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Abstract—The estimation of the underwater acoustic channel
(UAC) is a difficult problem in underwater acoustic orthogonal
frequency division multiplexing (UA-OFDM) systems due to
the detrimental characteristics of the UAC, including severe
multipath fading, Doppler spread, and large transmission delay,
etc. To overcome the problems and improve the performance
of UAC estimation, a deep-learning-based approach utilizing a
sparsity-aware deep neural network (DNN) emulating the sparse
recovery algorithm of approximate message passing (AMP) is
proposed for UAC estimation in this paper. The proposed method
called Sparsity-Aware-DNN-based UAC Estimation (SAD-UACE)
decomposes the conventional iterative sparse recovery algorithm
of AMP into several differently parameterized layers of a
DNN to learn the inherent sparse structure of the UAC, so
that the accuracy of estimation can be improved, especially
in severe conditions of underwater acoustic communications.
Simulation results show that the proposed SAD-UACE method
can significantly improve the accuracy and spectral efficiency of
UAC estimation, compared with other state-of-the-art methods,
especially in severe conditions of low SNR or insufficient pilots.

Index Terms—underwater acoustic channel, OFDM, sparse
channel estimation, deep learning, deep neural networks

I. INTRODUCTION

In recent decades, the application fields of underwater
acoustic communications have been increasingly widely,
mainly including the exploration of oceanographic science, the
monitoring of marine environment, the acquisition of marine
resources, and the application of marine military, etc [1].
This has led to a growing demand for underwater acoustic
communications [2]. However, due to the fluctuation of water
surface, the interference of ambient noise, and the movement
of transmitter or receiver, the UAC has many complicated
characteristics, such as time varying, multipath fading, delay
spread, and Doppler spread, etc. [3], which seriously affect the
performance of underwater acoustic communication systems,
such as inter-symbol interference (ISI) [4]. Consequently,
the multi-carrier modulation scheme of orthogonal frequency
division multiplexing (OFDM) has been widely used in
underwater acoustic communication systems due to the high
spectral efficiency and the robustness to multipath fading [5].

In underwater acoustic communications, channel estimation
is aimed to obtain the channel state information (CSI) of
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the UAC for equalization to improve the performance of
underwater acoustic communication systems. The complicated
characteristics of the UAC lead to a large number of
parameters to be estimated. Fortunately, the channel impulse
response (CIR) of the UAC is sparse, i.e. the channel energy
is mainly concentrated in only a few paths [6], [7]. Therefore,
exploiting the sparsity of the UAC is the key to improving the
performance of channel estimation.

Currently, the UAC estimation methods mainly include two
categories, i.e. the traditional methods and the compressed
sensing (CS) based methods. The traditional methods include
the least square (LS) [8] and the minimum mean square error
(MMSE) [9] methods, etc. However, the sparsity of the UAC is
not utilized effectively, so the performance is limited [8]. The
CS-based methods are mainly related to convex optimization
algorithms and greedy algorithms. Some of the methods based
on convex optimization algorithms use /; norm constraint to
estimate the channel, such as the approximate message passing
(AMP) [10] and the iterative shrinkage threshold (ISTA) [11]
algorithms, etc. The methods based on greedy algorithms
include orthogonal matching pursuit (OMP) and many related
improved greedy algorithms [12]-[15]. The sparse adaptive
matching pursuit algorithm (SAMP) proposed in [16] does not
require the prior information of the sparsity, thus improving the
estimation stability of different sparsity. Although the sparsity
is exploited by CS-based algorithms, the performance will be
degraded, especially in severe conditions like low SNR or
insufficient measurement data [17]-[20].

With the development of deep learning (DL) techniques,
they have been widely applied in many fields, such as sparse
recovery [21] and massive MIMO enabled communications
[22]-[24]. Meanwhile, the endeavour to utilize deep learning
and DNN for sparse learning of the UAC remains to
be well explored yet. Consequently, in order to solve
the problems of existing UAC estimation methods, a
Sparsity-Aware-DNN-based UAC Estimation (SAD-UACE)
method is proposed for the estimation of the UAC, which
exploits the inherent sparse feature of the UAC using deep
learning. The main contributions of this paper are summarized
in the following two points:

o A DL-based UAC estimation method is proposed in this
paper, which decomposes the iterative AMP algorithm
into several layers of a sparsity-aware DNN, for deep
learning of the sparse structure of the UAC. Since the
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Fig. 1. Block diagram of the typical UA-OFDM system.

parameters of each layer of the DNN emulating the AMP
iterations are learnable, the proposed SAD-UACE method
has a higher degree of freedom and can thus adapt to the
UAC with different sparsity in various severe conditions.

e The CIR of the UAC can be estimated with high
accuracy by only a one-way feed-forward calculation in
the well-trained sparsity-aware DNN to obtain the sparse
support followed by a simple LS method to get the
amplitude. The simulation results show that, compared
with other state-of-the-art methods, the accuracy and
spectral efficiency of UAC estimation have been greatly
improved.

The remainder of this paper is organized as follows: the
UA-OFDM system model is presented in Section II; Section
IIT introduces the SAD-UACE method proposed in this paper;
Section IV reports the simulation results and discussions.
Finally, this paper is concluded in section V.

II. SYSTEM MODEL

The block diagram of a typical UA-OFDM system is shown
in Fig. 1. We can use h (¢;7) to represent the CIR of the
underwater acoustic channel, where ¢ and 7 denote the time
and delay, respectively. The signal transmission relationship
can be expressed as [25], [26]

y(t) = x(t) * h(t;7) + n(t)
/h(t; T)x(t — 7)dr + n(t) ,

where x (t) and y (t) denote the transmitted passband signal
and the received passband signal, respectively. n (t) denotes
the additive noise in passband and * denotes the convolution
operation.

(D

As a block transmission scheme, the cyclic prefix OFDM
(CP-OFDM) is adopted in this paper [6]. Let T' denote the
duration of one OFDM symbol and let Tcp denote the length
of the cyclic prefix (CP), and then the total block duration T},
corresponding to an OFDM block is equal to Tcp + T

Assume that there are [N subcarriers in one OFDM block.
The kth subcarrier is located at the frequency given by

k N N
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where f. is the center frequency of the carrier.
Let s [k] denote the transmitted symbol on the kth subcarrier

and let S, denote the set of actively transmitted subcarriers.

The transmitted passband signal is then represented as

o(t) = Re{ > s[k:}eizﬂfkt} . tel-Te,T] .  (3)
keSa
where Re { - } denotes the real part operator.

After passing through a specific underwater acoustic
channel, the expression of the received passband signal within
the interval [0,7] is given by

Th
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where T}, denotes the duration of h (t) and H (fx) denotes the
channel frequency response.

In general, the CIR of the time varying UAC can be
represented as [25]-[27]

L

h(t;T) =Y Ap(t)d (1 — 7(1)) (5)

p=1
where L denotes the number of multipath. A, () and 7, are the
time varying amplitude and delay for the pth path, respectively.
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Fig. 2. Multipath propagation in a shallow water environment.



Fig. 2 shows a diagram of multipath propagation in a
shallow water environment. For UAC, the amplitude of the
dominant K paths are non-zero, and the amplitude of other
paths are zero or approximately zero compared with the
dominant paths, since that the CIR is sparse [3], [26]. The
sparsity is K, with K < L usually.

Within the duration Ty, of one OFDM symbol, we can adopt
the following assumptions commonly recognized in UAC [28]:

o The amplitude of each path is constant, i.e. A, (1) = A,.

o The delay variation of each path can be approximated by

the Doppler scale factor as

() =7 — (6)

where the constant 7, is the initial delay, and a, denotes
the Doppler scale factor.
Therefore, the UAC model can be modeled as

T) = ZAP5 (T — (1

Then the received passband signal can be represented as
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Adopting a two-step Doppler compensation operation for

r(t) just as what is done in [25], the received signal after
resampling operation can be expressed as
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where a denotes the resampling factor and € denotes the
estimated residual Doppler shift.

In this paper, we adopt the pilot-assisted channel estimation
method, which is performed in the frequency domain. Then
according to the vector form of Eq. (9) and the pilot-assisted
channel estimation method, the UAC estimation problem can

be formulated in the frequency domain as

Y=XH+N
=XF,h+N (10)

=Ah+N,
where the channel measurement data Y =
[Y1,Ys,Y3,- - 7YNP}T is obtained by the received pilots

at the receiver with N, being the number of pilots.
X = diag(Xl,Xg,Xg,--- 7XNp) is a diagonal matrix

with its diagonal elements being the transmitted pilots.
H = [H,,Hy, Hs, - ,HL}T denotes the channel frequency
response. h = [hy, ho, hg, - ,hL]T denotes the CIR of
the UAC. F, denotes the partial DFT matrix with size
N, x L, which is dependent on the position of pilots.
N = [Ny,Ny, N, -+ 7NNP}T denotes the additive noise
in the frequency domain. The matrix A is also called the
measurement matrix in the framework of sparse recovery,
which is given by A = XF,,.

III. PROPOSED SPARSITY-AWARE-DNN-BASED
UNDERWATER ACOUSTIC CHANNEL ESTIMATION METHOD

According to the theory of CS, let A denote the
measurement matrix and let Y denote the observation vector,
then the unknown h of the UAC can be reconstructed by the
CS sparse recovery algorithms. Therefore, the UAC estimation
problem in Eq. (10) can be reformulated as a sparse recovery
problem [6] and the objective function is written as

min ||h|lp, st ||[Y—Ah|s;<e

(1)

where ||-||, and |||, denote the [y norm and [ norm,
respectively. € is the allowable reconstruction error.
Although the common CS sparse recovery algorithms, such
as OMP and AMP, can achieve good results in UAC estimation
with little noise influence. However, when under the severe
conditions of low SNR or insufficient pilots, the accuracy of
estimation is limited [18]. In order to solve the deficiencies
of existing methods, using the theory of DL and DNN, a
method called SAD-UACE for UAC estimation is proposed,
which decomposes the AMP into a DNN to estimate the sparse
support of the UAC, thereby improving the accuracy and
stability of estimation significantly. The pseudo-code of the
proposed SAD-UACE method is summarized in Algorithm 1.

Algorithm 1: Sparsity-Aware-DNN-Based Underwater

Acoustic Channel Estimation (SAD-UACE).

1 Input: The observation vector Y, the measurement matrix
A, the number of layers 7. R

2 Initialization: M = N,, N =L, vo =0, by = 0, hy = 0,
By = A", hsap = 0.

3fort=1,2,3,---,T.do
4 Y Ahtl +b[V1_1
5 Ut2 M HVt”z

6 Iy = ht 1+ By

7 ht:’r](l‘t; /\t,O't2>
AR

9 A= ﬁ HVtHz

10 end

mQ=Sy§ (ﬂt, K)

-1
12 hsaplo = ALY = (ARAQ) ™ ABY
13 Output: estimation result hgap .
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Fig. 3. The training stage and estimation stage of SAD-UACE method.

In Algorithm 1, v, denotes the residual measurement error
vector of the ¢-th layer. byv,.| is called Onsager Correction [29],
which accelerates the convergence. oy is the estimated value
of standard deviation of v;. B; denotes the linear transform
matrix of the ¢-th layer, which is learnable. ﬂ[ denotes the
estimation result of the ¢-th layer. m(-) denotes the soft
threshold shrinkage function, which is the same for each layer
of the DNN. 7(-) is given by

[77 (rt; )\taatz)]i =n (|7't,i| i A, Utz)

(12)
= sgn (r;) max (|rei| —

A, 0) )

where r; denotes the i-th element of r,. A is learnable
threshold shrinkage parameter of 7(-) of the ¢-th layer.
(')T and (-)" denote the Moore-Penrose pseudoinverse and
conjugate transpose, respectively. €2 denotes the sparse support
of the UAC, which is a set that contains the indices of the K
largest entries in h;. Ag denotes the sub-matrix of matrix A,
which consists of the columns of matrix A indexed by set €2;
S{v, K} denotes the operation of selecting the indices of the
K largest entries in the vector v.

As shown in Fig. 3, utilizing the proposed SAD-UACE
method to estimate the CIR of the UAC includes two stages:
the training stage and the estimation stage, which are described
in Algorithm 2 and Algorithm 3, respectively.

Let {(Yd,hd)}]d)=l denote the training data with size D,
where Y and h are the noisy observation vector and the
corresponding truth CIR of the UAC, respectively. The training
data {(Yd,hd)}(li):1 are composed of (feature,label) pairs,
which are used to train the learnable parameters @ =
{{Bl}[T:(), {)\t}tzo} of the DNN. hgap denotes the output of
the DNN and the following mean square error (MSE) is used
as loss function:

13)
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Algorithm 2: SAD-UACE - Training stage. (Parameters
© learning.)

1 Input: The training data { (Y, hd)}‘?:l, the measurement
matrix A.
2 (Training for each layer of the DNN.)
sfort=1,2,3,--- do
4 | Initialize B, = AT, A, = A1
5 Use back propagation update and optimize B, A
jointly through the stochastic gradient descent to
minimize the loss function L(®) from Eq. (13).
6 If L1 (®) > Li(O), then set the number of the
DNN layers T' < t, break.
7 end
8 Output: learned parameters © = {{Bt}tho, {At}tho}’ the
number of layers T .

As depicted in Algorithm 2, in the training stage, the
learnable parameters © are trained in a layer-by-layer manner:
when we train the ¢-th layer, all the parameters of the previous
layers are kept fixed, add one layer at a time and repeat until
we have trained a T layers DNN. The loss function L1(®)
decreases with the increase of the number of layers 7' and
the learnable parameters ® can be updated and optimized.
Using back propagation (BP) and stochastic gradient descent
(SGD) to minimize the loss from Eq. (13), when the loss
stops decreasing as the increase of the number of layers,
ie. L,1(®) > L(®), since overfitting might occur at this
moment, so the optimal number of the DNN layers is T + ¢,
and the training stage ends.

As depicted in Algorithm 3, in the estimation stage, the
well-trained DNN is first used to estimate the CIR of the UAC.
Then, the indices of K largest entries in the estimated CIR are
selected to estimate the dominant sparse support 2. Finally, the



Algorithm 3: SAD-UACE - Estimation stage.

1 Input: The observation vector Y, the measurement matrix
A, the number of layers T, the learned parameters ©
obtained in training stage.

2 Initialization: vo = 0, by = 0, hyg = 0, hgap = 0.

3 Input Y, A to the 7" layers DNN with learned parameters
© to estimate the CIR hy = 1 (rr; Ar, 0%) .

4 Select the indices of the K largest entries in BT to

estimate the dominant sparse support 2 = S <ﬁT7 K )
5 Solve the least square problem:
At w _ (aAH -1 . H
hsaplo = ALY = (AQAQ) AQY.
6 Output: estimation result hgap .

UAC estimation problem given by Eq. (11) can be simplified
to an LS problem to get the amplitude of the non-zero entries
of hgap at the sparse support €2, thereby obtaining the accurate
estimation result hgap of the UAC.

Since the sparsity-aware DNN in the proposed SAD-UACE
method can learn the sparse structure of the UAC well, the
proposed SAD-UACE method can accurately estimate the
sparse support of the UAC, thereby significantly improving
the accuracy and stability of UAC estimation.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
SAD-UACE method through numerical simulations, and
compare it with the state-of-the-art methods in UAC estimation
under different SNR values and different number of pilots
to investigate the performance in different noise conditions
and spectrum resources. The main simulation parameters of
UA-OFDM system are given in Table I.

TABLE 1
SIMULATION PARAMETERS
Carrier Frequency 12kHz
Bandwith 8kHz
Number of Subcarriers 1024
CP Length 256
Modulation BPSK
Number of Pilots 64
Environment shallow water
Sound Velocity 1500m/s
Channel Length 256
Number of Channel Paths 8

In the training stage of the proposed SAD-UACE method,
the training data sets {(Y*,h")} _ with size D = 2000 are
randomly generated and the test data sets are generated in a
similar way. The learning rate [r of the parameters ® in the
DNN is set to 0.001 and the Adam optimizer is utilized to train
the DNN. After several training epochs, the optimal number
of layers is converged to 7" = 8, and the optimal parameters
0= {{Bt}tho, {/\t}tT=o} of the DNN are obtained.

The performance of UAC estimation is evaluated by the
normalized mean square error (NMSE), which is defined as

12
o -]
NMSE =E |+——2| . (14)
b,
where h denotes the estimation result, || - |l denotes the Iy
norm, E[-] denotes the expectation.
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Fig. 4. The performance of the accuracy of channel estimation for UAC
versus SNR.

Fig. 4 shows the NMSE performance comparison of
different algorithms for UAC estimation with respect to
different SNR values using 64 available pilots for channel
estimation. The result shows that the proposed SAD-UACE
method outperforms the existing methods of LS, AMP, and
OMP by approximately 10dB, 6dB, and 4dB, respectively.
This shows that the sparsity-aware DNN in the proposed
SAD-UACE method has successfully learned the sparse
structure of the UAC and estimated the sparse support
accurately, so that the accuracy of estimation can be improved,
especially in the harsh condition of intensive noise.
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Fig. 5. The performance of UAC estimation with respect to different number

of available pilots.



Fig. 5 shows the NMSE performance comparison of
different algorithms for UAC estimation under the condition of
a different number of pilots with the SNR of 15dB. Compared
with the existing methods of LS, OMP, and AMP, the proposed
SAD-UACE method can achieve a higher accuracy of UAC
estimation with a smaller number of pilots and significantly
improve the spectrum efficiency.

V. CONCLUSION

In this paper, a SAD-UACE method for UAC estimation
is proposed, which has higher estimation accuracy and
spectral efficiency than the state-of-the-art methods. The
inherent sparse feature of the underwater acoustic channels
is fully exploited to facilitate the channel estimation by
the deep learning over the sparsity-aware DNN, which
emulates the iterative sparse recovery algorithm of AMP.
The simulation results verify that the proposed SAD-UACE
method significantly outperforms other existing methods both
in the estimation accuracy and spectrum efficiency, especially
in the severe conditions of low SNR or insufficient pilots
as measurement data. The proposed method is promising
to be applied in many underwater communication scenarios
and applications that require accurate and efficient channel
estimation.
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