell and

the interference to non-served users

8: Receive the current SINR γ(k) from the served users

9: Evaluate utility u(k) via Eq. (3)

10: Update Q(s(k),P(k)) via Eq. (4)

11: Update V
(
s(k)
)

via Eq. (5)

12: end for

V. SIMULATION RESULTS

Simulations are performed to evaluate the interference

control strategy in an ultra-dense small cell network. In the

simulations, the target cell is interfered by the mobile users

in the neighboring 6 small cells. If not specified otherwise,

we set the L = 4, α = 0.5, β = 0.85, ε = 0.1, Cs = 12,

and B = 10 MHz to achieve good power control performance

according to the experiments not presented in this paper. Each

active user in the target small cell estimates the SINR with

quadrature phase-shift keying based on the measured BER.

Thus, the network throughput of the target small cell at time

slot k is given by

R(k) =

N
(k)
0∑

n=1

B

N
(k)
0

log2

(
1 +

P
(k)
0,nh

(k)
0,n

σ +
∑G

i=1 P
(k)
i,n h

(k)
i,n

)
. (7)

As a benchmark, the data-driven TPA scheme proposed in

[6] is considered in which each BS adaptively adjusts the

downlink transmit power of users based on the edge reference

signal received power in each small cell.

As shown in Fig. 2, before 50 time slots, the performance

of the TPA scheme is better than that of our proposed scheme.

This is because the TPA scheme dynamically adjusts the

transmit power to maintain a stable and optimal state of the

system based on the received signal strength of cell edge.

While the BS based on our proposed scheme is still in the

exploratory stage.
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(a) Throughput of the target small cell.
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(b) Energy consumption of the target small cell.
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(c) Interference of the target small cell to users in the other cells.

After 50 time slots, the proposed power control algorithm

based on the hotbooting Q outperforms the TPA based strat-

egy with lower energy cost, less interference, higher system

Authorized licensed use limited to: Xiamen University. Downloaded on January 13,2021 at 10:34:34 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400 500 600 700 800 900 1000
80

90

100

110

120

130

140

150

160

170

Time slot

U
til

ity Hotbooting Q
TPA [6]

(d) Utility of the BS.

Fig. 2: Performance of the BS power control algorithms in the

ultra-dense small cell system, with G = 6, L = 4, α = 0.5,

β = 0.85, Cs = 12 and B = 10 MHz.

throughput and utility. For instance, as shown in Fig. 2 (a),

the throughput of the target small cell increases over time

with our proposed scheme, and converges to 335 Mbps after

200 time slots, which is 15.5% higher than that of the TPA

strategy, because the BS adjusts the transmit power over time

via trials-and-errors.

In Fig. 2 (b), due to the optimal downlink transmit power

control strategy based on the hotbooting Q, the total energy

cost of the target cell decreases by 17.5% after convergence,

and its optimal energy cost is 9.32% lower than that of the

TPA strategy. Similar to the case of interference as shown

in Fig. 2 (c), the hotbooting Q based strategy decreases

the interference to users in the other cells by 18.2% after

convergence, and the optimal interference of the hotbooting

Q based strategy is 12.8% lower than that of the TPA strategy.

Consequently, as shown in Fig. 2 (d), the utility of the BS

increases quickly after start of the learning process, and

converges to 160 which exceeds the benchmark strategy by

60% at time slot 300.

We evaluate the impact of the user density in Fig. 3 on

the communication performance averaged over 200 learning

processes and 1000 time slots. It is shown that the average

throughput of the target cell improves with the number of

active users per cell, but at a logarithmic speed in both two

schemes. For instance, as shown in Fig. 3 (a), the average

throughput based our proposed algorithm increases from 306

Mbps to 334 Mbps, if the user density changes from 4 to

16. The growth trend of the average utility is consistent with

the average throughput in both two schemes. For example, as

shown in Fig. 3 (d), the average utility based our proposed

algorithm increases by 31.4%, as the users density changes

from 4 to 16, compared with the TPA scheme.

In other words, more users may bring mild throughput and
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(a) Average throughput of the target small cell.
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(b) Average energy consumption of the target small cell.
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(c) Average interference of the target small cell.

utility improvement for ultra-dense small cells due to more

severe inter-cell interference and energy consumption. For

example, as shown in Fig. 3 (b), the energy cost of the target
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(d) Average utility of the BS.

Fig. 3: Average performance of the target small cell for

different schemes versus the user density over 1000 time slots.

cell increases from 205 to 223 based on the TPA scheme,

and as shown in Fig. 3 (c), the interference of the target cell

increases from 150 to 558 based on the TPA scheme, if the

users density changes from 4 to 16. Therefore, there is a

tradeoff among the energy cost, interference and throughput,

which can be adjusted by properly setting the user density

limit for the small cells.

It also can be seen that our proposed power control scheme

outperforms the TPA scheme in [6]. For example, as shown in

Fig. 3 (a), the average throughput with our proposed approach

is up to 330.9 Mbps, which is about 10.3% higher than that of

the TPA strategy if the user density is 14. As shown in Fig.

3 (b), the average energy cost of the target small cell with

our proposed approach is about 12.4% lower than that of the

TPA scheme if the user density is 16. As shown in Fig. 3 (c),

the average interference based on our scheme is 19.2% lower

than that of the benchmark strategy as the user density is 16.

Consequently, as shown in Fig. 3 (d), the utility of the target

BS with our proposed scheme exceeds the TPA strategy by

57.2% if the user density is 12.

VI. CONCLUSION

In this paper, we propose a reinforcement learning based

interference control algorithm for the downlink transmissions

in ultra-dense small cell systems. This algorithm reduces the

inter-cell interference and saves the energy consumption of

the BS without being aware of the network and channel

model. Simulation results show this BS power control scheme

significantly improves the throughput, reduces the energy

consumption and mitigates interference to the other small

cells compared with the data-driven TPA strategy in the 5G

cellular network. For example, the energy consumption of the

target small cell is 17.5% lower and the utility of the BS is

60% higher, compared with the benchmark scheme after 200

time slots.
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