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Abstract: In urban Vehicular Ad hoc Networks
(VANETs), high mobility of vehicular environment
and frequently changed network topology call for a
low delay end-to-end routing algorithm. In this paper,
we propose a Multi-Agent Reinforcement Learning
(MARL) based decentralized routing scheme, where
the inherent similarity between the routing problem in
VANET and the MARL problem is exploited. The
proposed routing scheme models the interaction be-
tween vehicles and the environment as a multi-agent
problem in which each vehicle autonomously estab-
lishes the communication channel with a neighbor de-
vice regardless of the global information. Simula-
tion performed in the 3GPP Manhattan mobility model
demonstrates that our proposed decentralized routing
algorithm achieves less than 45.8 ms average latency
and high stability of 0.05 % averaging failure rate with
varying vehicle capacities.
Keywords: VANET; multi-agent RL; delay minimiza-
tion; routing algorithm

I. INTRODUCTION

Rapid urbanization is resulting in a growing vehicle
population accompany with an increase in traffic ac-
cidents and deterioration of traffic congestion. Under
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this circumstance, the Intelligent Transportation Sys-
tem (ITS) and Vehicle-to-Everything (V2X) commu-
nications have been proposed aiming to relieve traf-
fic pressure [1]. As an essential ITS component,
the Vehicular Ad hoc Network (VANET) is commit-
ted to building a self-organizing, easy to deploy, low
cost, and open-structure vehicle communication net-
work [2, 3], which has demonstrated a great potential
of tackling the above issues.

However, due to the nature of highly dynamic topol-
ogy, strict delay requirements, high node mobility,
etc., VANET usually suffers from data packet dropouts
compared to the traditional Mobile Ad hoc Network
(MANET) [2, 4, 5]. Consequently, the routing pro-
tocols for MANET, such as ad hoc on-demand dis-
tance vector (AODV) [6], Dynamic Source Routing
(DSR) [7], optimized link-state protocol (OLSR) [8]
and so on, will have significant performance degra-
dation in VANET, especially under highly dynamic
vehicle communication scenarios [9]. To this end,
many efforts have been carried out in routing proto-
col design for VANETs to achieve better performance
[10–12]. In general, the VANET routing protocols
can be divided into two types, the topology-based and
the location-based ones. The topology-based proto-
cols are mainly imitated from MANET but customized
for VANET scenarios, for example, Direction AODV
(DAODV) by Abedi et al. [13], and the Receive On the
Most Stable Group-Path (ROMSGP) scheme by Taleb
et al. [14]. Nevertheless, in the context of vehicular
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communications, especially in traffic safety applica-
tions, the high cost of routing establishment usually
causes intolerable delays. The location-based ones
have emerged to be the popular protocols for VANET
due to the additional location and velocity informa-
tion from the Global Positioning System (GPS), of
which classical algorithms such as the Greedy Perime-
ter Stateless Routing (GPSR) by Karp et al. [15], the
Geographic Source Routing (GSR) by Lochert et al.
[16] and the Anchor-based Street and Traffic-Aware
touting (A-STAR) by Liu et al. [17] are proposed.
However, the location-based protocols often experi-
ence connection failure in complex road conditions,
especially in crossroads.

The traditional routing scheme has high conver-
gence and short response time, whereas it is not prac-
tical to design a universal routing protocol. Different
VANET routing protocols are required in various de-
ployments. For the large-scale VANET, the network’s
dynamic changes are more frequent, and its protocol
should be highly adaptable to topology changes and
have good scalability. For VANETs with fast node
movement speeds and strict delay requirements, their
protocols must guarantee low delays. With the devel-
opment of Machine Learning (ML) and Deep Learn-
ing (DL), Tang et al. [18] began their research on ML-
based mobility prediction in delay-minimization rout-
ing. The ML-based algorithm can achieve relatively
low average latency in different traffic flow environ-
ments. Then, the Reinforcement Learning (RL) based
routing schemes were proposed by C. Wu et al. and
F. Li et al. [19, 20], where the RL agent training is
to obtain optimal responses after observing data from
the environment. Because the environment modeling
by RL is close to the real world, the RL-based routing
algorithms achieve better performance compared with
the traditional routing protocols. However, in resource
management, single-agent RL is hard to provide a
distributed perspective on identifying the resource re-
quirement of each agent [21]. Therefore, combine the
RL and multi-agent problem, the distributed perspec-
tive of Multi-Agent Reinforcement Learning (MARL)
makes it more adaptive to the potential decentralized
applications such as VANET.

To this end, this paper focuses on designing a uni-
cast routing algorithm with minimum delay under the
framework of MARL, where the main idea is mod-
eling the decision of router selection for each vehi-

cle as a Markov Decision Process (MDP). Vehicles
learn the selection strategy based on the MDP model
with an online distributed learning algorithm. The
improved versions of Deep Q-Network (DQN) are
adopted to solve the multi-agent problem. Specifi-
cally, the model design is based on Independent Q-
Learning (IQL) [22], and the converging stability of
the proposed algorithm is improved by Deep Double
Q-learning Network (DDQN) [23] and the dueling net-
work [24]. By modeling the routing problem into the
multi-agent problem, all the vehicles and infrastruc-
tures are considered as agents that can automatically
find an optimal path to minimize communication la-
tency.

The rest of this paper is organized as follows. Sec-
tion II defines the network model and provides prob-
lem formulation. In Section III, we present the model-
ing and implementation of MARL based routing algo-
rithm. Then, the simulation results are shown in Sec-
tion IV. Finally, concluding remarks are given in Sec-
tion V.

II. SYSTEM MODEL

2.1 Network Model

The network model of a communication system in-
cluding V2I and V2V links in an urban scenario is
considered, which simultaneously provides the high-
speed communication and the periodic safety mes-
sages, as introduced in 3GPP Release 15 for cellular
V2X enhancement [25]. In this model, M vehicles and
N BS/RSUs are planted in the simulation environment.
All the BS and RSUs are connected via a wired link.
Each vehicle periodically sends packets that not only
containing application messages but also include loca-
tion and velocity information to its neighbors. More-
over, we assume that all the vehicles use transceivers
with an identical single antenna and all the packet to be
transmitted has the fixed size. When a vehicle trans-
mits packets, it chooses a channel different from the
channel occupied by the periodic safety messages to
avoid interference. Since the vehicle can select any
nearby vehicle or RSU as a router, if one channel is
blocked due to excessive interference or distant range,
the communication will be re-established via another
device.

The uplink transmission rate Rym of vehicle m to
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Figure 1. System overview of the urban VANET.

RSU y and the downlink transmission rate Rny of RSU
y to vehicle n for V2I communication are defined by

RV2I = Rym =Wm · log2
(
1 +

PV
σ2 + Ic

αm,yhm,y

)
,

(1)

RI2V = Rny =Wn · log2
(
1 +

PI
σ2 + Ic

αy,nhy,n

)
,

(2)
respectively, where Wm and Wn are the bandwidth al-
located for uplink and downlink. PV denotes the trans-
mission power of vehicles; PI denotes the transmis-
sion power of RSUs. hm,y and hy,n represents the
small-scale fading power component, which are re-
lated to the frequency and assumed to be an exponen-
tial distribution of the unit mean. αm,y and αy,n are
the large-scale fading effect which consists of path loss
and shadowing. Additionally, σ2 represents the power
of Additive White Gaussian Noise (AWGN) and Ic is
the interference in the selected channel.

The transmission rate Rnm between vehicle m and n
is described by

RV2V = Rnm =WV · log2
(
1 +

PV
σ2 + Ic

αm,nhm,n

)
,

(3)
where WV is the V2V communication bandwidth, and
hm,n and αm,n are the small-scale fading and the large-
scale fading effects respectively.

2.2 Problem Formulation

In this paper, the urban case evaluation method is
shown in Figure 1 We designed a request delivery task,
where each vehicle will send a packet with a fixed size

to the target vehicle, and the router for this transmis-
sion can be selected from other vehicles, Base Sta-
tion and Road Side Units (BS/RSU). Each vehicle and
RSU are indexed to Vm ∈ V and In ∈ I, respectively.
We denote the number of packets by X and their sizes
by Z.

The tth-hop delay Tt,x,y can be calculated by

Tt,x,y =


Z

RV2It,x,y
, (x ∈ V, y ∈ I)

Z
RI2Vt,x,y

, (x ∈ I, y ∈ V)
Z

RV2Vt,x,y
, (x ∈ V, y ∈ V)

Z
RI2I

, (x ∈ I, y ∈ I)

, (4)

where RI2I is the wired transmission rate between
RSUs, and other notations are in consistent with Sec-
tion 2.1.

The goal of the routing algorithm is to minimize the
overall vehicle service latency that the process can be
expressed as the following optimization problem,

(P1) : minimize
αt,x,y

subject to

tmax∑
t=0

∑
y:y 6=x

αt,x,yTt,x,y∑
y:y 6=x

αt−1,x,y =
∑
x:x6=y

αt,y,x∑
y:y 6=S

α0,S,y = 1

tmax∑
t=0

∑
x:x6=D

αtmax,x,D = 1

αt,x,y ∈ {0, 1}
x, y ∈ {V, I}
t ∈ {0, 1, · · ·, tmax}

,

(5)
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where αt,x,y is a binary variable. If αt,x,y = 1, it
means that the tth-hop vehicle x will send a packet to
vehicle y. The first constraint denotes all the packets
received by vehicle x in (t− 1)th-hop will be sent out
at the tth hop. The last two constraints indicate that, at
the starting time, source vehicle S must choose a de-
vice as the router, and one packet is sent to the desti-
nation vehicle D only once throughout the simulation.

Typically, the problem P1 is NP-hard as it is an in-
teger programming problem where vehicles’ location
and the fading effect are updated in each step. To
solve this problem, we propose an MARL based rout-
ing scheme.

III. MARL BASED ROUTING SCHEME

Agents

Environment

Mobility Channel

Policy Q Optimizer

Action At Observation Ot Reward Rt

Velocity Location V2I V2V

(k) (k)

Figure 2. Structure of agents’ interaction in the routing
environment.

The proposed MARL scheme is to address the V2X
routing problem illustrated in Figure 1. First, the
observation space was designed to accommodate the
environment. Then, followed by the standard action
space configuration, our carefully designed reward
policy is proposed to respond promptly. Here, the in-
teraction between agents and the routing environment
is depicted in Figure 2.

After modeling the routing problem into the RL in-
terface, we combine the two state-of-the-art methods,
Dueling DQN and DDQN [23, 24], to solve the over-
estimation problem and speed up the convergence in
the nature DQN [26]. Since it is inapplicable to deploy

centralized RL in the VENET, we introduce the multi-
agent strategy to fit the real scenario better. At the
end of this section, the implementation of the MARL-
based routing algorithm is elaborated.

3.1 Observation Space

We define the states based on three factors, overall la-
tency T , safety messages, and the local channel infor-
mation. The safety messages are obtained from neigh-
bor vehicles, which contain position Pk, speed Vk, and
direction Dk. And the local channel information in-
cludes channel interferences from other V2V transmit-
ters αk,k′ , and from the RSUs αk,y (for all k 6= k′,
k ∈ V and y ∈ I). As a result, the observation space
for the vehicle k is integrated as

O
(k)
t =

{
T, {Px, Py, Vx, Dx}x∈V,y∈I ,
{αk,x, αk,y}x∈V,x6=k,y∈I

}
. (6)

3.2 Action Space

A vehicle that carries a packet needs to select another
vehicle or RSU as the router. Therefore, the action
function can be designed as

A
(k)
t = {x or y}x∈V,x6=k,y∈I . (7)

3.3 Reward Design

The design of the reward function will directly affect
the performance of the model. If we simply design the
reward function as a time-dependent reward, when the
destination vehicle receives the packet. The delayed
reward will cause two problems. One is the huge time
consumption in exploratory work, and the other is the
difficulty in addressing the credit assignment problem.

To achieve an accurate and real-time reward func-
tion, we design the reward function with three phases:

Rt =


α− kT, if y = D,

β(dis(PD, Px)

−dis(PD, Py)),
if y 6= D and

dis(Px, Py) ≤ R,
−λ, if dis(Px, Py) > R,

,

(8)
where α, β, λ and k are parameters set manually, R
represents the transmission range and dis() is the op-
erator of calculating the Euclidean distance. The first
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phase means the agent will get a time-dependent re-
ward when the packet transmits to the destination ve-
hicle. The second phase indicates that if the tth-hop is
successful, the reward will depend on how much the
distance change before and after transmission and the
third one shows the penalty of transmission failure.

3.4 Learning Algorithm

In the proposed learning algorithm, we firstly use
DQN to feed the RL model. Then, two improved
methods, DDQN and Dueling DQN are adopted to
boost up convergence. Finally, the proposed MARL
based routing algorithm by incorporating the RL and
multi-agent model is described.

DQN is a combination of Q-Learning and Deep
Neural Network (DNN), which can learn control
strategies directly from high-dimensional raw data. In
classic Q-Learning, the Q values of each state-action
pair are store in Q-table. However, the high dimen-
sional state and action space in the real application
make the Q-table update problem can only be approx-
imately addressed by converting into a function fitting
problem. In the following formula, the Q function ap-
proximates the optimal Q value by updating the pa-
rameter

Q(s, a; θ) ≈ Q∗(s, a), (9)

where s and α denote the state and action respectively,
and θ is the parameter matrix that updates in each
learning step. Moreover, Q∗ is the best Q function.
The input of DNN is the original data (state), and the
output is value evaluation (Q value) corresponding to
each action. The function of DNN in DQN is to fit
the Q-table in the high-dimensional continuous space.
And optimized by supervised learning. DQN deter-
mines the loss function based on the Q-Learning up-
dating formula:

Q∗(s, a) = Q(s, a)

+α
(
r + γmax

a′
Q (s′, a′)−Q(s, a)

)
, (10)

where λ is the discount rate, s′ and α′ is the next state
and the next action respectively. And the DQN’s loss
function is:

L(θ) = E
[
(Qtarget(s, a)−Q(s, a; θ))2

]
, (11)

Qtarget(s, a) = r + γmax
a′

Q (s′, a′; θ′) , (12)

where θ′ is the periodical updating target Q network
weights. The introduction of the target Q net not only
reduce the correlation between the primary Q value
and the target Q value simultaneously but also im-
proved the algorithm stability. Another improvement
of DQN from Q-Learning is the experience replay,
mainly used to solve correlation and non-static dis-
tribution problems. Specifically, it stores the transfer
samples (s, a, r, s′) obtained from the interaction be-
tween each time step agent and the environment into
the playback memory unit and then randomly fetch
samples for training.

DDQN is proposed by Hasselt et al. [23], who
proved that classic DQN tends to overestimate the Q
value of action, and the estimation error will be magni-
fied with the increasing of action space. If the overes-
timation is non-uniform, it will cause the Q value of a
suboptimal action to exceed the optimal Q value, and
the optimal policy will never be found. The DDQN
modify the generation mode of the target Q value to
be learned as the following equation:

Qtarget(s, a) = r

+γQ

(
s′, argmax

a′
(Q (s′, a′; θ)) , θ−

)
. (13)

The next state’s optimal action is found within the pri-
mary Q net, and then resorting target Q Net to find
the Q value of the action to form the target Q value.
Therefore, the maximum value in the target Q net is
unnecessary, which avoids selecting the overestimated
suboptimal action.

Dueling DQN is a competitive network model of
DQN proposed by Wang et al. [24]. The network di-
vides the abstract features extracted by DNN into two
branches, one branch represents the state value func-
tion V (s; θ), and another represents the action advan-
tage function A(s, a; θ) of the dependent state and the
added value of selecting an action. Eventually, these
two branches are combined to yield the Q value for
each action as the following equation:

Q(s, a; θ) = V (s; θ)

+

(
A(s, a; θ)− 1

|A|
∑
a′
A (s, a′; θ)

)
. (14)
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In this way, each action’s dominant function in this
state can be independent of the order. The range of Q
value can be reduced, redundant degrees of freedom
can be removed, and the algorithm’s stability gets im-
proved.

The multi-agent model design is based on the IQL
[22], which addressed the difficulty of deploying cen-
tralized RL algorithms in VANET routing. To be spe-
cific, all vehicles share the sameQ network parameters
in centralized RL model, so that the input dimension
is too large to converge the model. Also, the input de-
sign makes it impossible for heterogeneous updating.
Therefore, in the real application, the centralized large
scale algorithm is not ready to deploy [27]. However,
in the multi-agent setting, our model assumes only one
packet will be transferred from one source vehicle to
one destination vehicle at each iteration in the learn-
ing stage. The vehicle carrying the packet will choose
a neighborhood within the transmission range as a
router until the destination vehicle completes receiv-
ing the packet. Otherwise, links will break when the
distance between the sender and receiver exceeds the
transmission distance. In our algorithm, each training
step sender k observes the current state and fed it to the
primaryQ net to choose the best action which achieves
the highest Q value with the ε-greedy strategy. The ε-
greedy strategy is a soft policy, meaning that the best
action will be chosen with probability 1− ε and prob-
ability ε for a random action. After interacting with
the environment, the current state, action, reward, and
the next state are stored in the replay memory as a
transition tuple, i.e.,

(
O

(k)
t , A

(k)
t , Rt, O

(k)
t+1

)
. Then, a

mini-batch of experiences will be sampled randomly
to update the primaryQ net parameters with the Adap-
tive Moment Estimation (Adam) [28] gradient-descent
method. Many optimizer algorithms are evaluated and
compared in [29], which concludes that Adam is the
best choice overall. At the end of each episode, the
target Q net parameters will be updated as a primary
Q net copy. In summary, the whole process of our
training procedure is shown in Algorithm 1.

3.5 Algorithm Complexity

According to algorithms 6.3 and 6.4 in [30], the time
complexity order of DNN is O(n2) both in forward
and backward propagation. Since the input space of
the algorithm is K for MARL and K2 for the central-

Algorithm 1. The proposed MARL-based routing algo-
rithm.

1: Start environment simulator and generating vehi-
cles

2: Initialize network parameters randomly for all
agents

3: for each episode do
4: Update large-scale fading and vehicles informa-

tion
5: for each step do
6: Observe O(k)

t

7: Choose an action A
(k)
t according to the ε-

greedy strategy
8: Act A(k)

t and observe the reward Rt
9: Update channel small-scale fading

10: Observe O(k)
t+1

11: Store
(
O

(k)
t , A

(k)
t , Rt, O

(k)
t+1

)
into reply mem-

ory M
12: Compute remain packet size Z
13: if Z ≤ 0 then
14: Change sender k
15: end if
16: Select mini-batches samples from M

17: Calculate the loss L, defined in Equation (11–
14)

18: Update primary Q net parameters with OL
using Adam optimizer

19: end for
20: Update target Q net parameters
21: end for

ized RL method. The time complexity order of the
MARL method is O(K2) and centralized RL is O(K4)
in one hop. Therefore, the MARL method is less time-
consuming than the centralized RL methods and this
method is suitable for delay-sensitive applications.

IV. SIMULATION RESULTS

To evaluate the MARL-based VANET routing algo-
rithm’s performance, we built a simulation environ-
ment based on the Manhattan case defined in Annex
A of 3GPP TR 36.885 [31]. The annex regulating ve-
hicle User Equipment (UE) drop, RSU deployment,
and mobility model, which contains the specification
of road grid, simulation area size, vehicle density, and
the magnitude of vehicle speed. Simulation parame-
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ters setting, which refers to Liang et al.’s [32] works,
are summarized in Table 1, and channel models for
two types of wireless links are listed in Table 2.

Table 1. Simulation parameters [31].

Parameter Value
Number of RSUs N 5
Bandwidth 4 MHz
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5 dB
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Absolute vehicle speed v [36-54] km/h
Vehicle drop and mobility
model

Urban case of
A.1.2 in [31]*

Vehicle sender transmission
power PC 10 dBm

BS sender transmission power
PD 23 dBm

Noise power σ2 -114 dBm
Packet size 1 Mbit
* We shrink the height and width of the simulation area by

a factor of 2.

Our network in the routing scheme has three fully
connected hidden layers, and the number of neurons
in each layer is 2048, 512, and 128, respectively.
We utilize the rectified linear unit (ReLU), f(x) =

max(0, x), as the activation function. The ε-greedy
policy is used to avoid overfitting during evaluation
[26], and Adam [28] optimizer is used for training with
a learning rate of 0.001. The small-scale fading effect
is changed in 1 ms, and the large-scale fading effect
and the position of vehicles are updated every 100 ms.

Moreover, we compare the proposed RL-based rout-
ing algorithms with three classic centralized routing
protocols AODV [6], DAODV [13] and GPSR [15].
The evaluation of these five methods is performed by
10000 simulations in each different vehicle number
setting. Figure 3 shows the average delays of central-
ized RL algorithm, AODV protocol, DAODV proto-
col, GPSR protocol, and our proposed MARL-based
routing scheme in different vehicle densities. It is
worth noting that the centralized RL algorithm has an
average delay of over 100 ms when the number of ve-
hicles reaches 50. Compared to the rest algorithms, the

proposed MARL-based scheme achieves both lower
latency and higher stability. It can be observed that
the MARL-based scheme keeps a steady 45.8 ms av-
erage delay regardless of the traffic volume variations.
In contrast, the average delay of AODV, DAODV, and
GPSR protocol rises with the increase in vehicles.
From the simulation results, the MARL-based routing
scheme outperforms 6 %-14 % of AODV (3.9 ms-7.5
ms), 4 %-10 % of the DAODV (2.8 ms-5.2 ms), and 1
%-12 % of the GPSR (0.5 ms-6.0 ms).

Figure 3. Average delay of the centralized RL algorithm,
DAODV protocol, AODV protocol, GPSR protocol, and our
proposed MARL scheme with varying number of vehicles.

Figure 4. Failed packet ratio with the various number of
vehicles.

Figure 4 illustrates the ratio of dropout pack-
ets in different vehicle capacities under three routing
schemes. The centralized RL algorithm suffers an in-
tolerable dropout rate hence not presented in the fig-
ure. The proposed MARL routing scheme achieves
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Table 2. Simulation parameters [31, 33].

Parameter V2I and I2V link V2V link
Path loss model 128.1 + 37.6log10 d, d in km LOS in WINNER + B1 Manhattan [33]
Shadowing distribution Log-normal Log-normal
Shadowing standard deviation ξ 8 dB 3 dB
Decorrelation distance 50 m 10 m
Path loss and shadowing update A.1.4 in [31] every 100 ms A.1.4 in [31] every 100 ms
Fast fading Rayleigh fading Rayleigh fading
Fast fading update Every 1 ms Every 1 ms

Figure 5. Communication type distribution of three algorithms (a. AODV, b. DAODV, c. GPSR, and, d. MARL-based
algorithm) with a different number of vehicles setting.

an overall failed packet ratio of 0.05 %. Our method
performs an order of magnitude less dropout rate than
the other two algorithms in low vehicle density (less
than 80 vehicles in the simulation environment). We
believed that in a sparse vehicle distribution, the link
between vehicles has a higher probability of break-
ing; however, the proposed MARL-base method learns

mobility patterns which enabled better target estima-
tion.

To further explain the reason that the proposed
MARL-based routing scheme outperforms the AODV,
DAODV, and GPSR protocols in delay and stability,
we analyze the portion of V2I and V2V links in three
methods under different vehicles number settings, as
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depicted in Figure 5. The ratio of high-performance
V2I channel usage in the MARL-based algorithm is
higher than the others, and keeps relatively consistent
with the increase of participate vehicles. This indi-
cates that the MARL-based algorithm tends to max-
imize the usage of high-quality communication re-
sources, therefore exhibiting low delay and high sta-
bility despite the increase of vehicles.

V. CONCLUTION

This paper has proposed a decentralized routing algo-
rithm for VANET to minimize the network delay un-
der the MARL framework. An innovative input state
and reward function were carefully designed for DQN
to reduce the overall latency and the dropout rate, es-
pecially in low vehicle density. The proposed method
was compared with AODV and DAODV protocols in
the 3GPP Manhattan mobility model. The simulation
results show that the routing delay of the proposed al-
gorithm is robust to the vehicle amount change, and it
has a distinctive low failure rate in sparse vehicle dis-
tribution scene compared with others. To summarize,
this work presented an efficient and intelligent routing
approach for vehicle communication, which expect to
empower a variety of low latency services to the vehi-
cle network, especially to notify the traffic emergency.
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