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Sparsity-Aware Intelligent Massive Random
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Abstract— Massive random access of devices brings great
challenge to the management of radio access networks. Most
of the time, the access requests in the network are sporadic.
Exploiting the bursting nature, sparse active user detection
(SAUD) is an efficient enabler towards efficient active user
detection. However, the sparsity might be deteriorated in case of
high concurrent request periods. To dynamically coordinate the
access requests, a reinforcement-learning (RL)-assisted scheme of
closed-loop access control utilizing the access class barring (ACB)
technique is proposed, where the control policy is determined
through continuous interaction between the RL agent and the
environment. The proposed RL agent can be deployed at the next
generation node base (gNB), supporting rapid switching between
heterogeneous vertical applications, such as mMTC and uRLLC
services. Moreover, a data-driven scheme of deep-RL-assisted
SAUD is proposed to resolve highly complex environments with
continuous and high-dimensional state and action spaces, where a
replay buffer is applied for automatic large-scale data collection.
An Actor-Critic framework is formulated to incorporate the
strategy-learning modules into the intelligent control agent.
Simulation results show that the proposed schemes can achieve
superior performance in both access efficiency and user detection
accuracy over the benchmark scheme for different heterogeneous
services with massive access requests.

Index Terms— Massive random access, active user detection,
massive MIMO, compressed sensing, reinforcement learning.
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I. INTRODUCTION

WITH the popularization of the next-generation com-
munication technology, various types of services have

developed rapidly relying on the cost-effective broadband
access provided by massive machine-type communication
(mMTC) [1]. Since the horizontal expansion of services is sup-
ported by the proliferation of sensors (102/km2 to 107/km2),
higher requirements are placed on the random access of
massive devices [2], [3]. Normal-scale cells are configured
with orthogonal pilots for each user, and the next generation
node base (gNB) can separate multiple signals and accurately
detect the active users. However, in massive random access,
the existence of numerous devices makes the pilot sequences
unable to satisfy the complete orthogonal relationship, and
the traditional user detection mechanism can hardly make
effort [4].

Fortunately, the access requests of massive users usually
have a bursting nature, i.e., the active users who need to make
requests to access the network occupy only a small proportion
of all the potential users residing within this network [5]. This
sparsity makes it possible for the compressed sensing (CS)-
based active user detection (AUD), i.e. sparse AUD (SAUD)
[6], [7], [8], [9]. Identifying superimposed users by SAUD
can counteract the negative impact of non-orthogonal pilots
and improve spectrum efficiency. However, as the number of
access requests increases rapidly, or when multiple hetero-
geneous services need to be supported [10], more conflicts
among the active users might occur, which breaks the sparsity
nature and results in detrimental impact on the accuracy
of AUD [11]. Hence, it is necessary to design an effective
paradigm to properly manage and dynamically control the
access requests of the users in the network.

The access class barring (ACB) mechanism can perform
differentiated access control based on the different needs and
characteristics of services in the network, thereby effectively
reducing network burden. For instance, ultra-reliable low
latency communications (uRLLC) services such as Internet
of Vehicles are more sensitive to reliability and thus require
higher accuracy of AUD, while mMTC services such as
Internet of Things tend to enable more users to access at poten-
tial cost of reliability. Faced with the diverse requirements
and characteristics of various scenarios in the next-generation
networks [12], the ACB strategy needs to be dynamically

1536-1276 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xiamen University. Downloaded on August 15,2024 at 06:08:11 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0000-1880-0717
https://orcid.org/0000-0002-5710-0446
https://orcid.org/0000-0003-4235-9671
https://orcid.org/0000-0002-8972-8094


TANG et al.: SPARSITY-AWARE INTELLIGENT MASSIVE RANDOM ACCESS CONTROL 9731

adjusted to be more adaptable [13]. However, it is difficult
for traditional convex optimization algorithms to dynamically
achieve accurate modelling and obtain a favorable access
control strategy in the time-varying environments.

To this end, a reinforcement learning (RL)-based framework
is introduced to facilitate a data-driven intelligent agent, which
can proactively interact with the time-varying environment
and realize dynamic access management through adaptive
control of the ACB factors. Specifically, an RL-assisted
SAUD (RL-SAUD) is devised, which adopts Q-learning to
obtain experience from trials and errors and learn appropriate
decision-making policies. In the proposed RL-SAUD scheme,
different ACB factors are assigned to different priority-based
classes, making a reasonable trade-off between the permitted
access probability and the user detection accuracy. Further-
more, in order to support effective control towards continuous
and high-dimensional state and action spaces, a deep rein-
forcement learning (DRL) assisted SAUD (DRL-SAUD) is
devised to mitigate the impact of the state quantization and the
dimensional curse in Q-learning. Besides, previous experience
is obtained via pre-training and stored in a replay buffer,
which is exploited to initialize the parameters of the deep
neural networks for more rapid convergence. Then, through
the closed-loop interaction between the gNB agent and the
network environment, a more up-to-date and precise control
can be achieved. The superiority of the proposed scheme is
verified by both theoretical analysis and simulation experi-
ments. Consequently, the main contributions of this work are
summarized as follows.

• A massive random access control framework based on
ACB and SAUD is formulated. The inherent sparsity of
access requests is fully exploited to achieve efficient and
accurate detection of active users among massive amount
of potential users in the network.

• An RL-SAUD is devised to realize access management
through dynamic control of the ACB factors, which can
adaptively preserve the sparsity of access requests that
may be deteriorated by severe conflicts of excessively
massive access requests or heterogeneous services in the
time-varying environments, thus sustaining the accuracy
of SAUD.

• Furthermore, a DRL-SAUD with a built-in Actor-Critic
module is proposed, where the previous experience is
utilized for faster convergence. A data-driven paradigm is
enabled by training deep neural networks, which resolves
the performance degradation due to quantization error and
the curse of dimensionality considering continuous state
and action spaces.

The rest of this article is organized as follows. Section II
reviews the related prior work. The system model of massive
random access is presented in Section III. The proposed
schemes of RL-SAUD and DRL-SAUD for intelligent and
dynamic ACB factors and massive access control are described
in detail in Section IV and Section V, respectively. The theo-
retical performance analysis is given in Section VI. Simulation
results are reported in Section VII, which is followed by the
conclusion in Section VIII.

II. RELATED WORK
In the initial stage of random access, users intending to

access the network send their pilots on the physical random
access channel, and the gNB detects the active user according
to the known pilot sequences [14]. This is the first step in
random access, which aims to detect the correct user to estab-
lish a connection for information transfer. Unlike traditional
random access, in the scenario of massive random access, it is
impossible for each user to exclusively occupy an orthogonal
pilot resource due to excessively huge amount of users [15].
Therefore, the performance of random active user detection
has always been the bottleneck in massive random access [16],
[17]. So far, the solutions in the existing literature can be
roughly divided into two categories, i.e., scheduling-based
random access schemes and scheduling-free random access
schemes.

Scheduling-based random access schemes mainly focus
on collision avoidance by reasonably allocating orthogonal
time-frequency resources to users for user detection, access
control and signal transmission. For instance, a dynamic back-
off frame adaptation scheme was proposed to mitigate access
conflicts [18]. Some solutions allow devices to adaptively
occupy available access time slots [19], [20]. Nishimura et al.
proposed a strongest user conflict resolution protocol within
a grant-based random access paradigm, which significantly
reduced failed access attempts [21]. A scheme distributes
available random access resources based on learning automata,
which can reasonably control the massive access requests from
MTC devices [22]. Additionally, a priority-based ACB (PACB)
control scheme divides users into multiple classes based on
latency requirements, and implements dynamic ACB control
to provide satisfactory quality-of-service (QoS) for multiple
services [11]. Nevertheless, as the number of potential users
grows, limited orthogonal resources impairs the scalability of
the network [8].

The scheduling-free random access solution allocates a
non-orthogonal pilot sequence to the user upon its initial
access into the network. In subsequent access cycles, the
user can access the network without requesting orthogonal
resources in advance, reducing the signaling overhead and
transmission delay [23]. For the received non-orthogonal sig-
nals that are mixed up, the sparse recovery-based method
utilizes the sparsity of the signals to handle the interference
due to non-orthogonality [24]. By taking advantage of the
sparsity of active user requests, the SAUD algorithm has been
widely studied in the literature. For instance, Hong et al.
implemented a CS algorithm for user detection based on
channel information with different precisions [9]. A modified
approximate message passing algorithm exploited the struc-
tured sparsity in non-coherent transmission to enhance the
scalability as the number of potential users increases [25].
Based on the inherent structured sparsity of user activities in
the non-orthogonal multiple access (NOMA) system, an itera-
tive user detection algorithm was proposed [26]. Zhang et al.
employed the block sparse Bayesian learning method to solve
the problem of AUD and channel estimation in NOMA,
which implemented high-quality data detection and channel
estimation with moderate time complexity [27]. Additionally,
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the user detection problem was formulated as a joint sparse
support recovery problem with multiple measurement vec-
tors [28].

However, although SAUD is more suitable for massive
access, its performance cannot be guaranteed without proper
user access management due to the variations of channel
conditions, random noise, and the number or the proportion
of active users. During peak traffic periods, the sparsity of
user access activity can be destroyed, resulting in inaccurate
user detection and low access efficiency. As a standard access
control mechanism, the ACB scheme manages the access of
users with different priorities to connect to the network in
a time-sharing manner [29], [30]. However, the model of
massive random access is complex and the mutual influence
between different environmental factors is implicit, making
it difficult for conventional convex optimization based ACB
schemes to adapt to the dynamic and intricate environments.
Even if a reasonable model can be established, it is still
difficult to efficiently analyze a large amount of data generated
by the massive random access system.

To this end, if RL is introduced in this problem, an RL agent
can utilize the utility or value function obtained from interact-
ing with the environment to update its strategy, enabling it
to adaptively and rapidly make favorable decisions that adapt
to the time-varying environments [31]. At the same time,
the closed-loop policy update paradigm eliminates the need
for complex modeling of the multi-parameter and dynamic
environments [32], [33]. Furthermore, the emerging and pop-
ular deep reinforcement learning (DRL) technique, which
combines deep neural networks with RL to train enhanced
intelligent agents with large-scale datasets, can be utilized
to achieve more precise control performance [34], [35]. For
example, a DRL-based massive random access scheme is
designed to achieve continuous and optimal selection of the
access time slot [34]. The dueling deep Q-Network is pro-
posed to achieve a higher level of user satisfaction through
the trade-off between access delay, energy consumption and
other factors [35]. Moreover, DRL has also been adopted to
solve frequent switching, access contention window adaptive
determination, etc. [36], [37], and [38].

III. SYSTEM MODEL

The model of massive random access to a massive MIMO
network considered in this paper is illustrated in Fig. 1.
Assume that there are in total N potential users within the
network. Let U represent the set of all the potential users,
and let Ua represent the set of the active users. An activity
indicator αn is used to indicate the activity of the n-th user,
i.e., αn = 1 indicates that the n-th user has requested for
access at the current time slot, and otherwise it is equal to
zero. In the realistic process of establishing a connection with
the gNB, an active user with a single antenna sends a unique
pilot to the gNB equipped with M antennas in the radio access
network, where the pilot is previously assigned to the active
user by the gNB.

During a typical process of a contention free random
access link establishment, three signaling messages denoted
by MSG1, MSG2 and MSG3 are sent between the active

Fig. 1. Massive random access to a massive MIMO network: The gNB
serves as an intelligent agent and physical-layer access point for a massive
number of users with different priority ACB classes; Different QoS and access
requests required by heterogeneous vertical services, time-varying channel
environments, and various scenarios should be dynamically supported with
adaptive switching capability.

user and the gNB to convey the unique information of the
active user, the response of the gNB, and the acknowledge
character of the active user. To be specific, in time slot t, active
users modulate their unique pilots λt

k = [λt
k,1, . . . , λ

t
k,N ]T ,

k = 1, 2, . . . ,K, onto K OFDM sub-carriers for transmission,
which can be regarded as MSG1. The channel matrix of
sub-carrier k from N potential users to the gNB is denoted
by Ht

k = [ht
k,1, . . . ,h

t
k,N ], where ht

k,n ∈ CM denotes the
channel response vector from the single-antenna user n to the
M -antenna gNB. Thus, the measurement vector yt

k ∈ CM on
sub-carrier k received by the gNB is represented as

yt
k =

N∑
n=1

αt
k,nλt

k,nht
k,n + zt

k = Ht
kΛ

t
k︸ ︷︷ ︸

H̃t
k

αt
k + zt

k, (1)

where Λt
k = diag{λt

k,1, . . . , λ
t
k,N} is a diagonal matrix

whose diagonal elements are composed of the pilot vector
λt

k, and zt
k ∈ CM represents the background noise. For

simplicity of notation, let H̃t
k represent the normalized channel

matrix Ht
kΛ

t
k, which represents the original channel matrix

Ht
k normalized by the pilots Λt

k. It is worth noting that,
the normalized channel matrix H̃t

k can be regarded as an
observation matrix in the framework of CS.

If the unknown activity indicator vector for the k-th sub-
carrier αt

k = [αt
k,1, . . . , α

t
k,N ]T in (1) has a sparse property,

i.e., the number of active users are much less than the
total users, and the observation matrix satisfies the restricted
isometry property, it is high probable that it can be recovered
with bounded error from the measurement vector yt

k according
to the CS theory [4]. Then, the SAUD problem can be modeled
as a sparse recovery problem to estimate the active user set,
i.e., the positions of nonzero entries, of the unknown activity
indicator vector αt

k for sub-carrier k [39].
The mechanism of massive random access requests with

a series of pilot blocks sent by the active users with access
requests represented in the time, sub-carrier and antenna
domains is visualized in Fig. 2. The sparse recovery problem
is actually to estimate the final activity indicator vector αt,
which can be decomposed into K sub-problems corresponding
to each of the K pilot sub-carriers, as given in Eq. (1).
Specifically, each of the activity indicator vectors α̂

t
k =

[α̂t
k,1, . . . , α̂

t
k,N ]T , k = 1, 2, . . . ,K, can be estimated first
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Fig. 2. Visualization of the massive random access requests, with a series
of pilot blocks sent by the active users with access requests represented in
the time, sub-carrier and antenna domains. The size of each pilot block is
determined by the number of potential users in the network and the number
of antennas at the gNB. On a certain time-frequency resource, the subset of
active users with access requests shows sparse characteristics compared to the
set of the total potential users in the network.

by solving its corresponding sub-problem yt
k = H̃t

kαt
k + zt

k,
k = 1, 2, . . . ,K; Then, the K estimates {α̂t

1, α̂
t
2, . . . , α̂

t
K} can

be regarded as K voters and combined to jointly determine the
estimated final activity indicator vector α̂

t = [α̂t
1, . . . , α̂

t
N ]T :

For a potential user n in the network, if more than half of the
K voters judge it to be active, i.e., 1/K

∑
k α̂t

k,n > 0.5, user
n will be finally detected as active and the n-th element α̂t

n

of vector α̂
t will be marked as one; otherwise it is considered

inactive and marked as zero. This voting process can be
represented by

α̂t
n =

 1,
1
K

K∑
k=1

α̂t
k,n>0.5,

0, otherwise.

(2)

After the active users are detected by SAUD via (2), the gNB
sends a random access response, i.e., MSG2, to the detected
users.

Starting from sending their pilots, the active users start
a timer window to capture the feedback of gNB. If a user
successfully parses the response corresponding to the previous
MSG1 within this timer window, the device will feed back an
acknowledge character (ACK), i.e., MSG3, to the gNB, indi-
cating that the connection has been successfully established.
Otherwise, it is considered as reception failure.

IV. REINFORCEMENT-LEARNING-ASSISTED SPARSE
ACTIVE USER DETECTION FOR MASSIVE

RANDOM ACCESS CONTROL

The performance of SAUD relies heavily on the sparsity of
access requests and the channel state. Thus, the access flow
control of the potential users in the network should be carefully
and properly managed. To this end, we propose an RL-assisted
SAUD (RL-SAUD) scheme in this section, which introduces
the ACB mechanism to coordinate the access requests of the
users. The scheme aims to adjust the ACB factors reasonably
and dynamically, and improve the detection accuracy of the
SAUD while allowing as many users as possible to access
to satisfy the requirements of various services. We will first
introduce the ACB mechanism for flow control, and then
present the proposed RL-SAUD scheme in detail in this
section.

A. Access Class Barring (ACB) for Flow Control

In various heterogeneous services with excessively massive
concurrent access requests, the sparsity of the activity indicator
vector in problem (1) may be destroyed, which reduces the
probability of accurate user detection and results in access
failure [11]. Therefore, the gNB needs a reasonable strategy
to control the access traffic, and ACB is a good candidate.

The ACB flow control mechanism divides the users into
multiple classes according to their access priorities. Suppose
there are L classes, the users in class l are represented by
the set Ul, and the number of elements in this set is Nl. The
intelligent agent at the gNB generates different ACB factors
{pl ∈ [0, 1]}Ll=1 for each of the L classes to perform traffic
management via a procedure called ACB check. In the process
of ACB check, a certain active user n ∈ Ul with access require-
ments randomly samples a value qn ∈ [0, 1] before sending its
pilot: Only if qn ≤ pl will user n send the pilot, otherwise it
will back off to a random sampling time within a predefined
range and wait for the next ACB check procedure [40].
With the support of the ACB flow control mechanism, the
number of devices accessing the network in the same time
period can be properly controlled and coordinated, which
helps preserve the sparsity of the access requests of active
users.

In order to support massive access and the coexistence of
various heterogeneous services in a time-varying environment,
a closed-loop control scheme based on RL is designed to adjust
the ACB factors dynamically. The ACB factors are determined
by the intelligent RL agent deployed at the gNB, and will be
broadcast to all the potential users within the network, which
will be described in detail in the next sub-section.

B. Reinforcement Learning-Assisted Sparse Active User
Detection (RL-SAUD) for Massive Random Access

First, we present the model of interactions between the
intelligent agent, i.e., the gNB, and the environment, i.e., the
users within the network, which can be regarded as a Markov
decision process (MDP). In fact, the closed-loop control is
actually an MDP process, in which the intelligent agent is
enabled by the RL framework. The details of the interactions
in the closed-loop access control process are listed as follows.

The proposed RL-assisted SAUD algorithm is summarized
in Algorithm 1. Specifically, to apply the Q-learning method,
the ACB factor for class l is quantized into X1 levels, i.e.,
pt

l ∈ Ω ∆= {i/X1, 1 ≤ i ≤ X1}, where Ω is the set of feasible
actions in RL, i.e., the value of ACB factors, for a certain class
of users. After the selected action, i.e. ACB factor vector pt =
[pt

1, . . . , p
t
L]T is performed, different classes of users perform

the ACB check procedure, which generates a set of active users
Ua and a corresponding activity indicator vector αt. Then,
the users in set Ua will send their unique pilot sequences to
the gNB. The gNB estimates the activity indicator vector α̂

t

via the SAUD algorithm, and then transmits MSG2 to the
detected active users. The SAUD algorithm is summarized in
Algorithm 2, where [H̃k]∗ and [H̃k]† represent the conjugate
and Moore-Penrose inverse of the normalized channel matrix
H̃k of sub-carrier k as given in (1), respectively.
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Algorithm 1 Reinforcement Learning Assisted Sparse
Active User Detection With Traffic Flow Control
(RL-SAUD)

1 Initialization:
2 Q-values Q(st,pt) in Q-table
3 Initialize a random state s0

4 for t = 1, 2, 3, . . . do
5 In state st, choose action pt via (3)
6 Calculate number of access-permitted users

N t
p =

L∑
l=1

pt
lN

t
l

7 Active users to perform ACB check using pt and
send MSG1 to gNB if passed

8 gNB performs SAUD in Algorithm 2 and feed
back MSG2

9 Active users detect MSG2 and send MSG3 back to
gNB

10 gNB counts the number of valid access users N t
v

via ACKs in MSG3
11 Calculate detection accuracy ct = N t

v/N
t
p

12 Formulate the next state st+1 = [pt, ct]
13 Obtain current system utility ut via (4)
14 Update the Q-table using (5)
15 end

The active user who successfully receives MSG2 in the
timer window returns an ACK to the gNB, and the gNB
estimates the detection accuracy ct accordingly. For the con-
venience of referring to the past information, the state of the
RL-based algorithm is composed of the ACB factor vector
and the detection accuracy at the previous time slot, i.e.,
st = [pt−1, ct−1] ∈ S . The state implies some information
of the system, such as the mapping from pt to ct, which
can reflect the influence of some dynamic factors, such as
user mobility, the number of active users, and the change of
environmental noise, on the accuracy of SAUD at time slot
t. Each state-action pair corresponds a Q-value, forming a
Q-table of size X1

LX2 × X1
L, where X2 is the number of

quantization levels of the detection accuracy ct.
The agent tends to choose the currently optimal action, i.e.,

pt = p∗ that maximizes the feedback Q value Q(s,p) in
the current state st, but in this way some actions might not
be explored, which might result in stuck in a local optimum.
In this regard, the ϵ-greedy method provides a certain small
probability to adopt a random strategy by setting an ϵ value,
so that every feasible action might be explored, which is given
by

Pr
(
pt = p∗

)
=


1− ϵ, p∗ = arg max

p∈ΩL

Q
(
st,p

)
,

ϵ

|X1 + 1|
, otherwise.

(3)

where ΩL is the action space. Based on (3), the probability of
choosing the action with the largest Q-value is 1− ϵ.

The system utility function ut is designed so as to strengthen
the policy of choosing a favorable action over the iterative

Algorithm 2 Sparse Active User Detection (SAUD)

1 Input:
2 Channel matrix {H̃k}1≤k≤K

3 Received signal {yk}1≤k≤K and step size s
4 for k = 1, 2, 3, . . . do
5 Initialization:
6 F0 = ∅, θ = 1, i = 1 and residual r0 = yk

7 while true do
8 Si = Max(|[H̃k]

∗
ri−1|, s× θ)

9 Ci = Fi−1 ∪ Si

10 F = Max(|[H̃k]
†
Ciyk|, s× θ)

11 r = yk − [H̃k]F [H̃k]†F yk

12 if ||r||2 < 0.01 then
13 break
14 else if ||r||2 > ||ri−1||2 then
15 θ = θ + 1
16 else
17 Fi = F , ri = r, i = i + 1
18 end
19 α̂k = [H̃k]†F yk

20 end
21 Detect the active user α̂ via (2)
22 Output: α̂

learning process, which is given by

ut = ct
L∑

l=1

pt
lrlN

t
l − ρ1

1
L

L∑
l=1

(pt
l − pt)

2 − ρ2(1− ct), (4)

where rl is the access priority score for class l, with a
higher score indicating a higher access priority. The first term
to the right of equation (4) represents the quantity of the
valid accessed users weighted by the access priority scores.
Intuitively, if more users with higher access priority scores
are permitted to access and accurately detected, i.e., valid
accessed, the system utility should get a raise. The second and
third terms in (4) both play the role of penalty on the utility.
Specifically, the second term in (4) represents the variance
of the elements in pt weighted by a coefficient ρ1, which
plays the role of a penalty on the policy ignoring the access
of the users in low-priority classes. If the variance is large,
it implies that the users in some of the low-priority classes
are hardly permitted to access the network, which is not a
favorable decision especially for mMTC services with massive
users of different priority scores required to access. Thus, the
agent can guide the algorithm to learn a policy favorable for
massive access control in mMTC services by setting a positive
value of the coefficient ρ1 in the utility function (4).

On the other hand, for uRLLC services, the reliability and
stability are utmost important. In this case, the third term in (4)
plays the role of a penalty on the detection error weighted
by a coefficient ρ2. Thus, the agent can easily switch to a
policy favorable for accurate and reliable detection in uRLLC
services simply by setting a positive value of ρ2 to include
penalty on detection error. Consequently, properly setting the
two coefficients ρ1 and ρ2 for the two penalty terms will lead
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to an appropriate tradeoff between different QoS requirements
of various heterogeneous services, and provide good support
of flexible switching between them.

In state st, the agent performs the action pt, and the state is
transferred to st+1, which will trigger the update of the record
Q(st,pt) in the Q-table using the Bellman equation as given
by

Q(st,pt)← (1−ϖt)Q(st,pt)

+ ϖt(ut + β max
p̂∈ΩL

Q(st+1, p̂)), (5)

where ϖt ∈ (0, 1) and β ∈ (0, 1) represent the decaying
learning rate and the discount rate, respectively. The update of
the Q-table is driven by the currently obtained system utility
function ut as given in (4), which allows the RL policy to
keep up with the time-varying environment.

It is worth noting that, the Q-learning method adopted by
the proposed RL-SAUD scheme is a discrete action control
approach, which is equivalent to sampling from the exact
policy. In order to convey more specific information to achieve
satisfactory performance, the quantization level of the states
and actions should be smaller. However, this results in an
exponential increase in the size of the Q-table, which costs
too much computational complexity and storage overhead.
In addition, each interaction is only learned once and the
experience is not well exploited for future learning, which
limits the potentials of big data-driven approaches. Therefore,
it is necessary to introduce the DRL technique, i.e., a data-
driven paradigm enabled by training the deep neural networks,
to resolve the performance limitation due to discrete quantifi-
cation and dimensional curse of continuous state and action
spaces, and make full use of previous experiences for faster
convergence towards learning the optimal strategy.

V. DEEP-REINFORCEMENT-LEARNING-ASSISTED SPARSE
ACTIVE USER DETECTION FOR MASSIVE

RANDOM ACCESS CONTROL

In this section, a twin delayed deep deterministic (TD3) pol-
icy gradient algorithm based on the Actor-Critic framework is
introduced to dynamically adjust the ACB factors and properly
coordinate the access requests, thereby improving the number
of valid access users and the accuracy of SAUD. Compared
with the RL-SAUD scheme, the proposed DRL-SAUD scheme
uses data-driven approaches to train deep neural networks to
resolve the problem of quantization loss and high-dimensional
state and action spaces, and accelerate the convergence rate of
the access control strategy. In fact, the TD3 algorithm adopted
in the DRL-SAUD scheme is a cutting-edge DRL-based
algorithm with some favorable features: i) The Actor-Critic
framework underlying TD3 is very helpful for offline model
testing; ii) Deep neural networks enable the state of the DRL
agent to convey more complex information such as the channel
state information, which is closely related with the dynamism
of the environment, making it easier for the agent to capture
the user mobility; iii) Better to realize continuous action
control, and iv) Accelerating the convergence of learning via
experience replay.

Fig. 3. Architecture of TD3-enabled dynamic control of ACB factors: Active
users get access via the ACB factors determined by the intelligent agent at
the gNB, powered by the DRL-assisted access control policy.

The DRL-based approach utilized in this paper is illustrated
in Fig. 3. Specifically, an evaluation network, i.e., the Critic,
processes and learns the experience obtained by the policy
network, i.e., the Actor, and then passes the Q-value to the
Actor for learning. In this way, the Actor is responsible for
action decisions, and the Critic is responsible for scoring
the actions. In the framework of TD3, closed-loop offline
training can be performed using the Actor-Critic networks
to optimize for an effective model before it is applied to
the realistic environment, which can significantly improve the
testing performance of the model and the user experience
compared with the purely online learning method, especially
at the beginning of the testing phase [41].

As shown in Fig. 3, the TD3 architecture consists of six
networks, including the current Critic 1, Critic 2 and Actor,
and their corresponding target networks. The current networks
are intended to interact with the environment in real time,
and the target networks are responsible for providing reference
values for updating the current networks. By employing two
Critic networks, the agent can choose a smaller Q-value during
the update process to avoid overestimation of Q-values.

The proposed DRL-SAUD algorithm enabled by TD3 is
summarized in detail in Algorithm 3. Different from the RL-
based scheme, the state st = [pt−1, ct−1, [Hk]t−1

1≤k≤K ] is for-
mulated by directly concatenating the real continuous-valued
action pt−1, detection accuracy ct−1, and channel matrices
[Hk]t−1

1≤k≤K at the previous time slot without quantization. The
high-dimensional features of the state can be extracted by the
Actor, and then a continuous action can be determined and
output via the policy π(s|ω). Random exploration of the agent
is achieved by adding an additive noise term with variance of
ϵ1 ∼ N (0, σ) instead of the ϵ-greedy method, so that the
final action to be performed is slightly modified as given by
pt = π(st|ω)+ϵ1. A too small value of the additive noise will
make the action no longer exploratory, while a too large value
will refrain the exploitation of the learnt policy, so a proper
tradeoff between exploration and exploitation can be achieved
by setting an appropriate value of the additive noise.

After the ACB check, the active users start requesting
access to the gNB, and then the gNB obtains the next state
st+1 = [pt, ct, [Hk]t1≤k≤K ] and ut. The information including
the current state, the next state, the current utility, and the
current action will be packed into a transition as an experience,
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i.e., ℑt = {st,pt, ut, st+1}, and stored in an experience replay
buffer B. The replay buffer enables previous experiences to
be learned from repeatedly to achieve faster convergence
to optimal strategy. Meanwhile, outdated transitions will be
replaced by the latest ones on a rolling basis to keep track of
the variation of the environment.

When a number of transitions have been captured in the
replay buffer, the agent randomly selects J transitions (a mini-
batch) from the replay buffer, i.e., {s(j),p(j), u(j), s(j+1)}, j ∈
[1,J ] to update the weights of the networks in real time. The
Target Actor first computes a reference action p̃ for s(j+1)

p̃← π′(s(j+1)|ω′) + ϵ2, ϵ2 ∼ clip(N (0, σ̃),−g, g), (6)

where the policy noise ϵ2 is a random variable following a
normal distribution clipped by±g. The additive policy noise ϵ2
can smooth the Q-function as the output of the Critic network,
and enhance the reliability of the Q-value provided by the
Critic with the fluctuation of the actions. Then a reference
value yr of the Q-value

{
Qi(s(j),p(j))

}
i=1,2

is given by

y(j)
r ← u(j) + γ min

i=1,2
Qi
′
(
s(j+1), p̃|ζi

′
)

, (7)

where γ is a discount factor. The Critic network uses the
Nadam optimizer to minimize the loss function as given by

ζi ← arg min
ζ

1
J

∑
j

(
y(j)
r −Qi(s(j),p(j)|ζ)

)2

. (8)

Different from the update of the RL-based scheme, the
DRL-based scheme manipulates more data in one epoch of
training, and a newly recorded experience can be learned
several times in subsequent training.

The policy network is updated more slowly than the eval-
uation network, which ensures that the Critic has minimized
its own estimation error before providing scores for policy
updates [41]. In the design of the proposed scheme in this
paper, the Critic is updated d times every time the Actor is
updated, and the Nadam optimizer is adopted to maximize the
policy gradient as given by

ω ← arg max
ω

1
J
∇pQ1(s,p|ζ1)|s=s(j),p=π(s(j))∇ω

× π(s|ω)|s=s(j) . (9)

In (9), ∇pQ1(s,p|ζ1) represents the gradient of Q1(s,p|ζ1)
with respect to p, and ∇ωπ(s|ω) is the gradient of π(s|ω)
with respect to ω.

Every time the Actor is updated, a soft update is also
performed on each of the target networks, which is given by

ζi
′ = δζi + (1− δ)ζi

′, ω′ = δω + (1− δ)ω′, (10)

where δ ∈ (0, 1] is a memory coefficient that can be properly
set to achieve tradeoff between convergence rate and accuracy.

VI. PERFORMANCE ANALYSIS AND EVALUATION

In this section, we present theoretical performance analysis
and evaluation on some important issues related with the
proposed schemes. First, for the SAUD algorithm, the detec-
tion accuracy with respect to the sparsity of the user access

Algorithm 3 DRL-Assisted Sparse Active User Detec-
tion Enabled by TD3 for Access Flow Control
(DRL-SAUD)

1 Initialization:
2 Actor network π(s|ω)
3 Critic1 network Q1(s,p|ζ1), Critic2 network

Q2(s,p|ζ2)
4 Target network π′(s|ω′), Q1

′(s,p|ζ1
′), Q2

′(s,p|ζ2
′)

5 Reset replay buffer B
6 Generate a random initial state s0

7 for t = 1, 2, 3, . . . do
8 Determine the action pt = π(st|ω) + ϵ1 for state st

9 Active users send MSG1
10 gNB performs SAUD in Algorithm 2 to detect

active users, and then feeds back MSG2
11 Detected active users receives MSG2 and returns

ACK
12 gNB formulates next state

st+1 = [pt, ct, [Hk]t1≤k≤K ] and derive current
system utility ut

13 Store transition {s(j),p(j), u(j), s(j+1)} in replay
buffer B

14 Randomly sample J transitions from B
15 Obtain the reference action p̃← π′(s(j+1)|ω′) + ϵ2
16 Calculate the reference Q-value yr using (7)
17 Update ζi via (8)
18 if (t mod d = 0) then
19 Update ω via (9)
20 Soft update weights of target networks ζi

′ and
ω′ using (10)

21 end
22 t = t + 1
23 end

requests is theoretically analyzed. Then, the convergence of
the proposed RL-based schemes is demonstrated. Moreover,
for the RL-based schemes, the theoretical bound of the utility
function is derived, and the computational complexity of the
proposed schemes is evaluated.

A. Performance Analysis of SAUD

The SAUD problem as formulated in (1) can be convex
relaxed by ℓ1-norm minimization of the unknown sparse activ-
ity indicator vector [42], which yields a convex optimization
problem as given by

α̂ = arg min
α∈CN

{
1

2M

∥∥∥y − H̃α
∥∥∥2

2
+ εN∥α∥1

}
, (11)

where the first term in the minimization problem represents
the regularization of the ℓ2-norm error of sparse recovery.
The second term is the ℓ1-norm of the unknown sparse
activity indicator vector α, which encourages a sparse solu-
tion of α. A coefficient εN is adopted to make tradeoff
between the measurement error due to sparse recovery and
the sparsity requirement of the active users, which is given by
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εN =
√

2φ log N
ηN , φ > 2. For example, when the number of

user access requests increases sharply, the value of εN can be
reduced to moderately relax the requirement of access sparsity.
After performing SAUD, the set of active users can be obtained
from the support of the recovered activity indicator vector α̂.
The active user detection accuracy c is then obtained by the
ℓ1-norm difference between the recovered and the real activity
indicator vectors, which is given by

c = 1−
∥α− α̂∥1

N
. (12)

Theorem 1: The active user detection accuracy c is lower-
bounded by

c ≥ 1− a1 exp (−a2min {∥α∥1, log(N − ∥α∥1)}) , (13)

if the following conditions are satisfied

∥α∥1,max ≥
ηN(1− 1

φ )

2 log N

|λk,n|min > ϑεN = ϑ

√
2φ log N

ηN
. (14)

Proof. See the details in Appendix A. ■
Remark 1: It is indicated from Theorem 1 that, the active

user detection accuracy is closely related with the sparsity
of the user access requests. The two constraints in (14) are
the constraint on the sparsity of the user access requests
and the constraint on the minimum amplitude of the user
pilot |λk,n|min, respectively. ∥α∥1,max denotes the maximum
sparsity level of the activity indicator vector that is tolerable
in the network, which is subject to the constraint as given by

M = 2
(
∥α∥1,max +

1
ε2

N

)
log

(
N − ∥α∥1,max

)
. (15)

For the sparse measurement model as given in (1), η =
M/N represents the compressive measurement ratio, which
is the ratio of the measurement data size, i.e., the number
of antennas, to the length of the sparse vector, i.e., the total
number of potential users. The parameters of ϑ and φ are set
manually in the optimization process.

B. Convergence Analysis of Reinforcement Learning Based
Scheme

For the proposed RL-SAUD scheme, assuming that
Qπ(s,p) is the target Q-table in a control task, we use Qt(s,p)
to represent the updated value of the Q-table in the t-th update
iteration, and it is updated by

Qt+1(s,p)← Qt(s,p)
+ ϖt[ut + β max

b∈ΩL

Qt(s′,b)−Qt(s,p)]. (16)

Besides, we define the update operator of the Q-table as T,
which is given by

TQ(s,p) =
∑
s′∈S

Υp(s, s′)[u(s,p, s′) + β max
b∈ΩL

Q(s′,b)],

(17)

where Υp(s, s′) is the probability that the environment
changes from state s to s′ when the agent chooses action p.
When the Q-table converges, a further update iteration will
not produce any new changes, that is

TQπ(s,p) = Qπ(s,p). (18)

Then, the RL-SAUD scheme will finally converge to the target
policy, which is supported by the following theorem:

Theorem 2: Denoting the error between the calculated
Q-table of RL-SAUD and the target Q-table in the training
process as ∆t(s,p) = Qt(s,p)−Qπ(s,p), over the iterations
of training, we have:

lim
t→∞

∆t(s,p) = 0, (19)

which shows that ∆t(s,p) will converge to zero as t increases.
Proof. See the details in Appendix B. ■

C. Theoretical Bound and Computational Complexity of
Reinforcement Learning Based Schemes

To evaluate the theoretical performance of the proposed
RL-based and DRL-based schemes, the system utility as in (4)
can be derived in closed-form for a typical case with each
access priority score identical, which is presented in the
following theorem.

Theorem 3: If the access priority score of each user class is
identical, the problem of maximizing the system utility function
u as given in (4) is turned into a convex problem that has a
tractable theoretical bound.

Proof. See the details in Appendix C. ■
Remark 2: When there is no difference in access priority

of the users in the network, i.e., L = 1, the first penalty term
in (4) intended to mitigate the variance of the ACB factors
of different priority classes will disappear. In this case, the
RL-based and DRL-based schemes are actually dynamically
searching for a proper policy of access control to approximate
the optimal solution or a sub-optimal solution towards the
theoretical bound derived in Theorem 3.

When different user classes have different access priority
scores, more uncertainty is brought to the network. Consid-
ering the time-varying property of the environment and the
diverse channel conditions and QoS requirements of different
user classes, it is not guaranteed that the optimal solution of
the original problem is still tractable in closed-form. Hence,
the ability of RL-based schemes in searching for a sub-optimal
solution towards the system utility in complex environments
over a reasonable time frame can be exploited. In the decision
process of the RL-based and DRL-based schemes, there are
two tradeoffs that need to be considered: The tradeoff between
the number of high-priority permitted-access users and the
variance in the number of permitted-access users with different
priority scores, and the tradeoff between the total number of
permitted-access users and the active user detection accuracy.

Next, we will investigate the computational complexity of
the proposed RL-based and DRL-based schemes. According
to the related research in literature [43], when the number of
training episodes of an RL-based algorithm is τ with each
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episode including ξ time slots, the computational complexity
is given by

T1 = O(τξ) (20)

if τξ > poly(X1
LX2, X1

L, τ), where poly(a, b, c) is a
third-order polynomial whose three roots are a, b, and c.

With the increase of quantization level of the state and
action spaces, the number of feasible actions and states
increases dramatically, which costs more time slots ξ in each
episode for the RL-SAUD scheme to converge. As the side-
effect to reduce the performance loss caused by quantization
error, the increase of action-state pairs makes the RL-based
algorithm cost more searching and computational overhead in
random exploration at the early stage of the learning process.
For the DRL-SAUD scheme, the computational complexity
of float-point calculation in the deep neural networks, which
is measured by float-point operations per second (FLOPs),
is the main contributor to the overall complexity. In the devised
architecture, a network model including a single convolutional
neural network (Conv) layers with Ci input channels and
Co output channels, and two fully connected (FC) layers
is considered. Then, the computational complexity of the
proposed DRL-SAUD scheme is derived by the following
theorem.

Theorem 4: In the training process of the DRL-SAUD
algorithm with τ episodes and ξ time slots for each episode,
the computational complexity is given by

T2 = O
(
τξCiw

2
i Co((wi − v)/s + 1)2

)
(21)

where v and s denote the size and the stride of the convolu-
tional kernel, respectively; wi denotes the size of each input
channel of the Conv layer.

Proof. See the details in Appendix D. ■
Remark 3: The concept of open service in next-generation

communication enables manufacturers to expand the functions
of their network designs, and mobile operators can also support
the coexistence of multiple vertical services. In practical
deployment of multiple heterogeneous services, there is a
significant increase in the amount of input parameters to
the neural networks. Thus, it is difficult to analyze huge
amount of information of the environment and the system
by merely using a simple network of FC layers. Moreover,
numerous parameters in the FC layers slow down the compu-
tation and it is more likely to cause overfitting. By utilizing
Conv layers, one can reuse the parameters of the convolution
kernel without consuming too much computational complexity
overhead as shown in this theorem. This helps better extract the
high-dimensional features of the complex system and realize
a more efficient data-driven intelligent scheme for the agent.

VII. SIMULATION RESULTS

In this section, the performance of the proposed RL-SAUD
and DRL-SAUD schemes is evaluated through extensive sim-
ulations. Some typical metrics, such as the number of users
permitted to access and the active user detection accuracy, are
investigated to show the performance of the massive random
access control schemes. The number of users permitted to

access the network is investigated to show the performance
of access efficiency and throughput of the users, while the
active detection accuracy is investigated to show the reliability
and stability of the access requests. Further, we explore the
relationship among bit error rate (BER), detection accuracy
and proportion of active users. The effectiveness and adapt-
ability of the proposed schemes are validated in different
scenarios and various heterogeneous vertical services, such
as mMTC and uRLLC services. The tendence of the access
control strategy determined by the proposed schemes is also
demonstrated for different classes of users with different
access priorities.

The simulation configuration is set up as follows1: The
number of potential users residing within the network is set
to N = 300 and evenly divided into L = 2 classes with
different access priorities. The number of antennas of the gNB
is M = 128. The carrier central frequency is located at 2GHz,
the total number of OFDM sub-carriers is Nsc = 1024, and
the number of pilot sub-carriers is is K = 64. The parameter
configuration of the RL-SAUD scheme is as follows: The value
of ACB factor and user detection accuracy have both been
divided into five levels (X1 = 5 and X2 = 5). The learning
rate and discount rate of the Q-table are set to ϖt = 1/t
and β = 0.3, respectively. For the DRL-SAUD scheme, the
learning rate of the Critic applied for TD3 is set as 0.00001,
and the learning rate of the Actor is set as 0.00005 due to
delayed update. The Actor and the Critic share an identical
network architecture, which consists of one Conv layer and
two FC layers. The capacity of the replay buffer is set as
1000. The size of a mini-batch is 128. The variance of the
additive noise to encourage exploration is set as ϵ1 = 0.15.
The variance of the policy noise for the Target Actor is set as
ϵ2 = 0.25, whose clip boundary g is set as 0.4. The delayed
update time is d = 4.

The performance of the proposed RL-SAUD and
DRL-SAUD schemes in the system utility, access efficiency,
and detection accuracy is reported in Fig. 4, where an mMTC
service with massive access requests from huge number
of users is considered. The fixed ACB control scheme
with SAUD [9] and the proactive PACB scheme [11] are
evaluated as the benchmarks, and the theoretical bound
is also depicted for comparison. First, the performance of
system utility is reported in Fig. 4(a). It can be observed
from Fig. 4(a) that, the proposed RL-SAUD and DRL-SAUD
schemes significantly outperform the benchmark schemes,
which validates the effectiveness of the proposed RL-assisted
mechanism in achieving a better access control utility for
massive access scenarios. It is also demonstrated that the
DRL-SAUD scheme is approaching the theoretical bound
of system utility, which verifies the superior performance
of the DRL-assisted architecture in case of complex
environments and high-dimensional state and action spaces.
The performance gain of DRL-SAUD over RL-SAUD

1In order to focus on the proposed RL-based model of massive access
control, the factor of hardware impairment has not been considered in this
paper, while its impact on the performance can be modeled using non-linear
filtering [44], evaluated by simulations, and effectively compensated for in
massive MIMO systems with a large number of antennas.
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Fig. 4. Performance of the proposed RL-SAUD and DRL-SAUD schemes in (a) system utility, (b) access efficiency, i.e., number of users permitted to
access, and (c) active user detection accuracy. An mMTC service with massive access requests from huge amount of users is considered and supported. Two
benchmark schemes, i.e. the fixed ACB control scheme with SAUD and the proactive priority-based ACB (PACB) scheme, are also depicted for comparison.

Fig. 5. The accuracy of active user detection versus the number, i.e., the
proportion, of active users.

validates the effectiveness of utilizing the TD3 architecture
with deep neural networks to extract more complex
information from the environment, and the degradation on
the RL-based scheme caused by quantization error.

Second, the performance of access efficiency, which is
indicated by the number of users permitted to access the
network, is reported in Fig. 4(b). It is observed from Fig. 4(b)
that, DRL-SAUD permits about 62 users to access the network,
while RL-SAUD permits about 53 users to access. Thus,
DRL-SAUD can support more users than RL-SAUD because
it overcomes the bottleneck of quantization error and can find
a better solution approaching the optimal bound, which is
favorable for mMTC services with massive users intended to
access. In comparison, the benchmark scheme with fixed ACB
only permits 48 users to access, reflecting lack of flexibility
to massive access requests. Since active users raise access
requests using orthogonal resources in the PACB scheme,
the maximum number of permitted users is the total number
of orthogonal resources, which causes stronger limitation on
the amount of users compared to the sparse active user
detection scheme. In addition, it can also be observed that, the
convergence rate of the three proactive schemes is ordered as
DRL-SAUD, RL-SAUD and PACB. Since a faster convergence
rate means a more up-to-date and precise control, DRL-SAUD
performs the best among them.

Third, the active user detection accuracy is reported in
Fig. 4(c). It is shown from Fig. 4(c) that, the user detection
accuracy of RL-SAUD and DRL-SAUD reaches approxi-
mately 94.93% and 88.07%, respectively. Although RL-SAUD

Fig. 6. The BER performance versus the number, i.e., the proportion, of active
users.

has a relatively higher detection accuracy than DRL-SAUD,
however, the number of permitted-access users of RL-SAUD
is much fewer than that of DRL-SAUD, which leads to a lower
system utility as reported in Fig. 4(a). This implies that a bit
decrease in detection accuracy can be compensated by a great
increase in the number of permitted-access users. Note that,
the intelligent agent bears in its mind that maximizing the
system utility function as given in (4) is its goal. Therefore,
an optimal trade-off in between should be pursued in order to
obtain a higher system utility, and this best trade-off strategy
is just the solution that the DRL-SAUD scheme is searching
for and finally converges to. Moreover, the user detection
accuracy of PACB converges to around 97%, which implies
that a highly reliable detection performance is achieved at the
cost of strict orthogonal resource requirements and limited user
access volume.

The performance of user detection accuracy and BER for
different access control schemes versus the number, i.e., the
proportion, of active users, is reported in Fig. 5 and Fig. 6,
respectively. The performance of user detection accuracy is
as shown in Fig. 5, with the number of antennas M = 128.
It is observed from Fig. 5 that, with the growing number of
active users, the RL and DRL-based schemes benefit more
and more evidently from their capability of adaptive learning
and controlling. When 40% users are active to request access,
the user detection accuracy of RL-SAUD and DRL-SAUD is
39.7% and 39.3% higher than that of the fixed ACB scheme
with SAUD, respectively. This verifies that the RL-SAUD and
DRL-SAUD schemes can guarantee the connection reliability
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and efficiency by adaptively controlling the massive user
access behaviors.

The BER performance for different access control schemes
versus the number of active users is reported in Fig. 6. It can
be observed from Fig. 6 that, the BER performance degrades
with the number of active users growing. Meanwhile, it is
noted that this performance degradation can be compensated
for by increasing the number of antennas, which is feasible
in practice for massive MIMO systems. As the proportion
of active users grows, it is shown that the RL-SAUD and
DRL-SAUD schemes can help the gNB configure more appro-
priate ACB factors for different user classes to achieve efficient
and intelligent access control, thereby improving the BER
performance compared to that of the fixed ACB scheme with
SAUD. In addition, if an mMTC service is considered, the
coefficient ρ2 for user detection error penalty in the utility
function u in (4) can be set relatively small, and then the
intelligent agent will be led to be more concentrated on the
amount of accessed users rather than the reliability, as implied
by Fig. 4(b) and Fig. 4(c). In this case, the DRL-SAUD
scheme prefers to allow more users to access to maximize the
system utility u, at the cost of a degradation in user detection
accuracy as shown in Fig. 4(c), and a slight degradation in
BER as shown in Fig. 6. A proper tradeoff between the number
of accessed users and the reliability of connections can be
achieved by adjusting the value of the coefficient ρ2.

As reported in Fig. 7, we verify the ability of the
DRL-SAUD scheme to adaptively switch between different
heterogeneous services. As described in Section IV-B, for the
uRLLC service, the third term of the system utility function
in (4) is activated by setting a positive value of the coefficient
ρ2, which plays a role of penalty on the user detection
error and thus encourages better reliability of connection.
Specifically, for the uRLLC service in the simulations, the
coefficient is set as ρ2 = 100.

The performance of active user detection accuracy for the
DRL-SAUD scheme applied in an mMTC service and a
uRLLC service is reported in Fig. 7(a). It is shown by the
results in Fig. 7(a) that, the detection accuracy of the uRLLC
service is about 5% higher than that of the mMTC service.
This improvement is beneficial for the agent, i.e., the gNB, to
make a prompt and effective response to a user who initiates
an access request in an uRLLC service. It can also be noted
from Fig. 7(a) that, in the early stage of the learning process,
the curve of detection accuracy for the uRLLC service has
a deep valley, but is then pulled up rapidly. This indicates
that the DRL-SAUD scheme firstly performs initial random
exploration to probe the environment, and then can rapidly
adjust its strategy and converge to an optimized solution
because of the influence of the penalty of detection accuracy
on the system utility.

On the other hand, the performance of access quantity, i.e.,
the number of users permitted to access, for the mMTC and
uRLLC service is reported in Fig. 7(b). It is shown that the
proposed scheme permits about 62 users to access for the
mMTC service, while about 51 users are permitted to access
for the uRLLC service. This result implies that the proposed
scheme aims to permit more users to access the network for the

Fig. 7. Performance of the proposed DRL-SAUD scheme applied in a uRLLC
service compared with that of an mMTC service: (a) Active user detection
accuracy; (b) Number of users permitted to access the network.

mMTC service, while it determines to sacrifice a bit of access
quantity to improve the reliability and stability of the access
connections for the uRLLC service. In the proposed RL-based
framework, the agent can easily switch from an mMTC service
with a policy favorable for a larger access quantity, to a uRLLC
service with a policy favorable for accurate user detection
and reliable access connection, simply by setting a positive
value of ρ2 to include the second penalty term on detection
error in the utility function in (4). In practical implementation,
rapid switching between different heterogeneous services can
be realized by simply adjusting the penalty coefficients.

To observe the behavior of the proposed DRL-SAUD
scheme when faced with users with different access priorities,
the access ratio of two differently prioritized classes of users,
i.e., Class 1 and Class 2, is reported in Fig. 8. The access ratio
of a certain class of users is defined as the percentage of the
users permitted to access the network with respect to all the
potential users in that class. Let r2/r1 represent the relative
priority between the two classes considered, which is defined
as the ratio of the priority score of Class 2 r2 with respect to
the priority score of Class 1 r1. In this case, the first penalty
term on the system utility in (4), i.e., the penalty due to the
variance of the access quantities between different prioritized
classes of users, is activated by setting the corresponding
coefficient as ρ1 = 120.

Specifically, the performance of access ratio for the users
in Class 1 and Class 2 are reported in Fig. 8(a) and Fig. 8(b),
respectively. Three cases with different values of relative
priority are investigated for comparison, i.e., r2/r1 is set as
0.5, 1, and 2. From Fig. 8 (b), it is observed that the access
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Fig. 8. The performance of access ratio, i.e. the percentage of users permitted
to access the network, for two classes with different access priority scores:
(a) Access ratio of Class 1 users with access priority score r1; (b) Access
ratio of Class 2 users with access priority score r2.

ratio of Class 2 is 30.9% in case of r2/r1 = 2, which is 9.39%
and 35.27% higher than the cases of r2/r1 = 1 and r2/r1 =
0.5, respectively, which indicates that the proposed scheme has
learned the tendence to allow more higher-prioritized users to
access the network to improve the system utility. Regardless
of whether r2/r1 = 0.5 or r2/r1 = 2, during the early stage
of training, i.e., over time slots [0, 100], the agent allows
a growing number of users for both two classes to access,
which is an exploration behavior to improve utility. However,
allowing too many low-priority users to access will obstruct
high-priority users to access, which limits a further increase
in utility. Therefore, the agent determines to prohibit some
low-priority users from accessing over time slots [100, 400],
sparing for more high-priority users.

It is can also be noted by comparing Fig. 8(a) and Fig. 8(b)
that, the access ratio of the two classes is similar to each other
in case of r2/r1 = 1, which implies that the proposed scheme
has learned to permit approximately the same amount of users
to access with the same access priority. This is because when
the access priorities of the two classes are equal, the agent
assigns similar ACB factors to them to minimize the nega-
tive impact of the variance penalty on system utility. The
results in Fig. 8 have verified the adaptability of the proposed
DRL-assisted scheme to different prioritized users or various
heterogeneous services with different QoS requirements.

VIII. CONCLUSION

Faced with the challenge of massive random access con-
trol in the next-generation radio access networks, this paper

has proposed an RL-assisted framework of dynamic access
control, which can be deployed in the intelligent agent at the
gNB. In order to preserve the sparsity of the access requests to
guarantee the accuracy of SAUD in case of ultra-dense traffic,
the proposed RL-SAUD scheme can dynamically adjust the
ACB control strategy in a closed-loop access control process.
A system utility function, which is in favor of increasing the
quantity of the users permitted to access the network, has
been devised and utilized to train the RL model, and two
penalty terms related with the variance of access ratio and the
detection accuracy are adopted to support a proper tradeoff and
flexible switching between different heterogeneous vertical
applications, such as mMTC and uRLLC services.

Furthermore, in order to overcome the quantization error of
the RL-based scheme due to discretizing the actions and states
using, the DRL-SAUD scheme has been designed based on the
Actor-Critic underlying TD3 framework. The information of
the environment can be better extracted by the deep neural
networks, and the policy and actions can be chosen from a
continuous space to obtain an improved solution approaching
the optimal bound. Past experiences are exploited to accelerate
the convergence of learning by using experience replay buffer.
The theoretical analysis and simulation results have validated
the efficiency, adaptability, and reliability of the proposed
schemes in dynamic and intelligent massive access control
for different QoS requirements, different vertical services
and different prioritized classes of users. The technique is
promising to be applied in the next-generation network archi-
tectures to provide an efficient and effective solution for the
ever-crowded and ever-complex radio access environments and
services.

APPENDIX A
PROOF OF THEOREM 1

Proof. According to related research in literature [42], it has
been proved that the active user detection accuracy c is lower-
boudnded by

c ≥ 1− a1 exp (−a2min {∥α∥1, log(N − ∥α∥1)}) , (A.1)

subject to the following constraint,

M ≥ 2
(
∥α∥1 +

1
ε2
N

)
log(N − ∥α∥1)

|λk,n|min > ϑεN (A.2)

where N , M , and ||α||1 denote the number of all the potential
users in the network, the measurement vector size, and the
sparsity level of the active user requests. According to the CS
theory [4], the sparsity level that can be recovered accurately
should be smaller than the number of measurement data M ,
so we have M > ∥α∥1,max. Then, we can derive that,

2(||α||1 +
1

ε2
N

) log(N −M)

≤ 2(||α||1 +
1

ε2
N

) log(N − ||α||1)

≤ 2(||α||1 +
1

ε2
N

) log N. (A.3)
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Substituting the constraint in (15) into (A.3), we have

M = 2
(
∥α∥1,max +

1
ε2

N

)
log

(
N − ∥α∥1,max

)
≤ 2

(
∥α∥1,max +

1
ε2

N

)
log (N)

≤ 2
(
∥α∥1,max +

M

2 log N

1
φ

)
log (N) , (A.4)

which is equivalent to

∥α∥1,max ≥
ηN(1− 1

φ )

2 log N
. (A.5)

Therefore, if the constraint in (14) is satisfied, the
lower-bound of the detection accuracy can be derived in (A.1),
which concludes the proof. ■

APPENDIX B
PROOF OF THEOREM 2

Proof. Let a random process ∆t be defined as:

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)F t(x). (B.1)

Lemma 1: ∆t will converge to 0 when the following con-
ditions are met [45]:
• 0 ≤ αt ≤ 1,

∑
t αt(x) =∞ and

∑
t [αt(x)]2 <∞

• ∃γ < 1, s.t.||E[F t(x)]||∞ ≤ γ||∆t||∞
• ∃C > 0, s.t.var[F t(x)] ≤ C(1 + ||∆t||2∞)

As defined in Theorem 2, we can get the following relation-
ship

∆t+1(s,p) = Qt+1(s,p)−Qπ(s,p)
= (1−ϖt)∆t(s,p) + ϖt[u(s,p, s′)

+ β max
b∈ΩL

Q(s′,b)−Qπ(s,p)]

= (1−ϖt)∆t(s,p) + ϖtF t(s,p). (B.2)

Thus, (B.2) has exactly conformed to the format of (B.1).
According to basic series theory, since the learning rate ϖt

decays in the manner of ϖt = 1/t, the series
∑

t ϖt will
diverge, while the series

∑
t (ϖt)2 will converge, so the first

condition in Lemma 1 is satisfied. The second condition can
be expressed as

E[F t(s,p)] =
∑
s′∈S

Υp(s, s′)[u(s,p, s′)

+ β max
b∈ΩL

Q(s′,b)−Qπ(s,p)]

= TQt(s,p)−Qπ(s,p)
= TQt(s,p)−TQπ(s,p). (B.3)

Then, we can prove that E[F t(s,p)] is contractible in the case
of infinite norm, as follows

||E[F t(s,p)]||∞ = ||TQt(s,p)−TQπ(s,p)||∞
= max

s,p
β|

∑
s′∈S

Υp(s, s′)[max
b∈ΩL

Qt(s′,b)

− max
b∈ΩL

Qπ(s′,b)]|

≤ max
s,p

β
∑
s′∈S

Υp(s, s′) max
a,b
|Qt(a,b)

−Qπ(a,b)|

= max
s,p

β
∑
s′∈S

Υp(s, s′)
∥∥Qt −Qπ

∥∥
∞

= β
∥∥Qt −Qπ

∥∥
∞ = β

∥∥∆t(s,p)
∥∥
∞. (B.4)

Since the discount rate β ∈ (0, 1), the second condition in
Lemma 1 is also satisfied. For the third condition

var[F t(s,p)] = E
[(

u(s,p, s′) + β max
b∈ΩL

Q(s′,b)−Qπ(s,p)

−TQt(s,p) + Qπ(s,p)
)2]

= E
[(

u(s,p, s′) + β max
b∈ΩL

Q(s′,b)

−TQt(s,p)
)2]

= var
[
u(s,p, s′) + β max

b∈ΩL
Qt(s′,b)

]
, (B.5)

Since the value of the system utility u and the Q-table is
bounded, the variance in (B.5) is bounded, thus there exists a
constant such that

var[F t(s,p)] ≤ C(1 + ||∆t(s,p)||2∞). (B.6)

This concludes the proof of the convergence. ■

APPENDIX C
PROOF OF THEOREM 3

Proof. If the access priority score of each class is identical,
or equivalently, the number of user classes is only one, i.e.,
L = 1, thus the total number of potential users in the network
and the ACB factor can be denoted by N = N1 and p =
p1, respectively. Since there is no difference in ACB factors
assigned to different classes, the first penalty term of the utility
function in (4) disappears, which is given by

u = cp1r1N1 − ρ2(1− c) = cprN − ρ2(1− c)
= f (p) prN − ρ2 (1− f (p))
= f (p) (prN + ρ2)− ρ2, (C.1)

where the ACB factor p ∈ [0, 1], and the function f (p) is
defined by a monotonically decreasing convex curve [11] with
properties given by

∂f (p)
∂p

≤ 0,
∂2f (p)

∂p2
< 0,

∂f (p)
∂p

∣∣∣∣
p→0+

→ 0−,

f (p)|p→1− → 0+. (C.2)

Hence, maximizing the system utility function as given
in (B.1) is a convex optimization problem. It can be verified
that the first derivative of the system utility u with respect to
the action p satisfies

∂u

∂p

∣∣∣∣
p→0+

=
∂f (p)

∂p
(prN + ρ2)+rNf (p) = rNf(0+) > 0,

∂u

∂p

∣∣∣∣
p→1−

=
∂f (p)

∂p
(prN + ρ2) + rNf (p)
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=
∂f (p)

∂p
(rN + ρ2) < 0. (C.3)

The second derivative of the system utility u with respect to
the action p is strictly negative, which is as given by

∂2u

∂p2
=

∂2f (p)
∂p2

(prN + ρ2) +
∂f (p)

∂p
(2rN + ρ2) < 0.

(C.4)

Therefore, it can be derived that the first derivative ∂u
∂p has a

unique zero solution within the feasible range of p ∈ [0, 1].
Consequently, the convex function u with respect to p has a
maximum value in the interval p ∈ [0, 1]. ■

APPENDIX D
PROOF OF THEOREM 4

Proof. For the convolutional neural network (Conv) layer
in the architecture as shown in Fig. 3, the input data can be
reshaped into a high-dimensional tensor of size Ci × wi ×
wi, where Ci is the number of input channels of the Conv
layer. When the Conv layer has Co output channels with each
channel equipped with a convolution kernel of size v× v and
stride s, the number of float-point operations consumed by
each Conv layer is calculated by

NFLOPs(Conv) = Ciw
2
i Cow

2
o (D.1)

where wo is the size of each output channel of the Conv layer.
According to related research in literature [46], in the zero
padding mode, the value of wo is related with the input size,
convolution kernel size, and stride as given by

wo =
wi − v

s
+ 1 (D.2)

where the influence of bias is reflected by adding one to the
right of (C.2). Since the FLOPs of the remaining two fully
connected network (FC) layers is much smaller than that of
the Conv layer so that it can be neglected, so we have the
computational complexity of each time slot of the DRL-based
scheme as given by

NFLOPs(time slot) = Ciw
2
i Co

(
wi − v

s
+ 1

)2

(D.3)

Finally, multiplying the number of FLOPs for each time slot
of the DRL-based scheme with the number of episodes and
time slots, we can derive (17). ■

REFERENCES

[1] S. Verma, Y. Kawamoto, and N. Kato, “Energy-efficient group paging
mechanism for QoS constrained mobile IoT devices over LTE-A pro net-
works under 5G,” IEEE Internet Things J., vol. 6, no. 5, pp. 9187–9199,
Oct. 2019.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing machine learning-based xApps for open RAN closed-
loop control on programmable experimental platforms,” IEEE Trans.
Mobile Comput., vol. 22, no. 10, pp. 5787–5800, Oct. 2023.

[3] J.-C. Jiang and H.-M. Wang, “Massive random access with sporadic
short packets: Joint active user detection and channel estimation via
sequential message passing,” IEEE Trans. Wireless Commun., vol. 20,
no. 7, pp. 4541–4555, Jul. 2021.

[4] Z. Gao, L. Dai, S. Han, Z. Wang, and L. Hanzo, “Compressive sensing
techniques for next-generation wireless communications,” IEEE Wireless
Commun., vol. 25, no. 3, pp. 144–153, Jun. 2018.

[5] L. Liu and W. Yu, “Massive connectivity with massive MIMO—Part I:
Device activity detection and channel estimation,” IEEE Trans. Signal
Process., vol. 66, no. 11, pp. 2933–2946, Jun. 2018.

[6] Y. Noh and S. Hong, “Compressed sensing based active user detection in
MIMO systems with one-bit ADC,” IEEE Trans. Veh. Technol., vol. 72,
no. 1, pp. 1313–1317, Jan. 2023.

[7] J. Ahn, B. Shim, and K. B. Lee, “EP-based joint active user detection and
channel estimation for massive machine-type communications,” IEEE
Trans. Commun., vol. 67, no. 7, pp. 5178–5189, Jul. 2019.

[8] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive sensing-
based adaptive active user detection and channel estimation: Massive
access meets massive MIMO,” IEEE Trans. Signal Process., vol. 68,
pp. 764–779, 2020.

[9] J.-P. Hong, W. Choi, and B. D. Rao, “Sparsity controlled random mul-
tiple access with compressed sensing,” IEEE Trans. Wireless Commun.,
vol. 14, no. 2, pp. 998–1010, Feb. 2015.

[10] X. Du, D. Wu, W. Liu, and Y. Fang, “Multiclass routing and medium
access control for heterogeneous mobile ad hoc networks,” IEEE Trans.
Veh. Technol., vol. 55, no. 1, pp. 270–277, Jan. 2006.

[11] Y. Sim and D. Cho, “Performance analysis of priority-based access class
barring scheme for massive MTC random access,” IEEE Syst. J., vol. 14,
no. 4, pp. 5245–5252, Dec. 2020.

[12] S. Verma, Y. Kawamoto, H. Nishiyama, N. Kato, and C.-W. Huang,
“Novel group paging scheme for improving energy efficiency of IoT
devices over LTE-A pro networks with QoS considerations,” in Proc.
IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA, May 2018,
pp. 1–6.

[13] H. S. Jang, H. Jin, B. C. Jung, and T. Q. S. Quek, “Versatile access
control for massive IoT: Throughput, latency, and energy efficiency,”
IEEE Trans. Mobile Comput., vol. 19, no. 8, pp. 1984–1997, Aug. 2020.

[14] M. Centenaro, L. Vangelista, S. Saur, A. Weber, and V. Braun, “Com-
parison of collision-free and contention-based radio access protocols
for the Internet of Things,” IEEE Trans. Commun., vol. 65, no. 9,
pp. 3832–3846, Sep. 2017.

[15] O. S. Nishimura, J. C. M. Filho, T. Abrão, and R. D. Souza, “Fairness
in a class barring power control random access protocol for crowded
XL-MIMO systems,” IEEE Syst. J., vol. 16, no. 3, pp. 4574–4582,
Sep. 2022.

[16] Z. Yuan, W. Li, Y. Hu, H. Tang, J. Dai, and Y. Ma, “Blind multi-
user detection based on receive beamforming for autonomous grant-free
high-overloading multiple access,” in Proc. IEEE 2nd 5G World Forum
(GWF), Dresden, Germany, Sep. 2019, pp. 520–523.

[17] Z. Chen, F. Sohrabi, and W. Yu, “Multi-cell sparse activity detec-
tion for massive random access: Massive MIMO versus cooperative
MIMO,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4060–4074,
Aug. 2019.

[18] L. M. Bello, P. D. Mitchell, and D. Grace, “Intelligent RACH access
techniques to support M2M traffic in cellular networks,” IEEE Trans.
Veh. Technol., vol. 67, no. 9, pp. 8905–8918, Sep. 2018.

[19] D.-D. Tran, S. K. Sharma, and S. Chatzinotas, “BLER-based adaptive Q-
learning for efficient random access in NOMA-based mMTC networks,”
in Proc. IEEE 93rd Veh. Technol. Conf. (VTC-Spring), Apr. 2021,
pp. 1–5.

[20] M. V. da Silva, R. D. Souza, H. Alves, and T. Abrão, “A NOMA-based
Q-learning random access method for machine type communica-
tions,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1720–1724,
Oct. 2020.

[21] O. S. Nishimura, J. C. Marinello, and T. Abrão, “A grant-based random
access protocol in extra-large massive MIMO system,” IEEE Commun.
Lett., vol. 24, no. 11, pp. 2478–2482, Nov. 2020.

[22] C. Di, B. Zhang, Q. Liang, S. Li, and Y. Guo, “Learning automata-based
access class barring scheme for massive random access in machine-
to-machine communications,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6007–6017, Aug. 2019.

[23] C. Bockelmann et al., “Massive machine-type communications in 5G:
Physical and MAC-layer solutions,” IEEE Commun. Mag., vol. 54, no. 9,
pp. 59–65, Sep. 2016.

[24] S. Liu, F. Yang, J. Song, and Z. Han, “Block sparse Bayesian learning-
based NB-IoT interference elimination in LTE-advanced systems,” IEEE
Trans. Commun., vol. 65, no. 10, pp. 4559–4571, Oct. 2017.

Authorized licensed use limited to: Xiamen University. Downloaded on August 15,2024 at 06:08:11 UTC from IEEE Xplore.  Restrictions apply. 



9744 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 8, AUGUST 2024

[25] K. Senel and E. G. Larsson, “Grant-free massive MTC-enabled massive
MIMO: A compressive sensing approach,” IEEE Trans. Commun.,
vol. 66, no. 12, pp. 6164–6175, Dec. 2018.

[26] B. Wang, L. Dai, T. Mir, and Z. Wang, “Joint user activity and data
detection based on structured compressive sensing for NOMA,” IEEE
Commun. Lett., vol. 20, no. 7, pp. 1473–1476, Jul. 2016.

[27] Y. Zhang, Q. Guo, Z. Wang, J. Xi, and N. Wu, “Block sparse Bayesian
learning based joint user activity detection and channel estimation for
grant-free NOMA systems,” IEEE Trans. Veh. Technol., vol. 67, no. 10,
pp. 9631–9640, Oct. 2018.

[28] A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Grant-free
massive random access with a massive MIMO receiver,” in Proc.
53rd Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA,
Nov. 2019, pp. 23–30.

[29] F. Morvari and A. Ghasemi, “Two-stage resource allocation for random
access M2M communications in LTE network,” IEEE Commun. Lett.,
vol. 20, no. 5, pp. 982–985, May 2016.

[30] J. Jiao, L. Xu, S. Wu, Y. Wang, R. Lu, and Q. Zhang, “Unequal access
latency random access protocol for massive machine-type communica-
tions,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5924–5937,
Sep. 2020.

[31] L. Xiao et al., “Reinforcement learning-based downlink interference
control for ultra-dense small cells,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 423–434, Jan. 2020.

[32] S. K. Sharma and X. Wang, “Toward massive machine type communi-
cations in ultra-dense cellular IoT networks: Current issues and machine
learning-assisted solutions,” IEEE Commun. Surveys Tuts., vol. 22, no. 1,
pp. 426–471, 1st Quart., 2020.

[33] N. Jiang, Y. Deng, A. Nallanathan, and J. A. Chambers, “Reinforcement
learning for real-time optimization in NB-IoT networks,” IEEE J. Sel.
Areas Commun., vol. 37, no. 6, pp. 1424–1440, Jun. 2019.

[34] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning mul-
tiple access for heterogeneous wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1277–1290, Jun. 2019.

[35] A. H. Bui and A. T. Pham, “Deep reinforcement learning-based access
class barring for energy-efficient mMTC random access in LTE net-
works,” IEEE Access, vol. 8, pp. 227657–227666, 2020.

[36] Y. Cao, S.-Y. Lien, Y.-C. Liang, K.-C. Chen, and X. Shen, “User access
control in open radio access networks: A federated deep reinforcement
learning approach,” IEEE Trans. Wireless Commun., vol. 21, no. 6,
pp. 3721–3736, Jun. 2022.

[37] A. Kumar, G. Verma, C. Rao, A. Swami, and S. Segarra, “Adaptive
contention window design using deep Q-learning,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 4950–4954.

[38] X. Ye, Y. Yu, and L. Fu, “Multi-channel opportunistic access for
heterogeneous networks based on deep reinforcement learning,” IEEE
Trans. Wireless Commun., vol. 21, no. 2, pp. 794–807, Feb. 2022.

[39] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.

[40] Radio Resource Control (RRC); Protocol Specifification, document TS
36.331, V13.0.0, 3GPP, Jan. 2016.

[41] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proc. 35th Int.
Conf. Mach. Learn. (ICML), vol. 4, Stockholm, Sweden, Feb. 2018,
pp. 2587–2601.

[42] M. J. Wainwright, “Sharp thresholds for high-dimensional and
noisy sparsity recovery using ℓ1-constrained quadratic programming
(Lasso),” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2183–2202,
May 2009.

[43] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is Q-learning
provably efficient?” in Proc. Adv. Neural Inf. Process. Syst., Montreal,
QC, Canada, Dec. 2018, pp. 4863–4873.

[44] E. Bjornson, P. Zetterberg, M. Bengtsson, and B. Ottersten, “Capacity
limits and multiplexing gains of MIMO channels with transceiver
impairments,” IEEE Commun. Lett., vol. 17, no. 1, Jan. 2013.

[45] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural Comput.,
vol. 6, no. 6, pp. 1185–1201, Nov. 1994.

[46] C. C. T. Mendes, V. Frémont, and D. F. Wolf, “Exploiting fully
convolutional neural networks for fast road detection,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Stockholm, Sweden, May 2016,
pp. 3174–3179.

Xiao Tang received the B.S. degree in communi-
cation engineering from Central South University,
Changsha, China, in 2020. He is currently pursuing
the M.S. degree with the Department of Infor-
mation and Communication Engineering, Xiamen
University, Xiamen, China. His research inter-
ests include compressed sensing and AI-assisted
communications.

Sicong Liu (Senior Member, IEEE) received the
B.S.E. and Ph.D. degrees (Hons.) in electronic engi-
neering from Tsinghua University, Beijing, China,
in 2012 and 2017, respectively. He is currently an
Associate Professor with the Department of Infor-
mation and Communication Engineering, School
of Informatics, Xiamen University, China. He has
authored over 60 journal and conference papers,
and four monographs in the related areas. His cur-
rent research interests include compressed sensing,
AI-assisted communications, integrated sensing and

communications, and visible light communications.

Xiaojiang (James) Du (Fellow, IEEE) received
the B.S. degree from Tsinghua University, Beijing,
China, in 1996, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland, College Park, MD, USA, in 2002 and
2003, respectively. He was a Professor with Temple
University from August 2009 to August 2021. He is
currently the Anson Wood Burchard Endowed-Chair
Professor of the Department of Electrical and Com-
puter Engineering, Stevens Institute of Technology.
His research interests include security, wireless net-

works, and systems. He has authored over 500 journal and conference papers
in these areas, including the top security conferences IEEE S&P, USENIX
Security, and NDSS. He is an ACM Distinguished Member and an ACM
Life Member. He won the Best Paper Award from IEEE ICC 2020 and
IEEE GLOBECOM 2014 and the Best Poster Runner-Up Award from ACM
MobiHoc 2014. He has been awarded more than eight million U.S. Dollars in
research grants from the U.S. National Science Foundation (NSF), the Army
Research Office, the Air Force Research Laboratory, the State of Pennsylvania,
and Amazon. He serves on the editorial boards for three IEEE journals.

Mohsen Guizani (Fellow, IEEE) received the B.S.
(with distinction), M.S., and Ph.D. degrees in Elec-
trical and Computer Engineering from Syracuse
University, Syracuse, NY, USA, in 1985, 1987,
and 1990, respectively. He is currently a Professor
of Machine Learning at the Mohamed Bin Zayed
University of Artificial Intelligence (MBZUAI),
Abu Dhabi, UAE. Previously, he worked in different
institutions in the USA. He is the author of 11
books, more than 1000 publications and several
U.S. patents. His research interests include applied

machine learning and artificial intelligence, smart city, Internet of Things
(IoT), intelligent autonomous systems, and cybersecurity. He became an
IEEE Fellow in 2009 and was listed as a Clarivate Analytics Highly Cited
Researcher in Computer Science in 2019, 2020, 2021, and 2022. He has won
several research awards including the “2015 IEEE Communications Society
Best Survey Paper Award,” the Best ComSoc Journal Paper Award in 2021 as
well five Best Paper Awards from ICC and Globecom Conferences. He is also
the recipient of the 2017 IEEE Communications Society Wireless Technical
Committee (WTC) Recognition Award, the 2018 AdHoc Technical Committee
Recognition Award, and the 2019 IEEE Communications and Information
Security Technical Recognition (CISTC) Award. He served as the Editor-in-
Chief for IEEE Network and is currently serving on the Editorial Boards
of many IEEE TRANSACTIONS and Magazines. He was the Chair of the
IEEE Communications Society Wireless Technical Committee and the Chair
of the TAOS Technical Committee. He served as the IEEE Computer Society
Distinguished Speaker and is currently the IEEE ComSoc Distinguished
Lecturer.

Authorized licensed use limited to: Xiamen University. Downloaded on August 15,2024 at 06:08:11 UTC from IEEE Xplore.  Restrictions apply. 


