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Abstract: The deep convolutional neural network
(CNN) is exploited in this work to conduct the chal-
lenging channel estimation for mmWave massive mul-
tiple input multiple output (MIMO) systems. The in-
herent sparse features of the mmWave massive MIMO
channels can be extracted and the sparse channel sup-
ports can be learnt by the multi-layer CNN-based net-
work through training. Then accurate channel infer-
ence can be efficiently implemented using the trained
network. The estimation accuracy and spectrum effi-
ciency can be further improved by fully utilizing the
spatial correlation among the sparse channel supports
of different antennas. It is verified by simulation re-
sults that the proposed deep CNN-based scheme sig-
nificantly outperforms the state-of-the-art benchmarks
in both accuracy and spectrum efficiency.
Keywords: deep convolutional neural networks; deep
learning; sparse channel estimation; mmWave massive
MIMO

I. INTRODUCTION

Massive multiple input multiple output (MIMO) has
been adopted as a key alternative in 5G wireless com-
munications since it can significantly increase the data
rate and spectral efficiency [1]. However, channel
estimation for massive MIMO and millimeter wave
(mmWave) massive MIMO systems [2, 3] becomes
much more challenging since the overhead of time
and frequency resources dramatically increase with
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the number of antennas [4, 5]. Exploiting the sparse
nature of wireless channels, i.e. the channel impulse
response (CIR) is concentrated on only a few domi-
nant taps in the delay domain while most entries are
approximately zero [5–7], some compressed sensing
(CS)-based methods have been proposed to reduce
the overhead and improve the performance for both
massive MIMO channels [8] and mmWave massive
MIMO channels [9, 10]. Still in severe conditions, e.g.
in the low signal-to-noise ratio (SNR) region or in case
of insufficient measurement data, the estimation accu-
racy is limited.

Inspired by the emerging technology of deep learn-
ing, several effective deep neural networks have re-
cently been proposed to solve sparse recovery prob-
lems. Based on the conventional recursive method, the
conventional iterative recovery algorithms with good
interpretability, e.g. the iterative shrinkage thresh-
olding algorithm (ISTA) [11], can eventually obtain
the globally optimal solution of sparse approximation
problems. By unrolling the iterations of ISTA into a
multi-layer neural network, the learned ISTA network
(LISTA) [12] is proposed to mimic the repeated sparse
approximation process of ISTA. An improved method
of ISTA-Net casts the ISTA into an enhanced deep
neural network architecture, where the convolutional
neural network (CNN) is employed to extract a better
sparse representation of the signal of interest [13].

Recently, some deep learning-based methods have
been incorporated in the estimation of both massive
MIMO and mmWave massive MIMO channels. For
massive MIMO systems, deep learning is applied to
estimate the uplink channels for massive MIMO with
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mixed-resolution analog-to-digital converters in [14].
A deep learning-based framework is proposed for
direction-of-arrival estimation and massive MIMO
channel estimation [15]. A two-stage massive MIMO
channel estimation process is proposed based on deep
learning, including pilot-aided and data-aided estima-
tion stages [16]. A massive MIMO channel estima-
tor is jointly designed with pilot signals based on deep
learning [17]. For mmWave massive MIMO systems,
on the other hand, a learned denoising-based approxi-
mate message passing (LDAMP) network is proposed
to estimate the beamspace mmWave massive MIMO
channel [18]. The frequency correlation among chan-
nels at adjacent subcarriers is exploited in [19] for
mmWave massive MIMO channel estimation using a
CNN network.

In fact, the CNN network can be utilized better to
extract the sparse feature of the delay-domain wireless
channel supports. Besides, due to the spatial corre-
lation of the sparse structure among the channel sup-
ports of different antennas, the CIRs of different an-
tennas share a sparse common support [6, 7]. Actually,
the spatial correlation might bring considerable bene-
fit for the estimation performance of mmWave massive
MIMO channels, which remains to be well exploited.
Thus in this work, a novel deep learning and deep
CNN-based mmWave massive MIMO channel estima-
tion scheme is proposed. The inherent sparse struc-
ture of the wireless channel is effectively extracted
by the CNN structure in each layer of the deep net-
work. Moreover, the spatial correlation among a large
number of antennas is also fully exploited to improve
the estimation accuracy and spectrum efficiency. The
main contributions of this work are summarized as fol-
lows:

• Accurate and efficient channel inference can be
achieved using the well-trained deep CNN-based
network, which can effectively extract the inher-
ent sparse features of mmWave massive MIMO
channels and reconstruct the channel support.

• The estimation accuracy of the sparse channel
support is further refined by fully exploiting the
spatial correlation among different MIMO sub-
channels, i.e. a refined common channel support
is derived by the intersection of all the inferred
supports for different antennas.

Simulation results demonstrate that the proposed

scheme can significantly improve the accuracy of
mmWave massive MIMO channel estimation, espe-
cially in case of low SNR or insufficient measurement
data, i.e. frequency-domain pilots, compared with
the state-of-the-art benchmark schemes, including the
conventional least squares (LS), compressed sensing,
and deep learning based methods. Furthermore, since
the channel estimation process in practice is conducted
by only one feed-forward operation flow exploiting the
already well-trained networks, the proposed method is
very applicable for practical mmWave communication
user equipment.

The structure of this work is as follows. Related
works are summarized in Section II. The system model
is presented in Section III. The deep CNN-based
mmWave massive MIMO channel estimation scheme
is proposed in Section IV. Simulation results are given
in Section V, followed by the conclusions.

The frequently used abbreviations and terminolo-
gies in this paper are listed in Table 1.

Table 1. List of abbreviations.

Abbreviation Description
AWGN additive white Gaussian noise

CIR channel impulse response
CNN convolutional neural networks
CS compressed sensing

DFT discrete Fourier transform
ISTA iterative shrinkage thresholding algorithm
LS least squares

MIMO multiple-input multiple-output
NMSE normalized mean square error
OFDM orthogonal frequency division multiplexing
SNR signal-to-noise ratio

SOMP simultaneous orthogonal matching pursuit

Notation: Matrices and column vectors are de-
noted by boldface letters; frequency-domain and time-
domain vectors are denoted by boldface vectors with
tilde ṽ and without tilde v, respectively; The super-
script (t) to a vector v(t) denotes that the vector is
related with the t-th transmit antenna; C denotes the
set of complex number; (·)†, (·)T and (·)H denote the
pseudo-inversion, transpose and conjugate transpose
operations, respectively; AΠ represents the sub-matrix
comprised of the columns of the matrix A indexed by
the set Π.
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II. RELATED WORKS

As the number of antennas involved with the chan-
nels to be estimated in massive MIMO systems is
large, the CS theory has been utilized to decrease the
pilot consumption overhead effectively. A spatially
non-stationary channel model is adopted to capture
the delay-domain sparse characteristics of the mas-
sive MIMO channels, and block matching pursuit al-
gorithm is used for massive MIMO channel estima-
toin [5]. Qi et al provides an analysis of the block
coherence of massive MIMO channels and proposes
an improved sparse channel estimation scheme in the
framework of CS [20]. Based on auxiliary information
of the massive MIMO channels, an auxiliary block
subspace pursuit algorithm is proposed to reconstruct
the massive MIMO channel [21].

To improve the estimation accuracy in massive
MIMO systems, some effective sparse channel es-
timation approaches have been proposed exploiting
the spatial correlation, i.e. the sparse common sup-
port, among the multiple antennas. The sparse com-
mon support property is exploited to estimate the mas-
sive MIMO channels in the delay domain in [6]. An
adaptive channel estimation scheme based on spatially
common sparsity is investigated to achieve an en-
hanced performance of channel state information ac-
quisition for massive MIMO channels [22]. A doubly
sparse approach for mmWave massive MIMO chan-
nel estimation is proposed to improve the estimation
accuracy greatly with affordable complexity [23].

Recently, the methods based on deep learning have
drawn plenty of attention from the research commu-
nity, and are also being introduced to the area of chan-
nel estimation of massive MIMO to achieve a bet-
ter performance. A deep learning based scheme fo-
cused on massive MIMO channel estimation is pro-
posed in [15], where deep neural networks are utilized
to learn the statistics of the wireless channel in the an-
gle domain. A channel estimation algorithm for dou-
bly selective fading channels is proposed, which em-
ploys deep neural networks to facilitate channel esti-
mation [24]. A deep-learning-based channel estima-
tion scheme called ChanEstNet is designed in [25] for
high speed scenarios, where convolutional neural net-
works are employed to extract the channel response
feature vectors, and recurrent neural networks are used
to have a better track of the features of the fast vary-

ing channels. Besides, since a layer-by-layer training
method is employed, only a small proportion of the
parameters need to be updated for each new layer of
network during training.

III. SYSTEM MODEL

A mmWave massive MIMO transmission system is
considered in this work as illustrated in Figure 1. It
is equipped with Nt antennas at the transmitter, e.g.
a base station, and Nr antennas at the receiver, e.g.
a mobile user equipment, where Nr can also be one
for scenarios like multi-user MIMO (MU-MIMO) [8].
The length-L CIR h(t) ∈ CL between the t-th transmit
antenna and a certain receive antenna, without loss of
generality, can be modeled as

h(t) =
[
h

(t)

1 , h
(t)

2 , · · · , h(t)

L

]T
. (1)

Due to the propagation characteristics of outdoor
environment, most of the energy of a wireless chan-
nel is concentrated on a few dominant taps, mak-
ing the channel CIR a sparse or approximately sparse
vector [6, 26, 27]. Note that the sparse channel is
modeled in the delay-domain, i.e. the CIR vector
h(t) is representing a delay-domain sparse channel.
This wireless channel is modeled based on the para-
metric sparse channel model given in [26]. Specif-
ically, the sparsity of the CIR follows a parametric
sparsity-promoting Bernoulli-Gaussian prior distribu-
tion. That is, the support of the CIR vector, i.e.
the location of nonzero entries, is randomly deter-
mined and follows an i.i.d. Bernoulli distribution,
with each entry of the CIR vector having an identi-
cal probability to be nonzero or zero. If a CIR entry
is nonzero subject to the Bernoulli distribution, then it
contributes a nonzero channel tap, whose amplitude is
determined by a zero-mean Gaussian distribution [26].
In addition, according to the model [26], the para-
metric sparse channel with uncorrelated-scattering as-
sumption is effective for specular sparse channels,
approximately sparse channels and dense channels.
Apart from the delay-domain sparse channel model
described above, the Saleh-Valenzuela (S-V) model is
also used in many cases for mmWave massive MIMO
systems [28, 29]. The angle-domain sparsity can be
conveniently represented by this model and exploited
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Figure 1. The signal model and architecture of the proposed deep CNN-based channel estimation scheme for a mmWave
massive MIMO system.

for sparse channel estimation [10, 30]. The proposed
method is also applicable to the problem formulated
by this model, which can be conducted similarly by
measuring and learning the angle-domain sparsity in-
stead of the delay-domain sparsity of the channel.

A certain OFDM signal model sent by the t-th trans-
mit antenna consists of the length-M cyclic prefix
(CP) and the length-N OFDM data block x(t) ∈ CN

given by

x(t) =
[
x

(t)
1 , x

(t)
2 , ..., x

(t)
N

]T
= FH x̃(t), (2)

where F is the N × N discrete Fourier transform
(DFT) matrix with N being the sub-carrier number.
x̃(t) denotes the OFDM data block in frequency do-
main, and Np pilots are randomly distributed over the
OFDM sub-carriers. The locations of these pilots are
denoted by a set D(t) given by

D(t) = {d(t)
n }

Np
n=1, (3)

where d(t)
n ∈ [0, N − 1] is an index integer denot-

ing a pilot location. The pattern of the pilots is in a
random manner, which follows a uniform distribution.
The pilots of different transmit antennas are orthogo-
nally distributed as illustrated in the pattern shown in
Figure 1.

For a certain receive antenna, i.e. a sub-channel
in the MIMO transmission system, the received
frequency-domain OFDM data block ỹ ∈ CN =

[ỹ1, ỹ2, · · · , ỹN ]T can be represented as

ỹ =
Nt∑
t=1

diag(x̃(t))FLh
(t) + w̃, (4)

where diag(x̃(t)) is a diagonal matrix with the diagonal
being the vector x̃(t), and FL is theN ×L partial DFT
matrix composed of the first L columns of the N ×N
DFT matrix F, with the assumption that the maximum
channel length is smaller than the OFDM block length
for commonly seen wireless channels, i.e. L < N . w̃
is the frequency-domain additive white Gaussian noise
(AWGN) vector. As only the pilots located at the sub-
carrier set of D(t) are utilized for the channel estima-
tion of the t-th transmit antenna and the pilot pattern
is orthogonal between different transmit antennas, the
received normalized pilots at the t-th transmit antenna
can be simplified by picking the pilots located at D(t)

out of the received signal ỹ as given by

u(t) = F(t)
p h(t) + w̃(t), 1 ≤ t ≤ Nt, (5)

where u(t) ∈ CNp is the channel measurement vector
of the t-th transmit antenna, i.e. the received pilots
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normalized by the originally transmitted pilot given by

u(t) = S
(t)
p (diag(x̃(t))−1)ỹ

= [ỹ
d
(t)
1
/x̃

(t)

d
(t)
1

, ỹ
d
(t)
2
/x̃

(t)

d
(t)
2

, · · · , ỹ
d
(t)
Np
/x̃

(t)

d
(t)
Np

]T ,

(6)
where S

(t)
p = IT

N,D(t) is an Np × N selection matrix
composed of the rows of the identity matrix IN corre-
sponding to D(t). The matrix F

(t)
p = S

(t)
p FL in (5) is

the Np × L partial DFT matrix with its entry in row-n
and column-k being exp (−j2πd(t)

n (k − 1)/N)/
√
N .

w̃(t) denotes the corresponding background noise vec-
tor.

By stacking the CIR vectors of all the transmit an-
tennas {h(t)}Nt

t=1 into a single long vector, the deep
CNN network can be trained to exploit the inher-
ent spatial correlation among the mmWave massive
MIMO channels. This is because one of the most
important advantages of CNN is that a convolutional
layer uses the same convolution kernel, i.e. parameter
sharing, for the data at different spatial locations to ex-
tract a higher-level common feature, such as in image
processing and pattern recognition applications [31].
Then the stacked MIMO CIR vector is given by

h = [(h(1))
T
, (h(2))

T
, ...(h(Nt))

T
]T ∈ CNtL, (7)

Consequently, the problem of sparse MIMO channel
recovery can be formulated as

u = Φh + w̃, (8)

where u = [(u(1))
T
, (u(2))

T
, ...(u(Nt))

T
]T ∈ CNtNp

is the stacked measurement vector formulated by
stacking all the received normalized pilots {u(t)}Nt

t=1

into a single vector. The observation matrix Φ ∈
CNtNp×NtL is a block-diagonal matrix with the t-th di-
agonal block sub-matrix being F

(t)
p , and w̃ denotes the

stacked noise vector of the pilots at all the transmit an-
tennas.

Due to the spatial correlation of the mmWave mas-
sive MIMO system, i.e. the spatial distance between
different transmit antennas is much smaller than the
propagation distance between the transmitter and the
receiver, the CIR vectors of different transmit-receive
antenna pairs share a sparse common support [7].
More explicitly, the spatial correlation can be ex-

plained by the following formula as,

Π
(1)
0 = Π

(2)
0 = · · · = Π

(Nt)
0 , (9)

where Π
(t)
0 denotes the support of the CIR vector h(t)

for the t-th transmit antenna. Note that the support of a
sparse vector is defined as the locations of the nonzero
entries of this sparse vector. Utilizing the spatial cor-
relation of the MIMO sub-channels, the accuracy of
the deep CNN-based channel inference can be further
improved, which is discussed in the following section.

Although the proposed method is presented using
a fully digital MIMO structure in this paper, it is
also suitable for hybrid precoding structures [32–34],
where the measurement model of the sparse MIMO
channels can be built up in a way similar to the model-
ing given by (5) through (8), and the spatial correlation
can be exploited to refine the support estimation, too.

IV. PROPOSED DEEP CNN-BASED
MMWAVE MASSIVE MIMO CHAN-
NEL ESTIMATION SCHEME

In this section, the novel deep CNN-based mmWave
massive MIMO channel estimation scheme is pro-
posed. The CNN-based scheme is devised based
on the classical iterative sparse recovery algorithm
of ISTA. Using the ISTA algorithm, the original un-
known signal x can be recovered from the measure-
ment vector y = Ax through the iterations given by

rk = xk−1 − βAT (Axk−1 − y), (10)

xk = arg min
x

1

2
‖x− rk‖22 + λ‖Ψx‖1, (11)

where k is the iteration index and β is the stepsize. rk
denotes an intermediate proxy of xk, which is updated
using the gradient descent of the squared estimation
error ‖Axk−1 − y‖22. The sparse solution of x can
be obtained by minimizing the `1-norm of its sparse
representation Ψx using the sparse basis Ψ, and λ is a
weighting parameter indicating the weight of sparsity
on the minimization problem in (11).

In this work, a deep CNN-based sparse recovery net-
work is devised to infer the mmWave massive MIMO
channels, which only requires one forward propaga-
tion in the practical channel inference phase. The
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Figure 2. The structure of the l-th layer in the proposed CNN-based network for mmWave massive MIMO channel estimation:
Cl(·) denotes a learnable operator for sparse feature compression using CNNs, and C̄l(·) denotes the corresponding inverse
operator for decompression.

deep CNN network has a large fitting capacity and the
sparse features can be effectively extracted to further
improve the channel estimation accuracy.

The proposed network structure is illustrated in Fig-
ure 2, which consists of NL identical cascaded lay-
ers. A learnable operator denoted by C(·), which is
composed of two convolutional (Conv) layers sepa-
rated by a rectified linear unit (ReLU), is adopted for
sparse representation and sparse feature compression,
playing the role of the conventional sparse basis Ψ.
Both the two Conv layers in C(·) have Nf feature
maps, respectively. Thus, the ability to extract sparse
features is greatly improved and the capacity of the
network to fit different mappings is substantially ex-
tended through using CNNs.

Utilizing the CNN-based operator C(·) for sparse
regularization instead of the `1-norm ‖Ψx‖1, the clas-
sical optimization problem in (11) can be transferred
into a deep network with much better sparse feature
extraction capability. Specifically, for the l-th layer of
the network, given the stacked received measurement
vector u and the observation matrix Φ, the stacked
MIMO CIR vector estimated by the l-th layer denoted
by ĥ(l) can be estimated by

rl = ĥ(l−1) − βlΦH(Φĥ(l−1) − u), (12)

ĥ(l) = C̄l(soft(Cl(rl), θl)), (13)

where soft(v; θ) is the soft threshold function, with
soft(v; θ) = 0, |v| ≤ θ, and soft(v; θ) = sign(v) ·
(|v| − θ), |v| > θ. C̄l(·) is the corresponding inverse

operator of Cl(·). Note that the learnable parameters
up to layer-l in the network in Figure 2 can be aggre-
gated into a set Θl=

{
βi, θi, Ci(·), C̄i(·)

}l
i=1

, which
contains the network weights and parameters associ-
ated with all the l layers. It can be learnt and op-
timized using back-propagation and gradient descent
during training.

The training process is described in Algorithm 1,
where the network is trained layer-by-layer in a se-
quential manner. The whole training process is com-
posed of some number of stages indexed by l, and l is
increasing sequentially during training. Specifically,
in a certain stage l, the current network contains l lay-
ers and a corresponding current loss function Ll(Θl)

is formulated for this l-layers network with the pa-
rameter set Θl. The number of layers in the network
is indicated by l, which should be increased as long
as the current loss function Ll(Θl) is still decreasing
with the increase of l. When the loss function does not
decrease with l any more, the final number of layers
NL can be determined, i.e. NL = l − 1. The rea-
son is that at this time the halting condition is met, i.e.
Ll(Θl) ≥ Ll−1(Θl−1), so the network with l − 1 lay-
ers in the previous stage is the one with the minimum
training loss.

The current loss functionLl(Θl) for the l-layers net-
work is composed of two parts: the normalized mean
square error contributed by the channel estimation out-
put ĥ(l) of the l layers, and the regularization term
to impose symmetry constraints on the operator pairs
Ci(·) and C̄i(·), i = 1, 2, ..., l. Hence, the loss func-
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tion of layer-l Ll(Θl) is given by

Ll(Θl) =
1

D

D∑
d=1

∥∥∥hd
true − ĥ(l)

∥∥∥2

2∥∥hd
true

∥∥2

2︸ ︷︷ ︸
channel estimation error

+δ
1

D

D∑
d=1

l∑
i=1

∥∥hd
true − C̄i(Ci(h

d
true))

∥∥2

2∥∥hd
true

∥∥2

2︸ ︷︷ ︸
symmetry constraint

,

(14)
where δ is the penalty parameter for the symmet-
ric constraints regularization. The parameter set
Θl=

{
βi, θi, Ci(·), C̄i(·)

}l
i=1

for the l-layers network
is learnt through minimizing the loss function Ll(Θl)

over the training set {ud,hd
true}Dd=1. Like the proce-

dures in [19], the complex numbers are divided into
real and imaginary parts, and trained separately in two
networks with the same structure as shown in Figure 2.
Then the output of the two networks are combined to
form the estimated channel vector in complex num-
bers.

After the network has been well trained, the
mmWave massive MIMO channels can be esti-
mated accurately in the inference phase. First,
the estimated stacked MIMO CIR vector ĥ =

[(ĥ(1))T , (ĥ(2))T , ..., (ĥ(Nt))T ]T ∈ CNtL can be ob-
tained through the trained network with the learned pa-
rameters ΘNL . The estimated CIR vector ĥ(t) for the
t-th transmit antenna can be extracted from the cor-
responding t-th length-L sub-vector of the estimated
stacked MIMO CIR vector ĥ as given by

ĥ(t) = [ĥ(t−1)L+1, · · · , ĥtL]T , t = 1, 2, ..., Nt,

(15)
Note that, ĥ(t) is a sparse CIR vector, and therefore
its support, i.e. the locations of the nonzero entries of
ĥ(t), can be obtained simply by aggregating the indices
of the nonzero entries of ĥ(t). Then, the spatial corre-
lation between the MIMO sub-channels as described
in Section III can be fully utilized to derive a refined
common channel support, i.e. by the intersection of all
the inferred supports for different antennas obtained
from the output of the CNN-based network. Namely,
the common support of the mmWave massive MIMO

Algorithm 1. Deep CNN-Based Sparse Channel Estimation
for mmWave Massive MIMO Systems.

Input:
Training set with size D: {ud,hd

true}Dd=1

Initialization:
1: ĥ(0) ← 0, l← 1

Iterations:
2: repeat
3: Compute intermediate proxy rl based on (12)
4: Generate the sparse stacked MIMO CIR vector

ĥ(l) based on (13)
5: Calculate current loss function Ll(Θl) based

on (14) and update current network parameters
Θl =

{
βi, θi, Ci(·), C̄i(·)

}l
i=1

through gradient
descent and back-propagation over the training
set {ud,hd

true}Dd=1.
6: Increase the number of network layers l← l+1

7: until loss function does NOT decrease, i.e.
Ll(Θl) ≥ Ll−1(Θl−1)

8: Set the final number of network layers as NL ←
l − 1

Output:
Learned parameters
ΘNL=

{
βi, θi, Ci(·), C̄i(·)

}NL

i=1

system can be refined as given by

Π̄ =
Nt∩
t=1

Π(t), (16)

where Π(t) is the support of ĥ(t) for the t-th trans-
mit antenna. Finally, the corresponding refined CIR
vector h̄(t) for the t-th transmit antenna based on the
spatial correlation can be obtained by solving the least
squares (LS) problem derived from (5) as given by

h̄(t)
∣∣∣
Π̄

= argmin
h∈CK

∥∥∥u(t) −BΠ̄h
∥∥∥

2
, (17)

where the matrix B = F
(t)
p and BΠ̄ ∈ CNp×K denotes

the projecting matrix composed of the columns of
B = F

(t)
p corresponding to the support Π̄. Solving the

LS problem (17) yields h̄(t)|Π̄ = (BH
Π̄
BΠ̄)

−1
BH

Π̄
u(t).

168 China Communications · June 2021

Authorized licensed use limited to: Xiamen University. Downloaded on June 21,2021 at 09:58:49 UTC from IEEE Xplore.  Restrictions apply. 



V. SIMULATION RESULTS

The performance of the proposed deep CNN-based
sparse channel estimation scheme is evaluated by sim-
ulations. The conventional LS-based channel estima-
tion method with linear interpolation [35] and the CS-
based algorithm of simultaneous orthogonal matching
pursuit (SOMP) [8], are evaluated for comparison. As
a deep learning based benchmark, the state-of-the-art
method of ISTA-Net [13] is also evaluated. The sim-
ulation parameters are configured in a mmWave mas-
sive MIMO system with the carrier frequency fc = 30

GHz and Nt = Nr = 64 antennas. The length of the
OFDM data block length and the CP is N = 4096

and M = 256, respectively. The maximum chan-
nel length is set as L = 256 [26, 36], which is the
same as the CP length. It is a conservative maximum
range of the possible CIR delay spreads generated ac-
cording to the statistical channel distribution [26, 36].
Then, the CP length is sufficiently large to cover most
of the CIR delay spreads to avoid inter-block interfer-
ence. The actual sparsity level of the CIR vector is
conservatively assumed to be K = 12, which denotes
the number of dominant CIR taps with much greater
amplitude than the other small-scale nonzero taps in
the parametric sparse channel model [26]. The num-
ber of pilots adopted for channel measurements is set
as Np = 25. The SNR denoted by γ used in the simu-
lations is calculated by γ = Pr/σ

2, where Pr denotes
the power of the received signal, and σ2 denotes the
power of the AWGN w̃ as in equation (4).

The training set {ud,hd
true}Dd=1, with D = 1000, is

generated randomly according to the distribution of
the parametric sparse channel [26], with each train-
ing sample d containing a stacked measurement vector
ud and the corresponding ground-truth stacked MIMO
CIR vector hd

true. The support of the delay taps of the
MIMO channel is randomly distributed in all the L
possible locations determined by a Gaussian-Bernoulli
distribution [26] as stated in Section III. The testing set
is generated in the same way. The stochastic gradient
descent method and the Adam optimizer are utilized
to train the network using mini-batch size of 64 with
the learning rate of 10−4, and the penalty parameter in
the loss function (14) is set as δ = 0.05. Each Conv
layer has Nf = 16 feature maps of size 32 × 32, and
the convolution kernel is of size 5× 5 with stride 1.

Figure 3 presents the NMSE performance of chan-
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Figure 3. NMSE performance of mmWave massive MIMO
channel estimation with respect to SNR.
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Figure 4. NMSE performance of mmWave massive MIMO
channel estimation with respect to the number of pilots Np.

nel estimation in a mmWave massive MIMO system
with multipath fading. It can be noted from Figure 3
that, the proposed deep CNN-based scheme outper-
forms the LS-based method significantly, since the
number of available pilots is much smaller than the
channel length, making it an underdetermined prob-
lem that LS cannot tackle but the proposed scheme
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can solve well. An NMSE gain of 2.0 dB over the
CS-based method at the NMSE of 10−2 is achieved
by the proposed deep CNN-based scheme, validat-
ing the high accuracy of the proposed scheme. The
proposed scheme outperforms the deep learning-based
algorithm of ISTA-Net by 1.3 dB, which indicates
that the proposed network has been optimized for
mmWave massive MIMO channel estimation. More-
over, the gap between the proposed scheme with and
without support refinement is about 0.8 dB, which ver-
ifies that the spatial correlation is fully exploited by the
proposed support refinement method given in (16).

The channel estimation performance with respect to
the number of available pilots Np adopted for channel
measurements is reported in Figure 4 at the SNR of 20
dB. It can be observed from Figure 4 that, the proposed
deep CNN-based scheme can achieve better accuracy
compared with the existing CS and deep learning-
based algorithms using the same number of pilots.
Meanwhile, the proposed scheme requires much less
pilots for channel estimation than the benchmarks to
reach the same target accuracy, which saves the sub-
carrier resource and improves the spectrum efficiency
greatly. Besides, the proposed method with support
refinement requires much less pilots than that without
support refinement, which validates the benefits of uti-
lizing the spatial correlation.

VI. CONCLUSION

In this work, a novel deep CNN-based mmWave mas-
sive MIMO channel estimation scheme has been pro-
posed. By exploiting the CNN-based sparse recovery
network, the mmWave massive MIMO channel is es-
timated with higher accuracy and spectrum efficiency
than state-of-the-art methods. Simulation results ver-
ify that the proposed scheme can significantly improve
the accuracy of mmWave massive MIMO channel es-
timation, especially in case of low SNR or insuffi-
cient measurement data, i.e. frequency-domain pilots,
compared with the conventional LS-based method and
the state-of-the-art CS-based and deep learning-based
methods. The proposed deep CNN-based sparse re-
covery framework is promising to be widely applied in
various mmWave massive MIMO scenarios, including
indoor mmWave systems and outdoor mobility scenar-
ios.
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