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Abstract—This paper presents a compressed sensing (CS)
based framework for visible light positioning (VLP), designed to
achieve simultaneous and precise localization of multiple intelli-
gent robots within an indoor factory. The framework leverages
light-emitting diodes (LEDs) originally intended for illumination
purposes as anchors, repurposing them for the localization of
robots equipped with photodetectors. By predividing the plane
encompassing the robot positions into a grid, with the number
of robots being notably fewer than the grid points, the inherent
sparsity of the arrangement is harnessed. To construct an
effective sparse measurement model, a sequence of aggregation,
autocorrelation, and cross-correlation operations are employed to
the signals. Consequently, the complex task of localizing multiple
targets is reformulated into a sparse recovery problem, amenable
to resolution through CS-based algorithms. Notably, the localiza-
tion precision is augmented by inter-target cooperation among
the robots, and inter-anchor cooperation among distinct LEDs.
Furthermore, to fortify the robustness of localization, a generative
adversarial network (GAN) is introduced into the proposed
localization framework. The simulation results affirm that the
proposed framework can successfully achieve centimeter-level
accuracy for simultaneous localization of multiple targets.

Index Terms—Robotics sensing, visible light positioning, multi-
target localization, compressed sensing, cooperative localization.

I. INTRODUCTION

In recent years, driven by the wave of integrated sensing and
communication (ISAC), industrial Internet of Things (IIoT)
technology has developed rapidly [1]. This evolution is driven
by the continuous enhancement and diversification of sen-
sors, controllers, communication systems, signal processing,
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and related technologies, leading to a profound reshaping of
the traditional industrial production landscape. Notably, this
transformation is evidenced by the pervasive integration of
cutting-edge equipment such as automated guided vehicles
(AGVs) and automatic robots across various stages of in-
dustrial production [2], [3]. For instance, prominent logistics
companies have deployed a multitude of logistics sorting
robots capable of meticulously scanning express shipment
information. These robots adeptly direct packages to their re-
spective destinations, effecting unified loading and distribution
for different endpoints. Embracing the smart factory paradigm,
contemporary industrial production embodies qualities of au-
tomation, profound integration, robust real-time capabilities,
and heightened security within an intricately interconnected
information ecosystem [4], driving steady progression towards
intelligent IIoT that underpins modern production processes.

In the expansive domain of IIoT technology, a multitude
of fields are encompassed, each presenting a spectrum of key
technical challenges. A pivotal facet of this landscape involves
the imperative for achieving high-precision real-time position-
ing of equipment within specific operational segments. No-
tably, the precision demands inherent to industrial production
underscore the need for elevated levels of positioning accuracy
[5]. The efficacy of the system hinges on its capability to
concurrently localize multiple targets, ensuring efficient and
streamlined operations. Meanwhile, the multifaceted nature of
factory environments should be considered, wherein an assem-
blage of signal-transmitting and signal-receiving equipment
is concentrated, and there exists a substantial backdrop of
ambient noise and electromagnetic interference, necessitating
robust measures to ensure resilience to interference [6].

Generally, a prevalent indoor positioning technique involves
the use of location fingerprinting based on received signal
strength (RSS) [7]. This method functions by partitioning
the space into grids and estimating the target position by
comparing the actual measured RSS with stored position
fingerprints in a database. However, this approach commonly
entails substantial computational costs [8]. Moreover, the
accuracy of wireless indoor positioning typically reaches the
decimeter level, and the performance will be further degraded
in more complex environments due to the vulnerability to
multipath fading [9].

In recent times, visible light positioning (VLP) technology,
harnessing ubiquitous light-emitting diodes (LEDs) for signal
transmission, has experienced rapid growth. This approach
boasts key benefits, including heightened efficiency, energy
conservation, economical deployment, robust anti-interference
capabilities, and exceptional precision [10]. Notably, VLP
stands out due to its divergence from wireless channels,
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i.e., its primary concentration in line-of-sight (LoS) links
empowers it to effectively counteract multipath interference
[11]. Classic VLP techniques rely on metrics such as RSS,
time-of-arrival (TOA) [12], and angle-of-arrival (AOA) [13],
etc. These methodologies deliver centimeter-level accuracy
in single-target localization. However, a comprehensive high-
precision, multi-target simultaneous VLP system remains an
ongoing pursuit.

In the context of a straightforward indoor multi-target sce-
nario, the actual count and spatial extent of these targets tend
to remain manageable. Consequently, the positions of these
multiple targets exhibit a sparse distribution in comparison
to the entirety of the indoor space. This rationale facilitates
the introduction of the compressed sensing (CS) theory. This
integration serves to reframe the challenge of indoor multi-
target localization into a sparse recovery problem amenable
to effective resolution through classical algorithms like basis
pursuit (BP) and orthogonal matching pursuit (OMP) [14].
However, in the context of certain intricate or specialized
problems, traditional CS algorithms such as BP and OMP
might fall short of ensuring high precision [15]. To address
these limitations, the application of generative adversarial
network (GAN) presents itself as a promising avenue. Its
capacity to discern intricate mappings within data fosters its
integration into the CS framework, offering a solution to
sparse recovery quandaries [16], [17], which holds potential
for enhancing the performance of CS-based VLP schemes,
particularly in intricate conditions.

Consequently, to address the limitations of existing po-
sitioning methods and achieve simultaneous localization of
multiple intelligent robot targets, a CS-based multi-target
cooperative VLP framework is devised. Specifically, we im-
plement a downlink VLP utilizing the existing lighting system.
By solving a sparse recovery problem well-suited for CS-
based algorithms, we accurately determine the positions of all
intelligent robots. Collaboration among robots, i.e., inter-target
cooperation, is pivotal for constructing this CS framework.
Moreover, to enhance positioning accuracy in intricate indoor
settings, we leverage correlations between visible light signals
from distinct LEDs, thus fostering inter-anchor cooperation.
Furthermore, we enhance this scheme by integrating a GAN
into our proposed framework, which not only reduces posi-
tioning errors but also bolsters noise resistance in complex
environments. In summary, our work presents several key
contributions as follows:

• CS-based Multi-Target VLP Framework: We introduce
a multi-target VLP framework founded on CS, leverag-
ing preexisting indoor lighting systems, which facilitates
concurrent high-precision positioning of multiple targets.1

1Part of this work has been accepted for publication in IEEE International
Conference on Communications (IEEE ICC) 2023 [18]. Compared with the
short conference version, this article has extensively extended the technical
content, theoretical analysis and experimental results. An enhanced CS-GAN
enabled localization method is further proposed to deal with the multi-
target VLP task, notably enhancing the precision of sparse recovery and
the positioning accuracy in severe conditions. Theoretical analysis of the
positioning performance bound is derived. More extensive and thorough
simulations have been conducted and reported and discussed on to evaluate
the proposed schemes.

• Cooperation among Targets and Anchors: By capital-
izing on the interplay between the robot targets and the
LED anchors, the precision of multi-target positioning
outcomes is elevated.

• Enhanced CS-GAN Enabled Localization: GAN is
incorporated into the multi-target VLP framework, no-
tably enhancing the precision of sparse recovery and the
positioning accuracy. Remarkably, even when operating
under low signal-to-noise ratio (SNR), the fortified CS-
GAN approach maintains a high level of accuracy in
estimating multiple robot positions.

The rest of this article is structured as follows: Section
II investigates related work. Section III describes a system
model for multi-objective visible light localization in an indoor
factory. Section IV introduces the CS-based multi-target coop-
erative VLP framework we proposed. Section V proposes to
apply GAN to the proposed CS-based multi-target cooperative
VLP framework to further improve positioning performance.
Section VI provides a theoretical analysis and performance
evaluation of the proposed method. The simulation results are
given in Section VII, and the final conclusions are given in
Section VIII.
Notation. Matrices and vectors are denoted by boldface

letters; (·)∗, (·)T and (·)H denote the complex-conjugate
operation, the transpose operation and the conjugate transpose
operation, respectively; ‖·‖r represents the `r-norm operation.

II. RELATED WORKS

IIoT is a creative and promising paradigm for various
applications of robotics. Some works have looked ahead to the
changes that will be brought about in practical applications. A
study on the reconfigurability of robots in various industrial
automation processes proposed a region based environment
prediction method, which effectively improved the detection
accuracy and speed of robots in identifying different task
targets [19]. In order to improve the positioning accuracy
of mobile robots in complex indoor environments, Xin et
al proposed a multi-mobile robot collaborative positioning
system based on ultra-wideband sensor and GPU hardware
acceleration to reduce the influence of non-line-of-sight error
[20]. A novel charging robot called DeltaCharger has been
designed for 3D positioning of electrodes [21], which can
achieve an accuracy of over 90% via the convolutional neural
network.

For the problem of indoor positioning, radio frequency
based wireless positioning schemes have been extensively
studied. In order to improve the accuracy and versatility of
wireless positioning for IoT terminals, Yu et al proposed
a highly integrated hybrid wireless positioning system [22].
Gnlta et al used channel state information for fingerprint
identification and proposed a wireless positioning framework
[23]. Li et al proposed an unsupervised wireless localization
method based on deep reinforcement learning without knowing
the labels of actual positions [24].

In recent years, with the development of visible light com-
munications (VLC), many VLP methods have been proposed
to achieve higher precision indoor positioning. In order to
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improve the robustness of VLP system to different models,
Keskin et al derived the Cramr-Rao Lower bound (CRLB)
and designed direct and two-step estimators for synchronous
and asynchronous positioning [25]. In order to combine posi-
tioning and communication, Wei et al formulated a visible
light integrated positioning and communication framework
to improve the spectrum efficiency and the overall system
performance [26]. Zhou et al comprehensively investigated the
impact of SNR, non LoS propagation and other factors on the
performance of RSS-based VLP, and derived the performance
limits for it [27].

Due to the sparse nature of the target location in comparison
to the entirety of the indoor space, the CS technology has
been utilized in positioning. For indoor wireless positioning,
N. Garcia et al proposed a method called direct source local-
ization that enables robust localization with decimeter-level
accuracy in massive MIMO systems [28]. Jamali-Rad et al
exploited the latent information in received signal correlations
by introducing a new fingerprint paradigm and then used
CS-based fingerprinting methods to solve the problem of
locating multiple sources in multipath environments [29]. To
improve the efficiency of radio map measuring and overcome
the heterogeneity due to different mobile devices, Gong et
al proposed a CS-based fingerprint localization method [30].
There are also some works that applied CS in VLP. K. Gligori
et al transferred the LED signal separation problem into an
equivalent CS model and proposed an indoor VLP method
using the proximity method [31]. R. Zhang et al proposed a
reverse visible light multi-target localization method based on
sparse matrix reconstruction [32], while this model is different
from the downlink VLC scenario using lighting-purpose LEDs
commonly deployed in practice.

Recently, the emerging deep learning technology is being
considered with CS, in order to learn the sparse features of
the signals and improve the sparse recovery accuracy. Wei et
al proposed a privacy-aware sensing and transmission scheme
for the internet of medical things, and devised a sparse-
learning-based encryption and recovery method to protect
the privacy and reduce power consumption [33]. In order to
improve the performance of wireless vehicular communication
system based on orthogonal frequency division multiplexing
(OFDM), Liu et al proposed a sparse machine learning scheme
to eliminate the impulse noise [34]. A deep learning based
scheme was proposed for a hybrid analog-digital massive
MIMO system, which can efficiently implement the uplink
channel estimation and reduce the computational complexity
[35].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model of Visible Light Propagation

In the VLP system, lighting LEDs are generally used
directly as the light signal source. The irradiation intensity
Ro follows the Lambertian radiation pattern [36], which is
expressed as

Ro (α) =
m+1

2π
cosm (α) ,−π

2
≤ α ≤ π

2
, (1)

a

j

FOV
j

d

Fig. 1: Channel model of visible light signal propagation in
an indoor VLP scenario.

where α is the irradiation angle of the LED, and m is the
Lambertian radiation ordinal given by

m = − ln 2
/

ln
(
cosα1/2

)
, (2)

where α1/2 denotes the half-power angle [37]. The robotics
terminals are equipped with photodetectors (PDs) to detect the
visible light signals. As shown in Fig. 1, considering the LoS
link, the channel gain of visible light propagation is expressed
as

h =

{
1
d2Ro (α)Aeff (ϕ) , 0 ≤ ϕ ≤ ϕFOV

0, else
, (3)

where d is the distance between the LED and the PD; ϕ is the
angle of incidence at the PD; ϕFOV is the field of view (FOV)
of the PD; Aeff(ϕ) is the effective detection area of the PD,
which is given by

Aeff (ϕ) = AdetGfilterGconc cosϕ, (4)

where Adet is the physical detection area of the detector;
Gfilter and Gconc represent the gain of the optical filter and
the gain of the optical concentrator, respectively [38].

B. System Model of Indoor Multi-Target Visible Light Posi-
tioning

To achieve a concise and clear representation, we simplify
the indoor VLP positioning scenario involving multiple intel-
ligent robots as the targets to be located, as depicted in Fig. 2.
In this arrangement, several ceiling-mounted lighting LEDs
emit visible light signals. The downlink VLC transmission
is based on the intensity-modulation/direct-detection (IM/DD)
technique. A multi-carrier modulation scheme, such as DC
biased optical OFDM (DCO-OFDM), i.e., classical OFDM
with a DC bias ensuring nonnegative value, can be adopted
for the VLC transmission of these LEDs, where different
OFDM subcarriers can be allocated to different LEDs to
ensure multiple access with high spectral efficiency. The
information of unique identification and accurate location of
each LED is carried in the downlink VLC signal. Intelligent
robots equipped with PDs traverse a two-dimensional plane
suspended above the floor by a distance of dh . Notably, this
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plane is systematically partitioned into N grid points.2 Each of
these grid points signifies a potential position for an intelligent
robot, corresponding to moments of operation.

To facilitate the calculation of the channel gain, a coordinate
system covering the entire room is established, so that the
position of each grid point can be represented in three-
dimensional coordinates. Let M denote the number of LEDs,
and thus the coordinates of the LEDs can be expressed as(

x
(tx)
i , y

(tx)
i , z

(tx)
i

)
, i = 1, · · · ,M. (5)

Let Pj denote the j-th grid point, and thus the coordinates of
all the N grid points can be expressed as(

x
(rx)
j , y

(rx)
j , z

(rx)
j

)
, j = 1, · · · , N. (6)

Then, the distance dij from the i-th LED to the grid point Pj
can be represented by

dij =

((
x

(tx)
i − x(rx)

j

)2

+
(
y

(tx)
i − y(rx)

j

)2

+
(
z

(tx)
i − z(rx)

j

)2
)1/2

.

(7)
Substituting (7) into (3), the channel gain hij from the i-th
LED to the grid point Pj can be obtained. Let xi represent
the pilot signal sent by the i-th LED, which is utilized for
localization purpose. Suppose an intelligent robot is located at
the grid point Pj . Then, the pilot signal received by the robot
at Pj and sent from the i-th LED can be denoted as

yij = hijxi + ωij , (8)

where ωij represents the background Additive White Gaussion
Noise (AWGN) in this link.

As illustrated in Fig. 2, the positions of the intelligent
robots are inherently random and undisclosed. The primary
objective of the multi-target positioning endeavor is to as-
certain the specific grid points corresponding to the positions
of intelligent robots, which is accomplished by analyzing the
light signals received by the various intelligent robots from
distinct LEDs. In practice, the quantity of intelligent robots is
relatively modest, notably fewer than the total count of grid
points, where the distribution of the robots can be arbitrarily
random without a prior constraint. This sparse distribution of
robots aligns well with the principles of CS, by which we can
effectively fulfill the multi-target positioning task.

IV. MULTI-TARGET COOPERATIVE VISIBLE
LIGHT POSITIONING FRAMEWORK VIA

COMPRESSED SENSING
In this section, we first introduce the details of the formula-

tion of the CS-based multi-target VLP framework enabled by
inter-target cooperation in Section IV-A. Then, the framework
is enhanced by introducing the inter-anchor cooperation among
distinct LEDs, whcih is described in Section IV-B.

A. Compressed Sensing Based Multi-Target Visible Light Po-
sitioning with Inter-Target Cooperation

In this sub section, a framework of CS-based multi-target
VLP (CSM-VLP) is formulated to realize accurate multi-target

2The value of dh does not need to be specific, and the model can be applied
to different heights of the PDs.

-thi

P j

X

Y

Z

hd

ijh

O

LED

A robot target at

Fig. 2: Geometric layout of an indoor multi-target VLP system:
LEDs are utilized as visible light signal transmitters; Multiple
intelligent robots equipped with PDs are randomly distributed
in the plane that is divided into many grid points.

localization in a typical downlink VLP system. Specifically,
assume that the number of intelligent robots is K, which
is far smaller than the number of grid points in the area,
i.e., K � N . As described in the previous section, the i-
th LED broadcasts the pilot signal xi to all the robots via
the visible light downlink. We use the symbols {yik}Kk=1 to
denote the pilot signals sent from the i-th LED and received by
the K robots. Specifically, yi denotes the aggregated received
signal corresponding to the i-th LED, which is obtained by
aggregating the pilot signals received by all the K robots
via inter-target cooperation among the robots through, for
instance, a wireless link. Therefore, the aggregated received
signal yi, i = 1, · · · ,M is given by

yi =

K∑
k=1

yik =

K∑
k=1

hikxi + ωi, (9)

where ωi represents the aggregated background noise. Then,
we can formulate an aggregated received signal vector y
by combining all the aggregated received signals {yi}Mi=1
corresponding to all the M LEDs, which is given by

y = (y1, · · · yM )T =

(
K∑

k=1

h1kx1, · · ·
K∑

k=1

hMkxM

)T

+ω, (10)

where ω is the aggregated background noise vector. Then,
we can rewrite (10) into matrix format, leading to a CS-based
framework of multi-target VLP as given by

y =


y1

y2

...
yM

 =


h11x1 · · · h1Nx1

h21x2 · · · h2Nx2

...
. . .

...
hM1xM · · · hMNxM


︸ ︷︷ ︸

Φ

θ+ω, (11)

where θ = [θ1, · · · , θj , · · · , θN ]T denotes an on-grid localiza-
tion vector. It can be actually regarded as an indicator vector
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with N entries, with each entry valued either one or zero. The
value of each entry indicates whether there is a robot located
in the corresponding grid point or not. Consequently, most of
the entries are zeros, except for the entries corresponding to
the grid points the K robots are located. Since the number of
the nonzero elements in θ is much smaller than its length, θ
is a sparse vector. Thus, it can be recovered through sparse
recovery methods, including typically CS-based algorithms. In
the CS-based measurement model formulated in (11), we can
define the observation matrix Φ as

Φ =


h11x1 · · · h1Nx1

h21x2 · · · h2Nx2

...
. . .

...
hM1xM · · · hMNxM

 . (12)

Next, we can perform autocorrelation on the aggregate
received signal vector y, which yields the aggregated power
measurement vector prx as given by

prx = E {y � y∗}
= E {(Φθ+ω)� (Φθ+ω)∗}
= E {Φ�Φ∗}θ+ E {ω�ω∗}
= Jθ+ σ2

n1M ,

(13)

where E{·}, �, (·)∗ represent expectation operator, Hadamard
product operator, and complex-conjugate operator, respective-
ly; σ2

n denotes noise variance; 1M is an all-one-valued length-
M vector. The purpose of this autocorrelation operation is to
turn the CS-based model in (11) to an adaptive refined CS-
based power measurement model in (13), which is independent
of different pilot signal characteristics. Notably, the observa-
tion matrix J in (13) is given by

J =


|h11|2 |h12|2 · · · |h1N |2

|h21|2 |h22|2 · · · |h2N |2
...

...
. . .

...
|hM1|2 |hM2|2 · · · |hMN |2

 . (14)

where the elements in J are related to the channel gains,
affected by the deployment of the LEDs and the indoor layout.
Thus, the observation matrix J can be obtained by the channel
information collected beforehand in the fingerprint database of
the indoor visible light channels.

Now the localization problem is turned into a sparse re-
covery problem in (13), which is aimed to recover the on-
grid target localization sparse vector θ after obtaining the
aggregated power measurement vector prx. Then it can be
solved by classical sparse recovery methods. After getting the
estimate of θ, the grid points and the corresponding positions
of the robot targets can be subsequently obtained.

In the model of the proposed method, the step-size of the
grid points has an influence on the performance. Specifically, a
denser grid partition makes the quantization error of the loca-
tion coordinates smaller, leading to higher positioning resolu-
tion. Meanwhile, the sparsity of θ can be better preserved with
denser grids, particularly in case of more robots to be located,
otherwise the CS algorithm will fail without the sparsity prior.
On the other hand, it is not necessarily true that a denser grid

will lead to a better localization performance. According to
the CS theory, the condition M ≥ µK log (N/K) should be
satisfied to reach a satisfactory sparse recovery performance
[39]. If the number of grid points N is too large, it requires
a larger amount of measurement data M , i.e., the number
of LEDs, which might not be satisfied, resulting in a worse
performance. In addition, the increase of N will increase the
computational complexity. Hence, the number of M and N
needs to be appropriately configured according to the practical
situations and requirements.

B. Enhanced Compressed Sensing Based Multi-Target Visible
Light Positioning with Inter-Anchor Cooperation

As reported in the CSM-VLP scheme, the inter-robot in-
formation has been exploited to formulate the measurement
vector for the CS model in (13) via autocorrelation. Howev-
er, additional untapped information remains at our disposal,
poised to further fortify the robustness of localization. This
encompasses the latent geometric insights of the indoor setting
and the channel-specific attributes related to distinct anchors,
i.e., LEDs. In order to achieve a better multi-target joint
localization performance, we further devise a cooperative
CSM-VLP (CoCSM-VLP) scheme, which make use of the
inter-anchor cooperation via the cross-correlation between the
aggregated received signals corresponding to different LEDs.

Specifically, we calculate the cross-correlation E
{
yiy
∗
j

}
between the aggregated received signals given in (11) to obtain
the inter-anchor correlation matrix Pcorr, which is given by

Pcorr = E
{

yyH
}

= E
{
(Φθ+ω)(Φθ+ω)H

}
= E

{
ΦθθHΦH

}
+ E

{
ωωH

}
,

(15)

where (·)H represents the conjugate-transpose operator. Then,
through vectorizing both sides of (15), the cross-correlation
measurement vector pcorr can be derived and thus the CS-
based measurement model is formulated as given by

pcorr = vec (Pcorr )

= vec
(
E
{

ΦθθHΦH
})

+ vec
(
E
{

ΦθθHΦH
})

= E {Φ∗ ⊗Φ} vec
(
θθH

)
+ vec

(
ωωH

)
= E {Φ∗ ·Φ}θ+ vec

(
σ2
nIM

)
,

(16)

where ⊗ represents the Kronecker product operator; · denotes
Khatri-Rao product; IM denotes a unit matrix of size M×M .

Equation (16) is essentially a series of linear equations. In
fact, it is the independent equations therein that directly influ-
ence the sparse recovery performance. The linearly correlated
rows in the observation matrix in (16) do not contribute to
the independent measurements, but may introduce additional
noise that degrades the performance. Therefore, one can delete
the redundant linearly correlated rows to reduce computational
complexity while improving the sparse recovery performance.
Since the cross-correlation matrix Pcorr in (15) is symmetrical,
one can define a selection matrix S of size M(M + 1)/2×M2

to select the independent equations of (16), which is the
rows corresponding to the M diagonal and M(M − 1)/2
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upper-diagonal elements of Pcorr. Then the CS-based cross-
correlation measurement model can be formulated as

ŷ = S vec (Pcorr )

= SE {Φ∗ ·Φ}θ+ S vec
(
σ2
nIM

)
= Ψθ+ωvec,

(17)

where Ψ is the observation matrix of size M(M + 1)/2×N
as given by

Ψ =



|h11|2 |h12|2 · · · |h1N |2
h∗11h21 h∗12h22 · · · h∗1Nh2N

|h21|2 |h22|2 · · · |h2N |2
...

...
...

...
h∗11hM1 h∗12hM2 · · · h∗1NhMN

...
...

...
...

|hM1|2 |hM2|2 · · · |hMN |2


. (18)

This observation matrix can be regarded as a fingerprint
database of the proposed CoCSM-VLP scheme. It is observed
that the elements in Ψ are also related to the channel gains,
so Ψ can be similarly obtained by the collected channel
information. Note that the number of independent rows in Ψ
is much larger than that of the observation matrix J in (13), so
more independent measurements are available to solve for the
unknown sparse localization vector θ. Specifically, the amount
of available independent linear equations in (17) has increased
from M to M(M + 1)/2 compared with that in (13), bringing
about more benefits for the CS-based multi-target localization.

As previously mentioned, it is required that the amount of
measurement data should be greater than µK log(N/K) for
satisfactory sparse recovery according to the CS theory. Thus,
it is much easier for the cross-correlation measurement model
in (17) to satisfy this requirement, since the amount of its avail-
able measurement data is M(M + 1)/2, much larger than M
for the auto-correlation measurement model in (13). This will
improve the accuracy and reliability of localization, especially
in severe conditions such as large number of unknown targets
(K is large), a denser grid partitioning (N is large), and inten-
sive background noise (the SNR is low). As far as recovering
the sparse localization vector θ in (17) is concerned, it can
also be efficiently solved by using classical sparse recovery
methods, such as `1-norm minimization methods or CS-based
greedy algorithms, similarly as done for CSM-VLP.

V. SPARSITY-AWARE GENERATIVE
ADVERSARIAL NETWORK ENABLED

MULTI-TARGET VISIBLE LIGHT POSITIONING
In the above proposed CS-based multi-target VLP frame-

work, the recovery accuracy of the on-grid robot localization
vector θ directly determines the accuracy of localization. In
both the CSM-VLP and CoCSM-VLP schemes, the traditional
CS recovery algorithm is utilized to reconstruct θ. However,
the performance of these traditional CS algorithms will be
limited under some harsh conditions. In recent years, the
GAN technology has been introduced into the CS framework
because of its strong capability of learning inherent latent
mapping from the data to specific high-level features through
adversarial training [40], [41]. In order to improve the accuracy
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DISCRIMINATORDISCRIMINATOR

y
H

Training 

data set

( ){ }, ,y H θ

True position vector θ

( )1G × ( )2G ×

( )D ×
True/false

Composite loss function clf

( )( )2 1
ˆ G G= yθ

θ̂

( )( )1

2
lf 2 21c 2([ln( ( ))] [ln(1 )))] ,( GD D G G Gl= + - + -yθ θ ylfc = 22G2G

Fig. 3: Schematic diagram of the GAN-based multi-target
VLP (GAN-MVLP) scheme.

and robustness of localization, we further integrate GAN
into the proposed CS-based localization framework for the
specific scenarios of multi-target localization, and propose
a GAN-based multi-target VLP (GAN-MVLP) scheme. This
method makes use of the capability of the generator network
to explore the given sample data, and enables the generator
network to directly learn the display mapping relationship
from the aggregated received signal vector y to the sparse
localization vector θ via confrontation training. In addition,
in order to improve the recovery accuracy of θ, the proposed
GAN-MVLP scheme introduces a regularization term into the
traditional loss function to construct a new composite loss
function for training the GAN, which can strengthen the ability
of learning the sparse features and thus improve the accuracy
of multi-target localization.

Specifically, based on the CS-based multi-target VLP frame-
work given in (11), we further build a sparse learning frame-
work based on GAN to recover θ, and its structure is shown in
Fig. 3. As shown in Fig. 3, we have made some improvements
to the traditional GAN to address the positioning problems to
be solved. First, we directly use the aggregated received signal
vector y as the initial input of the generator network, replacing
the random variable z in the traditional GAN. Especially, we
use two generators to establish the display mapping relation-
ship from y to θ step by step. The generator G1(·) generates
the corresponding potential channel matrix H according to
input y; Then potential channel matrix H is fed into the
pre-trained generator G2(·) as the input, which is aimed at
generating the corresponding generated sparse localization
vector θ̂ containing the location information according to the
input channel information.

In addition, we add regularization terms to the traditional
loss function to reduce the error between the generated vector
and the real vector, and design a composite loss function Lclf ,
which is defined as

Lclf = min
G

max
D
L(D,G) + λ ‖θ−G2 (G1(y))‖22 , (19)

where

min
G

max
D
L(D,G) = E[ln(D(θ))] + E[ln (1−D (G2 (G1(y))))].

(20)
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Note that minGmaxDL(D,G) is the original countermeasure
loss function, which is used to ensure that the vector learned by
the two generators has the same statistical distribution as the
real positioning vector. λ ‖θ−G2 (G1(y))‖22 is an additional
regularization term to reduce the mean square error (MSE)
between the generated vector and the real vector, so as to
improve the positioning accuracy.

The proposed GAN-MVLP scheme is mainly composed of
two stages: training stage and inference stage. The detailed
process of the training stage is described in Algorithm 1,
and summarized are as follows. Firstly, the discriminator
network is trained so that it can correctly distinguish the
real localization vector θ from the generated localization
vector θ̂ to the best extent. Namely, the judgment probability
of the real localization vector D(θ) approaches 1, and the
judgment probability of the generated localization vector D(θ̂)
approaches 0. The loss function of discriminator network D(·)
is given by

maxLD = E[ln(D(θ))] + E [ln (1−D (G2 (G1(y))))] . (21)

In the training stage, BP and gradient descent (GD) algo-
rithms are used to update and optimize the learnable parameter
ΘD of D(·). Since the generator G2(·) is a pre-trained
network, its parameter has already been trained to approach a
suitable and relatively fixed value. Specifically, the training of
generator networks focuses on utilizing BP and GD algorithms
to update and optimize the learnable parameter ΘG1

of G1(·).
The joint loss function of the generator networks is given by

minLG = E [ln (1−D (G2 (G1(y))))] + λ ‖θ−G2 (G1(y))‖22 .
(22)

Over the process of repeated training, the judgment probability
D(θ̂) obtained by inputting the generated localization vector
θ̂ learned by the generator networks into the trained discrim-
inator network gradually approaches one to the most extent,
while reducing the MSE between θ and θ̂.

In the inference stage, the aggregated received signal vector
y is input into the trained generator networks for simple feed-
forward calculation. Then, the generated localization vector
representing the localization results can be obtained, and thus
the multi-target simultaneous high-precision positioning can
be achieved.

VI. PERFORMANCE EVALUATION

In this section, the theoretical performance bound of the
positioning accuracy is analyzed. Specifically, the CRLB of
the positioning task in the indoor VLP scenario is derived. The
CRLB is an unbiased estimator widely adopted to evaluate the
theoretical lower bound of positioning [40].

Theorem 1. Suppose that the noise ωn corresponding to
the visible light channels between each LED and each robot
follows an i.i.d. Gaussian distribution of N

(
0, σ2

nIMK

)
. The

CRLB of the estimated distance d̂ in the positioning task is
given by

E
[
‖d̂− d‖22

]
≥ 1

Np(
2πσn

(m+ 1)(m+ 3)AeffGfilterGconcδm+1

)2 M∑
i=1

K∑
j=1

(dij)
2m+8 .

(23)

Algorithm 1: The Proposed GAN Enabled Multi-Target
VLP (GAN-MVLP) Scheme: Training Stage
Input: Minibatches of training data set

{(yq,Hq,θq)}Qq=1 of size-Q.
Input: Learning rate γG for generator network; Learning

rate γD for discriminator network.
Input: Maximum number of iteration steps W and

stepsize λ.
1 Initialize the network parameters ΘG1

and ΘD

2 Repeat
3 for q = 1, 2, 3, ..., Q do
4 Generate the latent channel matrix Ĥ = G1 (y)
5 Generate the generated localization vector

θ̂ = G2 (G1 (y))
6 for w = 1, 2, 3, ..., D − 1 do
7 Calculate the mean square error

‖θ−G2 (G1(y))‖22 and optimize the generated
localization vector in a gradient descent manner
θ̂
q

w+1 = θ̂
q

w − λ ∂
∂θ̂

q
w

(
‖θ−G2 (G1(y))‖22

)
8 end
9 end

10 Evaluate the loss LG and LD of the generator and
discriminator given by G1(·) and D(·)

11 Update the parameters of the both networks
ΘG1

= ΘG1
− γG

∂
∂ΘG1

LG; ΘD = ΘD − γD
∂

∂ΘD
LD

12 Until reaching the maximum training steps
Output: Trained parameters ΘG1

and ΘD

Proof. According to formula (3), the channel gain between M
LEDs and K intelligent robot targets with PDs is given by

hij =
(m+ 1)Aeffcosm (α) cos (ϕ)GfilterGconc

2πd2
. (24)

Assume that the vertical distance between the LED and the PD
at the robot target is δ, then equation (24) can be rewritten as

hij =
(m+ 1)Aeffδ

m+1GfilterGconc

2πdm+3
. (25)

Note that the representation above is only a theoretical result
without taking noise into consideration. In the actual operation
process, considering the impact of the background noise on the
visible light transmission links, the channel impulse response
matrix is given by

hN = h +ωΛ, (26)

where ωΛ is the estimation error of the CIR, which can be
modeled by the additive white Gaussian noise with a distribu-
tion of N

(
0, σ2

ΛIMK

)
. The probability distribution function

of hN conditioned by distance d = [d11, d21, · · · , dMK ] can
be expressed as

phN|d (hN;d) =
1

(2πσ2
Λ)

M/2
exp

{
− 1

2σ2
Λ

‖hN − h‖22

}
. (27)

Then, the Fisher information matrix of the distance d can
be obtained through the conditional probability distribution
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function in (27), which is given by

Qd , E

∂ ln (phN|d (hN;d)
)

∂d

(
∂ ln

(
phN|d (hN;d)

)
∂d

)T


= E

∂h

∂d

∂ ln
(
phN|d (hN;d)

)
∂h

(
∂h

∂d

∂ ln
(
phN|d (hN;d)

)
∂h

)T


= FQFT,
(28)

where F is a matrix of size MK × MK, which is given
in detail in equation (29). To be more specific, we show the
details of the first row of F in (29) as an example which is
given by(

∂h11

∂d11
. . . ∂hM1

∂d11

∂h12

∂d12
· · · ∂hM2

∂d12
· · · ∂hMK

∂d1K

)
.

(30)
The matrix Q in (28) is given by

Q = E

∂ ln
(
phN|d (hN; d)

)
∂h

(
∂ ln

(
phN|d (hN; d)

)
∂h

)T


=
(
σ2

ΛIMK

)−1
.

(31)
Substituting equations (29) and (31) into (28), Qd can be

deduced and it is a diagonal matrix, whose ij-th diagonal entry
is given by

[Qd]ij,ij =

(
(m+ 1)(m+ 3)AeffGfilterGconcδ

m+1

2πσΛ(dij)
m+4

)2

.

(32)
Therefore, the CRLB of the unbiased estimator d̂ for locating
multiple intelligent robot targets can be derived from the
inverse of the Fisher information matrix, which is given in
detail in (33).

According to the Corollary 1 in the work of T. Wei et al
[26], the approximate lower bound of the estimation error ωΛ

is given by

σ2
Λ ≥

σ2
n

Np
, (34)

where σ2
n denotes the variance of the Gaussian distributed

noise for the visible light channels between the LEDs and the
robot targets; Np is the number of pilot subcarriers. Finally, the
CRLB of the positioning task can be deduced by substituting
(34) into (33).

VII. SIMULATION RESULTS

In this section, the performance of the proposed schemes
for simultaneous localization of multiple intelligent robots is
evaluated through extensive simulations in an indoor factory
environment as shown in Fig. 2. Specifically, extensive simu-
lations have been conducted to verify the performance of the
proposed CSM-VLP and CoCSM-VLP schemes, as well as
the proposed GAN-MVLP method. For the simulation setup, a
factory workshop with size of 4×4×3 m3 is considered, where
sixteen LEDs on the ceiling are evenly deployed according to
the system model in Section III. The plane for the robots to
be deployed is divided into 400 grid points. In this way, the

distance between adjacent grid points is 0.2m. Meanwhile,
considering the volume of the intelligent robot, a relatively
sufficient space is reserved with this configured step size of
the grid points. As for the parameters of the VLC transmitters
and receivers, the half-power angle of LEDs is 60◦ and the
effective detection area of PDs is 1cm2.

A. Performance of Positioning Accuracy
Firstly, in order to visually compare the performance of

the three proposed schemes in locating multiple robot targets,
Fig. 4 shows the performance of positioning accuracy for the
proposed schemes of multi-target VLP. It can be observed
from Fig. 4 that all the three proposed schemes can achieve
relatively accurate positioning performance for the task of
simultaneous localization of four targets. In detail, the CSM-
VLP scheme only has a larger positioning error for a certain
target compared to the other two schemes, while all the three
proposed schemes can achieve a high-precision localization
performance for the other robot targets. This indicates that
when the number of robots to be located is small, the sparsity
of the vector θ is satisfied well, and all the three proposed
schemes have good performance. It is also indicated from Fig.
4 that, the CoCSM-VLP scheme achieves a higher positioning
accuracy than CSM-VLP thanks to the collaboration among
distinct anchors through the cross correlation operation. With
the help of this procedure, more geometric information and
channel state information in the environment can be utilized
for positioning.

In order to demonstrate the capability of the proposed GAN-
MVLP scheme compared with classical CS-based CSM-VLP
and CoCSM-VLP schemes, the number of robots to be located
is further increased to eight for simulation. The result of
the positioning performance is shown in Fig. 5, where the
estimated positions obtained by different schemes and the
corresponding actual positions are marked for comparison,
and a short line connecting them is used to represent the
positioning error. The estimated positions are labelled in the
center of a grid point because the proposed schemes recover
the grid points in which the targets are located, and thus
its center coordinate is labelled on average. It can be seen
that as the number of the intelligent robot targets increases
to eight, the performance difference in positioning accuracy
between the classical CS-based scheme and the GAN enabled
scheme grows significant. Specifically, for some of the robot
targets, the positioning performance of the classical CS-based
CoCSM-VLP scheme is limited. The correct grid point may
not be found successfully, but an adjacent grid point may
be located instead. However, the GAN-MVLP scheme can
accurately locate each robot target on the grid point that is
closest to the target. This indicates that the proposed GAN-
MVLP scheme can effectively learn the potential mapping
relationships between the measurement data and the sparse
locations, thereby further improving positioning accuracy, es-
pecially in the case of a large number of targets.

Considering that multiple targets are located simultaneously,
the estimated positions of different targets may not necessarily
have the same distance from their actual positions. For the con-
venience of statistics and representation, we use the average
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F =


∂h11

∂d11
· · · ∂hMK

∂d1K

...
. . .

...
∂h11

∂dMK
· · · ∂hMK

∂dMK

 = − (m+ 1)(m+ 3)Aeff Gfilter Gconc δ
m+1

2π

 (d11)
m+4 · · · 0

...
. . .

...
0 · · · (dMK)

m+4


−1

. (29)

E
[
‖d̂− d‖22

]
≥ tr

(
Q−1

d

)
=

(
2πσΛ

(m+ 1)(m+ 3)Aeff Gfiter Gconc δm+1

)2 M∑
i=1

K∑
j=1

(dij)
2m+8

. (33)
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Fig. 4: Localization performance of three proposed schemes,
i.e., CSM-VLP, CoCSM-VLP, and GAN-MVLP, for simul-
taneously locating four intelligent robot targets in a typical
indoor factory scenario.

positioning error ∆ to measure the accuracy of multi-target
positioning, which is given by

∆ =
1

K

K∑
1

((
x

(rx)
k − x(real)

k

)2

+
(
y

(rx)
k − y(real)

k

)2
)1/2

,

(35)
where (x

(real)
k , y

(real)
k ), k = 1, · · · ,K denote the actual coor-

dinates of the intelligent robots.
Next, in order to generalize the results obtained in Fig. 5

to a wider extent, we repeat substantial experiments under the
same conditions. Based on the recorded data, a cumulative
distribution function (CDF) with respect to the average po-
sitioning error is shown in Fig. 6. The CDF with respect to
average positioning error can be utilized to evaluate the overall
performance of different multi-target localization schemes. It
can be observed that the three proposed schemes not only
achieve high-precision simultaneous multi-target localization-
performance, but also significantly outperform the traditional
RSS based method [42] in positioning accuracy. If we look at
the target value of 0.9 for the cumulative distribution function,
the average positioning errors of the proposed CSM-VLP,
CoCSM-VLP and GAN-MVLP schemes are 15cm, 11cm
and 6cm, respectively, which also verifies the advantage and
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Fig. 5: Localization performance of the proposed GAN-MVLP
scheme and the CoCSM-VLP scheme for simultaneously
locating eight intelligent robot targets.

benefit introduced by cooperation and learning.
As indicated by Figs. 4 and 5, the positioning performance

is closely related with the number of targets. In order to
further investigate performance of the positioning accuracy
of different schemes with respect to the number of robot
targets, we have conducted simulations for the multi-target
positioning task with different number of targets, and the
results are reported in Fig. 7. Firstly, as an overall trend, it can
be observed that the average positioning error of all schemes
increases with the number of robot targets. The difference is
that the three proposed schemes outperform traditional RSS-
based VLP method [41] in terms of positioning accuracy, in
the case of either a small or a large number of robots to
be located. However, these three proposed schemes exhibit
significant differences in their ability to address simultaneous
localization of a large amount of targets. It is implied by the
results in Fig. 7 that, both the CSM-VLP and CoCSM-VLP
schemes based on traditional CS impose strong requirements
on the sparsity of the spatial distribution of the targets with
respect to the entity of the whole space, i.e., the sparsity of
the localization vector θ. Therefore, as the number of robots
gradually increases, the positioning error will increase due to
its impact on the spatial sparsity of the targets. However, with
the help of inter-anchor cooperation via the cross-correlation
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Fig. 6: CDF with respect to the average positioning error for
the conventional RSS-based scheme and the three proposed
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Fig. 7: The average positioning error of the three proposed
schemes and the conventional RSS-based scheme with respect
to the number of robot targets to be located.

operation, more available data can be utilized in the cross-
correlation measurement model, so that the enhanced CoCSM-
VLP scheme is less sensitive to the increase of the number
of robots compared to the CSM-VLP scheme. Moreover, the
GAN-MVLP scheme fully utilizes the strong ability of GAN
in learning latent data distribution, so that it is observed
that the average positioning error of GAN-MVLP does not
change significantly with the increase of the number of targets.
In particular, in the case of a large number of robots, the
GAN-MVLP scheme can still maintain a relatively higher
positioning accuracy.

B. Evaluation of Positioning Robustness

Next, in order to investigate the robustness of the proposed
schemes in case of harsh environment, different SNR condi-
tions are evaluated in simulation. Still, the average positioning
error is used as a standard measure of the positioning perfor-
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Fig. 8: Average positioning error with respect to the SNR for
different VLP schemes for multi-target localization.

mance. Considering the scenario where there are eight robots
to be located, the simulation results are shown in Fig. 8.

From Fig. 8, it can be observed that the proposed GAN-
MVLP scheme can achieve centimeter-level multi-target posi-
tioning accuracy at the SNR of greater than 30dB, which is
the best performance amongst these schemes evaluated. Mean-
while, the proposed CoCSM-VLP and CSM-VLP schemes can
also reach an average positioning error smaller than 10cm at
the SNR of 35dB and 40dB, respectively. When the SNR
is small, a significant difference can be observed for differ-
ent schemes in the robustness against strong noise. Among
them, the GAN-MVLP scheme achieves the smallest average
positioning error in the presence of intensive noise. It is also
noted that the CoCSM-VLP scheme performs much better than
the CSM-VLP scheme. Besides, it is clearly shown that all
the three proposed schemes demonstrate better robustness to
intensive noise than the conventional RSS-based VLP method.

VIII. CONCLUSION

In this paper, we introduced a compressed sensing (CS)
based multi-target visible light positioning (VLP) framework
designed to achieve high-precision simultaneous localization
of multiple intelligent robots within indoor factory environ-
ments. This framework capitalizes on the sparsity of posi-
tional features in space, where the targets are confined to a
limited number of positions in the plane. This characteristic
enables us to transform the multi-target positioning problem
into a sparse recovery problem. Our contributions include
the development of a CS-based multi-target VLP (CSM-
VLP) scheme, employing the aggregation of received signals
and autocorrelation techniques to construct a measurement
model. This scheme yielded effective localization results. To
further enhance precision, we introduced an enhanced cooper-
ative multi-target VLP (CoCSM-VLP) scheme. This scheme
leverages inter-anchor cooperation, creating a cross-correlation
measurement model that utilizes more environmental geo-
metric information and channel state information to improve
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localization. For scenarios involving a larger number of robots
and heightened noise interference resistance, we devised a
GAN model-based (GAN-MVLP) scheme. We also derived
the theoretical boundaries of positioning accuracy. Simulation
results affirm the superiority of our three proposed schemes
over conventional RSS-based VLP methods in terms of posi-
tioning accuracy and robustness. At the CDF value of 0.9, the
average positioning errors of the CSM-VLP, CoCSMVLP and
GAN-MVLP schemes are 15cm, 11cm and 6cm, respectively,
which also verifies the advantage and benefit introduced by
cooperation and learning. The proposed GAN-MVLP scheme
can achieve centimeter-level multi-target positioning accuracy
at the SNR of 30dB, which is the best performance amongst
these schemes evaluated. This research may open promising
avenues for advancing multi-target localization in indoor fac-
tory settings incorporated with intelligent robotics. In addition,
the proposed multi-target VLP framework is easy to generalize
and deployment in other location based service scenarios.
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