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Abstract 

Accurate indoor positioning has been a difficult problem as the last meter dilemma of localization 
and navigation due to lack of satellite navigation signals and complex characteristics of multipath and 
dynamic indoor channels. Indoor visible light positioning (VLP) provides a new possible paradigm for 
accurate and low-complexity indoor positioning using widely deployed light-emitting diodes (LED). In 
this paper, the received signal strength of the photodetector at a mobile terminal is utilized to extract 
the geometric features in order to infer the accurate position coordinate via deep learning. Specifically, 
a hybrid model, i.e., a convolutional-recurrent neural network (CRNN), is devised to learn the nonlinear 
mapping from the received signal strength to the position coordinates in the complex indoor visible light 
propagation environment. A four-dimensional (4D) VLP architecture based on CRNN is formulated to 
deal with the non-line-of-sight propagation of indoor visible light and different receiver orientation. 
Simulation results show that the proposed CRNN-based 4D VLP (CR4D-VLP) method can achieve 
centimeter-level positioning accuracy, and significantly outperforms other state-of-the-art deep-learning- 
based schemes in both line-of-sight and non-line-of-sight scenarios with various spatial patterns of LEDs 
and different room sizes. 
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

The rapid development of positioning and navigation technologies has provided a wealth
f location based services (LBS) [1] . However, satellite positioning systems such as the global
ositioning system (GPS) that performs well outdoors do not work for indoor positioning due
o signal blockage [2] . It is necessary to study effective techniques for accurate indoor posi-
ioning. Currently, indoor localization methods based on Wi-Fi [3] , radio frequency identifica-
ion (RFID) [4] , Bluetooth [5] , ultra-wideband (UWB) [6] and other wireless communication
echnologies have emerged. 

Recently, visible light communication (VLC) utilizing LEDs has drawn great attention from
oth academia and industry. VLC has a huge unlicensed bandwidth and is naturally energy
fficient. VLC is also suitable for special scenarios sensitive to electromagnetic pollution, such
s hospitals and airplanes [7–10] . Thus, indoor visible light positioning (VLP) implemented
ased on the VLC technique has emerged as a promising alternative for indoor localization
11] . 

Classical radio-frequency-based wireless positioning methods roughly include two cate-
ories. One category is based on the ranging information conveyed by the signals, such as
eceived signal strength (RSS) [12] , angle of arrival (AoA) [13] , time of arrival (ToA) [14] ,
ime difference of arrival (TDoA), and frequency difference of arrival (FDoA) [15,16] . The
ther category is based on non-ranging information such as Distance Vector Hop algorithm
17] , K-nearest neighbor method [18] and fingerprint matching method [19] . However, the
ccuracy of wireless based positioning methods, such as Wi-Fi, Bluetooth, RFID and UWB,
tc., need to be further improved, especially for the LBS with requirements of centimeter-level
ositioning in scenarios such as industrial internet-of-things and smart manufacturing. 

As a prospective high-precision indoor localization approach, VLP has been investigated
n literature [20–27] . In [20] , a nonlinear optimization model based on graph optimization
as proposed to process the RSS data for VLP, and the experimental results showed that

he proposed model significantly improves the positioning accuracy. An algorithm based on
he maximum likelihood principle was proposed in Steendam [21] to estimate the AoA and
btain the position of the receiver, which can achieve centimeter-level performance. However,
he performance of conventional VLP methods still need to be improved, especially in com-
lex indoor scenarios such as complex LED patterns, non-line-of-sight (NLOS) propagation,
ynamic channels, and in case of different user terminal orientation. 

Deep learning has achieved great success in many areas such as computer vision and natural
anguage processing [28,29] . There have been some studies incorporating deep learning into
ocalization [30–33] . In [34] , an indoor VLP technique using deep neural network (DNN)
ased on Bayesian regularization with sparse training point was proposed, which provided
 new solution for real-time and high-accuracy positioning. In [35] , a passive indoor VLP
ystem assisted by deep learning was proposed and the experimental results demonstrated that
he localization performance was related to the signal-to-noise ratio (SNR) and the size of
raining datasets. A VLP method based on multiple photodiodes (PD) and machine learning
as proposed in Bakar et al. [36] , which can reduce the time and implementation complexity.
owever, the challenges of complex conditions of NLOS propagation and different receiver

otation remain to be addressed. 
In this paper, an indoor VLP method based on deep learning is proposed, in which the geo-

etric information is extracted from the RSS at the PD of the user terminal by deep learning
odels. To better extract the features, a hybrid deep learning model, i.e., a convolutional-
4072 
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ecurrent neural network (CRNN), is devised. To tackle the problem of dynamically changing
rientation of the user terminal, a CRNN-based four-dimensional VLP (CR4D-VLP) frame-
ork is formulated, which accounts for both the three-dimensional (3D) spatial coordinates

nd the user terminal orientation as the fourth dimension via coordinate rotation. Moreover,
he realistic complex NLOS propagation of the visible light is taken into consideration in
he design of the proposed CR4D-VLP method. The positioning performance in conditions
f various LED spatial patterns and different room sizes is investigated via simulations. The
heoretical bound of the positioning accuracy is derived. The contributions of this paper are
ummarized as follows: 

• A 4D indoor VLP framework is formulated, in which the user terminal orientation is
taken into account utilizing coordinate rotation. 
• A hybrid CRNN-based deep learning model is devised to learn the inherent geometric

feature from the RSS data acquired in a complex and dynamic indoor environment. 
• The realistic complex NLOS propagation characteristics of the indoor visible light sig-

nals are exploited for accurate 4D positioning. 

The remainder of the paper is organized as follows: Related works are surveyed in Sec-
ion 2 . The system model is described in Section 3 . In Section 4 , the proposed CR4D-VLP
ethod is introduced and the theoretical bound is derived. Simulation results are reported and

iscussed on in Section 5 , followed by the concluding remarks in Section 6 . 

. Related works 

.1. Radio-frequency-based indoor localization techniques 

Many radio-frequency-based indoor localization techniques have been presented
3–6,37–40] over the recent years. 

A frequency hopping approach was proposed in Chen et al. [3] to achieve centimeter-
evel accuracy indoor localization on Wi-Fi platforms. Ma et al. [4] proposed a weighted
ultidimensional scaling method in a tag-to-tag communication system to conduct multi-

ag indoor cooperative localization, where the targets were marked with passive ultrahigh
requency RFID tags. In [5] , a precise dead reckoning algorithm based on Bluetooth and
ultiple sensors was proposed for indoor localization and the experiment results showed

hat the algorithm improved the positioning accuracy and applicability. A novel localization
ramework was presented based on UWB channel sounding in Xu et al. [6] which can achieve
n average accuracy of 0.26, 0.28 and 0.90 m in line-of-sight (LOS) obstructed-LOS, and
LOS scenarios, respectively. Wang et al. [37] developed an RFID-based localization system
ased on RFID tags in indoor scenarios. A Wi-Fi-based localization system was proposed
o improve the accuracy of fingerprint-based indoor localization in Sun et al. [38] . Hanssens
t al. [39] presented a fixed-lag extended finite impulse response smoother algorithm based on
he distance between the UWB reference nodes and a blind node, and extensive experiments
emonstrated that it had higher accuracy and robustness. In [40] , an ensemble model consisting
f fuzzy classifier and multi-layer perceptron for indoor Wi-Fi-based parking localization was
roposed to achieve higher accuracy and lower error. 
4073 
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.2. Visible-light-based indoor localization techniques 

.2.1. Conventional VLP schemes 
There are plenty of conventional VLC-based indoor localization approaches in literature.

y detecting the phase difference between the transmitted signals, TDoA was estimated to
ealize VLC-based localization in Jung et al. [22] . Du et al. [23] developed a low-complexity
DoA-based indoor VLP system using an enhanced practical localization scheme based on
ross correlation. Chen et al. [24] analyzed the potential of code division multiple access
CDMA)-based indoor VLP. An algorithm based on the maximum likelihood principle was
roposed in Steendam [21] to estimate the AoA and obtain the position of the receiver, which
an achieve centimeter-level performance. In [25] , a 3D indoor VLP algorithm based on the
oA and RSS was proposed, which can obtain the estimated position with less than 6 cm.
hu et al. [26] proposed an indoor VLP framework based on the angle differences of arrival.

n [27] , the hybrid utilization of the AoA and RSS information was proposed in VLC systems
or 3D localization. 

.2.2. Learning-based VLP schemes 
Recently, some studies applying artificial intelligence into VLC-based indoor localization

ave emerged in literature [34–36,41–48] . In [41] , an artificial neural-network-based VLP
lgorithm was proposed in a diffuse channel. Guo et al. [42] proposed several representative
achine learning algorithms to train multiple classifiers based on RSS fingerprints and pre-

ented two robust fusion localization algorithms to combine the outputs of these classifiers.
iu et al. [43] proposed an indoor VLP algorithm based on machine learning considering

he indoor reflection of the visible light and presented a hybrid positioning algorithm based
n extreme learning machine and the density-based spatial clustering to improve localization
ccuracy. Hong et al. put forward an AoA-based VLP system using quadrant-solar-cell and
hird-order ridge regression machine learning to improve the localization accuracy in Hong
t al. [44] . A neural network algorithm was proposed to correct the error caused by the tilt
ngle of the camera in VLP system in Yuan et al. [45] and the experimental results indicated
hat it can achieve high-precision positioning. 

In [46] , a novel position estimation DNN was proposed to address the issues of weak
ompatibility and high complexity of VLP. A VLP system based on RSS was proposed in
su et al. [47] which utilized data pre-processing and convolutional neural networks (CNN)

o address the issue of light deficient regions in VLP system. Lin et al. [48] proposed a
ositioning scheme based on unit cell model duplication and devised a residual concatenation
eural network utilizing transfer learning to refine the model of the target positioning unit
ell to enhance the positioning accuracy of VLP. 

. System model 

.1. Indoor visible light positioning model 

As shown in Fig. 1 , let us consider the indoor VLP problem in a room whose length,
idth and height are L × W × H , where a Cartesian coordinate system is established. 
In the room, a certain number of LEDs are deployed with equal spacing on the ceiling and

 user terminal equipped with a PD can move randomly in a 3D space with size of l × w × h.
pecifically, the user terminal can also rotate its receive plane in any angle. The PD of the
4074 
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Fig. 1. The indoor VLC localization scenario. 
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ser terminal receives information conveyed by the visible light signals sent from the LEDs.
sing this coordinate system, the coordinates and the geometrical relationships between the
EDs and the PD can be explicitly represented. 

.2. Visible light propagation channel 

The LED radiates the same light intensity to any angle, which conforms to Lambert’s
aw [49] . Specifically, the LED source can be regarded as a generalized Lambertian radiation
ource, and its radiation intensity can be expressed as 

 ( θ ) = 

( m + 1 ) 

2π
cos m ( θ ) − π

2 

� θ � 

π

2 

, (1)

here θ is the irradiation angle of the LED and m is called the Lambertian radiation ordinal
hose value is related to the intensity of a half-power angle of the LED. The relationship
etween θ and m can be described as m = −ln 2 / ln 

(
cos θ1 / 2 

)
, where θ1 / 2 is the half-power

ngle. 
As shown in Fig. 2 , when the visible light passes through the free space indoors, the DC

ain of the LOS channel can be expressed as 

 L ( 0 ) = 

{ 

( m+1 ) A PD 
2πd 2 cos m ( θ ) cos ( φ) T s ( φ) g ( φ) 0 � φ � φFOV 

0 otherwise 
, (2)

here φ is the angle of incidence at the PD, d is the distance between the LED and the PD,
FOV 

is the field of view (FOV) of the PD, A PD 

is the effective area of the PD, T s ( φ) is the
ain of the optical filter, and g ( φ) is the gain of the optical concentrator defined as 

 ( φ) = 

{ 

n 2 

sin 2 φFOV 
0 � φ � φFOV 

0 otherwise 
, (3)

here n is the refractive index of the optical concentrator. Therefore, the received optical
ower P r can be obtained by P r = R PD 

P t H L ( 0 ) when the optical radiation power is P t . Then
4075 
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Fig. 2. The LOS propagation of visible light. 
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he received electrical power can be given by 

 ele = [ R PD 

P t H L ( 0 ) ] 2 + σ 2 
n , (4)

here R PD 

is the responsivity of the PD, σ 2 
n is the variance of the total noise which mainly

ncludes shot noise and thermal noise, whose variance can respectively be expressed as 

2 
sh = 2qR PD 

P r B + 2qI bg I 2 B, (5)

2 
th = 

8 πkT k 
G 

ηA PD 

I 2 B 

2 + 

16 π2 kT k �

g m 

η2 A 

2 
PD 

I 3 B 

3 , (6)

here q is the electron charge, B is the equivalent noise bandwidth, I bg is the background
oise current, k is the Boltzmann constant, I 2 is the noise bandwidth coefficient, T k is the
hermodynamic temperature, η is the PD capacitance per unit area, G is the open-loop voltage
ain, g m 

is the FET transconductance coefficient, � is the FET channel noise figure, and I 3
s the thermal noise figure. 

As shown in Fig. 3 , when the visible light reaches an object, reflection will occur, which
auses NLOS propagation. The reflection area can be deemed as a virtual visible light source,
hich can be modeled as Lambertian reflection with satisfactory accuracy [49] . Thus, the DC
ain of the NLOS channel in the case of the first reflection can be given by 

 H N ( 0 ) = 

{ 

( m+1 ) A PD 

2πd 2 11 d 
2 
12 

ρd A ref cos m ( θ11 ) cos ( φ11 ) cos ( θ12 ) T s ( φ12 ) g ( φ12 ) cos ( φ12 ) 0 � φ12 � φFOV 

0 otherwise 
, (7)

here θ11 and θ12 are the irradiation angles of the LED and the reflection area, respectively,
11 and φ12 are the incident angles of the reflection area and the PD, respectively, d 11 is

he distance between the LED and the reflection area and d 12 is the distance between the
eflection area and the PD, ρ is the reflection coefficient, and dA ref is the acreage of the
eflection area. 

Then, the received optical power P r can be obtained by P r = R PD 

P t 

[ 
H L ( 0 ) + 

∫ 
A ref 

dH N ( 0 ) 
]

ith the optical radiation power being P t . Then the electrical power received by the PD can
4076 
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Fig. 3. The NLOS propagation of visible light with first reflection considered. 
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e similarly described as 

 ele = 

{
R PD 

P t 

[
H L ( 0 ) + 

∫ 

A ref 

dH N ( 0 ) 

]}2 

+ σ 2 
n . (8)

.3. Unified position representation for different receiver orientation via coordinate rotation 

For most existing works regarding indoor localization, the receive plane, i.e., the PD of
he user terminal is usually assumed to be parallel to the transmit plane, i.e., the ceiling. In
his case, the PD can communicate with the LEDs via the LOS link propagation. However, it
annot be guaranteed that the orientation of the user terminal is always perpendicular to the
ransmit plane, especially in realistic complex scenarios. Therefore, it is necessary to consider
he common case of different orientation angles of the user terminal, which leads to a 4D
ituation including the 3D spatial location and the orientation. In this case, the user terminal
an rotate with random orientation, and then the LOS link between the PD and some of the
EDs might be blocked. 

As we all know, the rotation of the user terminal also has three degrees-of-freedom of
hree orientations in the 3D localization system. In the given Cartesian coordinate system as
llustrated in Fig. 1 , according to the Euler’s rotation theorem, the location coordinates of the
ser terminal will change after a rotation operation with the rotation angle of α, β, γ around
he x, y, z axes, and the new coordinates can be represented using the rotation matrix as given
y 

 x = 

⎡ 

⎣ 

1 0 0 

0 cos ( α) − sin ( α) 

0 sin ( α) cos ( α) 

⎤ 

⎦ R y = 

⎡ 

⎣ 

cos ( β) 0 sin ( β) 

0 1 0 

− sin ( β) 0 cos ( β) 

⎤ 

⎦ 

R z = 

⎡ 

⎣ 

cos ( γ ) − sin ( γ ) 0 

sin ( γ ) cos ( γ ) 0 

0 0 1 

⎤ 

⎦ . (9)
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. Four-dimensional indoor visible light positioning enabled by deep learning 

.1. Four-dimensional visible light positioning framework 

First, we assume a special case where the PD of the user terminal remains to be parallel to
he transmit plane, and then we extend the model to fit the general case with different orienta-
ion. The user terminal can move randomly in a 3D space inside the room. The coordinates of
he LEDs and the mobile user terminal are represented by the established coordinate system
s defined in Section 3.1 . We first consider the visible light channel with only LOS propa-
ation, and then we take NLOS propagation into consideration. For the LOS-only channel,
e denote the coordinate vector of the PD at the i th as p i and the coordinate vector of the

 th LED as l j . Then, the distance vector from the i th PD to the j th LED is d i, j = l j − p i .
ccording to the LOS channel model given by Eq. (2) in Section 3 , the cosine values of the

rradiation angle and the incident angle can be obtained as 

os 
(
θi, j 

) = −n L · d i, j ∥∥d i, j 

∥∥
2 

, cos 
(
φi, j 

) = 

n P · d i, j ∥∥d i, j 

∥∥
2 

, (10)

here n P is the unit vector of the PD and n L is the unit vector of the LED. Then the received
lectrical power is regarded as the RSS. 

In order to investigate the influence of the NLOS propagation on the positioning perfor-
ance, the first reflection of the visible light from the walls, which contributes most of the

nergy of the NLOS channel [2] , is taken into consideration. The wall can be partitioned into
 number of small reflection areas with a specific center coordinate represented in the given
oordinate system. According to the NLOS channel model given by Eq. (7) in Section 3 , all
he cosine values of the irradiation angles of each LED and each reflection area, the cosine
alues of the incident angles of each reflection area and the PD, the distance between each
ED and each reflection area, and the distance between each reflection area and the PD, can
e calculated. In this case, the NLOS information can be contained in the received RSS. 

In fact, using a mobile user terminal as the receiver, it is unrealistic to fix the orientation
f the PD. Thus, it is necessary to consider the orientation of the user terminal, which can be
egarded as an extra dimension apart from the 3D coordinates, leading to a 4D positioning
aradigm. According to the research of the orientation of the indoor receivers [50] , the range
f the three rotation angles is α ∈ [ −180 

◦, 180 

◦) , β ∈ [ −90 

◦, 90 

◦) and γ ∈ [ 0 

◦, 360 

◦) , which
ollows a truncated Laplacian distribution. Based on the Euler’s rotation theorem given by
q. (9) in Section 3 , we suppose that the user terminal rotates in the order of z, y, x, and

hen the coordinate vector and unit vector of the PD at the i th position can be transferred to
p i R z R y R x and n P R z R y R x , respectively. Thus, the DC gain of the VLC channel in Eqs. (2) and
7) after rotation can also be recalculated. At this time, the information of the orientation
f the user terminal is embedded in the RSS, which facilitates the deep learning method to
nd a better mapping between the spatial state data and the location coordinates utilizing this

nherent information of orientation. 

.2. Proposed CRNN architecture for four-dimensional VLP 

With the improvement of the learning capacity of deep neural networks and the increase of
omputing power, deep learning can extract more and more abstract features. Classical deep
earning models such as DNN, CNN and recurrent neural network (RNN), can be utilized
4078 
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Fig. 4. Structure of the proposed CRNN model utilized for 4D indoor high-precision VLP. 
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or the task of VLP. In order to deal with the challenge of various orientation of the user
erminal and the NLOS propagation of visible light, a hybrid deep learning model, i.e., CRNN,
s devised, which can extract the complex geometric information for 4D VLP. 

.2.1. Classical deep learning for VLP 

To investigate the performance of deep learning for the task of VLP, classical deep learning
odels including DNN, CNN, and RNN are applied. First, a DNN consisting of three hidden

ully connected layers with 128 neurons is applied. All of neurons are activated by rectified
inear units (ReLU), and a linear function is utilized for activation at the output layer. During
he training process, the distribution of the input of each layer changes with the parameters
rom the previous layer, which limits the speed of training. For the CNN, to process the one-
imensional (1D) data of coordinates in localization, three 1D hidden convolutional (Conv)
ayers are constructed. Each Conv layer contains 32 filters and a convolution kernel with size
f 16. The last Conv layer is flattened to a fully connected output layer activated by a linear
unction. In addition, an RNN consisting of three hidden recurrent layers is constructed for
LP based on the idea of graph expansion and parameters sharing. 

.2.2. CRNN-based four-dimensional VLP (CR4D-VLP) 
According to the principle of three classical deep learning models, the fully connected

ayer can synthesize the extracted features. The Conv layer can share parameters and extract
he desired features according to the objective function. The recurrent layer can better utilize
he historical data in a sequence. This inspires the idea to fully exploit the advantages of the
hree models. Thus, a CRNN model is devised, in which a fully connected layer is employed
s the output layer, a 1D Conv layer and two recurrent layers are utilized as three hidden
ayers so that each layer can inherit its own characteristics and share the advantages. Then,
he modules of batch normalization (BN) and dropout are employed after each hidden layer to
void overfitting and improve the generalization ability. The structure of the proposed CRNN
odel is illustrated in Fig. 4 . In the following, the process of the localization data in the

roposed method of CR4D-VLP will be described in detail. 
Firstly, the input localization data is normalized in the preprocessing stage in order to

mprove the accuracy and accelerate the convergence speed of the CRNN model. By subtract-
ng its mean and then dividing by the variance of the data, the preprocessed data satisfies a
4079 
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tandard normal distribution with zero mean and variance of one. In addition, by performing
ormalization on each training batch after each hidden layer, the CRNN model can accelerate
he learning rate and reduce the dependence of the gradient on the scale of the parameters.
n addition, by randomly turning off some neurons, i.e., selecting some neurons that do not
articipate in the training to prevent their common adaptation, the dropout module employed
n the CRNN model can effectively prevent overfitting in the training process. 

In the input layer, we reshape the data into size of n × 1 and send the data to the 1D
onv layer. As shown in Fig. 4 , the n × 1 data is convoluted with a f × 1 convolution
ernel using a fixed stride in the 1D Conv layer. Then a bias b is added on the convolution
esult and the ReLU is employed for activation. Afterwards, the output of the Conv layer
s adjusted using a pooling function that not only suppresses the noise, but also reduces the
omputational complexity of the model. As for the subsequent recurrent layer, the data is
nput over t moments, respectively, in the first recurrent layer, and the state output h t at each

oment is calculated according to the shared parameter matrix A and the bias b. Then the
yperbolic tangent function tanh() is applied for activation, and the final output is the entire
tate sequence. The structure of the second recurrent layer is the same as the first recurrent
ayer, but the final output is no longer the entire state sequence. In the output layer, the data
s activated by a linear function. 

Finally, the optimizer is also important for the CRNN training process. The Adam opti-
izer is employed for training, which is a first-order optimizer that iteratively updates the
eights with the training data. For the Adam parameters, the learning rate for updating the
eights is set as 0.001, which enforces the optimizer to converge to a better performance.
he exponential decay rate of the first-order and the second-order moments is set as 0.9 and
.999, respectively. The history information of the second-order gradients is not preserved
uring the training process. 

For the task of indoor VLP in this paper, the RSS is taken as the feature data and the
oordinates of the user terminal is regarded as the label data, which is utilized to train CRNN
odel. According to the principle of visible light propagation, when the PD of the user

erminal is perpendicular to the transmit plane, deterministic geometric information from all
he LEDs on the transmit plane can be obtained via direct LOS propagation links. In this
ase, the isotropic NLOS links generated by many reflections by the walls might contaminate
he geometric information contained in the RSS contributed by the LOS links. Thus, the
ositioning performance suffers from degradation. However, in the case where the PD is
otating with a random orientation, the geometric information of LOS links from all LEDs
an no longer be acquired. In this case, some extra spatial information embedded in the NLOS
inks can be exploited to compensate for the positioning performance of the deep learning

odel, which can improve the accuracy of 4D VLP. 

.3. Theoretical analysis for the bound of VLP accuracy 

In this subsection, we will derive the theoretical bound of the accuracy of VLP, which can
erve as a guidance for experiments and system optimization. For different models and algo-
ithms in positioning, the performance bound can generally be evaluated from three aspects:
nbiasedness, validity, and consistency. Generally, the Cramér–Rao lower bound (CRLB),
hich can be determined by the variance of any unbiased estimator, takes all the three as-
ects into consideration. Thus, we will investigate the CRLB to evaluate the accuracy of the
roposed scheme. 
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The CRLB has been derived for some localization schemes in literature [2] . Based on the
rocedure of CRLB derivation in various positioning systems, the CRLB of the RSS-based
istance coordinate vector estimation is derived considering direct link propagation without
oss of generality. According to Eqs. (2) and (10) , assuming that the distance coordinate
ector between the PD at the i th position to the j th LED is 

(
a i, j , b i, j , c i, j 

)
, n i = ( 0, 0, 1 ) ,

 j = ( 0, 0, −1 ) , respectively, the visible light channel DC gain can be rewritten as 

 i, j = 

( m + 1 ) A PD 

c m+1 
i, j 

2π
(

a 

2 
i, j + b 

2 
i, j + c 2 i, j 

)( m+3 ) / 2 
T s ( φ) g ( φ) . (11)

Via a specific time-domain or frequency-domain multiple access technique to distinguish
he signals sent from different LEDs, the received observations at the user terminal can be
xpressed as 

 = R PD 

H x + n , (12)

here y is the output signal of the PD at each location, x is the transmitted optical power of
ach LED, H is the channel gain matrix with its entry H i, j as given by Eq. (11) , and n is
he additive white Gaussian noise with zero mean and variance of σ 2 

n . Then the probability
ensity function of y conditioned on d i , j can be expressed as 

f 
(
y | d i , j 

) = 

1 √ 

2πσn 

exp 

{
− ( y − R PD 

H x ) ( y − R PD 

H x ) T 

2σ 2 
n 

}
. (13)

Therefore, the root mean square error of the distance coordinate vector, which is the CRLB
f the positioning method, satisfies 

MSE ( a, b, c ) � 

√ 

trace 
(
J 

−1 
)
, (14)

here J is the fisher information matrix (FIM), which is given by 

 = E 

[
( ∇ d ln f ( d ) ) ( ∇ d ln f ( d ) ) T 

]
, (15)

here ∇ represents the gradient operator. According to Eqs. (13) and (14) , the FIM can be
ewritten as 

 = 

R 

2 
PD 

σ 2 
n 

⎡ 

⎢ ⎣ 

x 

T U 

d 1 ,d 1 x x 

T U 

d 1 ,d 2 x x 

T U 

d 1 ,d 3 x 

x 

T U 

d 2 ,d 1 x x 

T U 

d 2 ,d 2 x x 

T U 

d 2 ,d 3 x 

x 

T U 

d 3 ,d 1 x x 

T U 

d 3 ,d 2 x x 

T U 

d 3 ,d 3 x 

⎤ 

⎥ ⎦ 

, (16)

here 
(
U 

d N ,d N ′ 
)

j, j ′ , d N , d N ′ ∈ 

{
a i, j , b i, j , c i, j 

}
is defined as 

U 

d N ,d N ′ 
)

j, j ′ = 

[ (
∂ 

∂d N 
H 

)T (
∂ 

∂d N ′ 
H 

)] 

j, j ′ 
= 

M ∑ 

i=1 

∂ 

∂d N 
H i, j 

∂ 

∂d N ′ 
H i, j ′ , (17)

here the derivatives of the channel gain with respect to d N and d N ′ can be represented by 

∂ 

∂a i, j 
H i, j = −a i, j ( m + 3 ) ( m + 1 ) A PD 

c m+1 
i, j 

2π
(

a 

2 
i, j + b 

2 
i, j + c 2 i, j 

)( m+5 ) / 2 
T s ( φ) g ( φ) 
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Table 1 
Simulation parameters. 

Parameter Value 

LED field of view 90 ◦
LED half-power angle θ1 / 2 60 ◦
Wall reflectivity ρ 75% 

PD Responsivity R PD 0.65 
PD field of view φFOV 70 ◦
Concentrator refractive index n 1.5 
PD Effective area A PD 1 cm 

2 

Optical filter gain T s ( φ) 1 
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∂ 

∂b i, j 
H i, j = −b i, j ( m + 3 ) ( m + 1 ) A PD 

c m+1 
i, j 

2π
(

a 

2 
i, j + b 

2 
i, j + c 2 i, j 

)( m+5 ) / 2 
T s ( φ) g ( φ) 

∂ 

∂c i, j 
H i, j = 

( m + 1 ) A PD 

[ 
a 

2 
i, j + b 

2 
i, j + c 2 i, j − ( m + 3 ) a i, j 

] 
2π

(
a 

2 
i, j + b 

2 
i, j + c 2 i, j 

)( m+5 ) / 2 
T s ( φ) g ( φ) . (18)

emark : In the derivation process of the CRLB of the positioning accuracy, it can be noted
ntuitively that the positioning accuracy is affected by different factors such as the PD respon-
ivity, noise, Lambertian coefficient, effective area, optical filter gain, and optical concentrator
efractive index. In addition to these direct factors, potential factors such as the number of
EDs, the spatial patterns of the deployment of the LEDs, and the room size can also have
ifferent effects on the localization accuracy. Hence, we investigate the influence of some of
hese direct and potential factors on the positioning performance via simulations in the next
ection. 

. Simulation results and discussions 

.1. Dataset preparation and experimental setup 

After the CRNN is formulated, it is worth paying attention to the generation and processing
f the dataset which is influential on the performance of deep learning. When generating the
ataset, some parameter related to visible light signal transmission are set as shown in Table 1 .
ext, we will describe the method to generate and process the dataset in detail. 
Firstly, 16 LEDs are deployed with equal spacing on the ceiling of a room with its size of

 m × 5 m × 3 m, in which a 3D rectangular coordinate system is established according to the
ethod shown in Fig. 1 , with a corner of the room being the origin point. The coordinates of

he 16 LEDs can be known a priori. Then, the user terminal moves randomly in the 3D space
ith size of 5 m × 5 m × 1 . 5 m in the room with its PD maintained parallel to the transmit
lane, which generates the user position dataset of size 10 

5 and the RSS dataset of size
0 

5 × 16 , respectively. The generated RSS dataset has taken both LOS and NLOS propagation
inks into consideration. Meanwhile, the RSS dataset of size 10 

5 × 16 for random orientation
f the PD can also be generated corresponding to the 4D VLP scenarios. Afterwards, the
ame procedures are conducted to generate a dataset of order 10 

6 . To evaluate the effects of
ome environmental factors on the learning performance, such as the LED spatial pattern and
4082 



D. Su, X. Wang, S. Liu et al. Journal of the Franklin Institute 360 (2023) 4071–4090 

Fig. 5. The CDF of the 3D indoor VLP for the DNN and CNN models in the LOS link only and both LOS and 
NLOS links scenarios. 
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h  
oom size, some specific datasets related to specific environments are also generated. Each
ataset is divided into training set, prediction set and test set with the ratio of 8 : 1 : 1 . 

In order to analyze the results, the CRNN model and the other three models are trained and
hen tested. The estimated coordinates are obtained by the trained models, and the position-
ng error is calculated using the ground-truth coordinates in the test set. The error cumulative
istribution function (CDF) is adopted to demonstrate the positioning performance more in-
uitively. 

.2. Performance evaluation of 3D and 4D visible light positioning 

Firstly, we examine the effects of LOS and NLOS propagation and the size of the dataset on
he accuracy of indoor 3D positioning for two classical deep-learning-based neural networks,
.e., DNN and CNN, while the PD maintains parallel to the transmit plane. The CDF of
he positioning error is shown in Fig. 5 . The results indicate that the positioning accuracy
an reach centimeter level. The best performance is achieved by the CNN model with only
OS link trained by the dataset of size 10 

6 , which reaches a positioning error of about
.67 cm at 90% probability. The worst performance occurs at the DNN model with both LOS
nd NLOS links trained by the dataset of size 10 

5 , which has a positioning error of about
3.45 cm at 90% probability. It is observed that the dataset of size 10 

6 performs better than
he dataset of size 10 

5 , because within a certain range of the training data amount, the larger
he amount of training data, the better the testing generalization performance. At the same
ime, larger dataset also increases the training complexity. It is also noted that the localization
rror of the CNN model is smaller than that of the DNN model. The inclusion of NLOS
inks brings some certain degree of impact on the positioning performance, which verifies
hat the model can learn deterministic geometric information from all the LEDs via the LOS
ink, while the inclusion of NLOS links disturbs the explicit geometric information mapping
o the coordinates. The results also indicates that other approaches can be applied to mitigate
he impact of the inclusion of NLOS links, such as using CNN model in this case. 

Next, we further investigate the 4D VLP scenario in which the PD can rotate randomly to
ave different orientations. The performance of the RNN and the proposed CRNN models are
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Fig. 6. The CDF of the localization error of DNN, CNN, RNN and CRNN models for the indoor 4D VLP. 
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valuated. The CDF of the positioning error for the RNN and the CRNN models is shown
n Fig. 6 (a). The CDF of the localization error for the DNN and CNN models is also shown
n Fig. 6 (b) for comparison. It can be observed from the results that, the inclusion of NLOS
inks improves the positioning performance. This is because when the PD rotates to a different
rientation, the additional NLOS information included in the RSS can compensate for the loss
f the geometric information in the LOS links due to blockage, shading, or obscuring. In this
ase, more favorable geometric information has been fed to the learning model to improve
he accuracy of mapping between the RSS and the coordinates. 

In addition, the positioning error of the DNN model is still relatively the largest, while the
ositioning performance from the CNN and RNN models is not much different from each
ther. It can be observed that the proposed CRNN model performs the best, which verifies that
ll the merits of the other three models have been exploited. Specifically, the best performance
s achieved by the CRNN model with both LOS and NLOS links trained by the dataset of
ize 10 

6 , which reaches a positioning error of about 3.12 cm at 90% probability. The worst
erformance occurs at the DNN model with only LOS link trained by the dataset of size 10 

5 ,
hich has a positioning error of about 39.44 cm at 90% probability. From these results it is
emonstrated that, although the indoor positioning error of the 4D scenario is larger than that
f the 3D scenario, it is beyond expectation that the inclusion of NLOS links can reduce the
ositioning error by contributing to the implicit geometric information conveyed in the RSS.
oreover, the 4D VLP scenario is much more in line with the realistic complex situation

ecause of the flexibility of user orientation. 
Furthermore, we examine the average localization error of the DNN, RNN and the proposed

RNN models with respect to the SNR in the 4D VLP scenario, which is shown in Fig. 7 .
ig. 7 (a) reports the positioning error with the dataset of size 10 

5 and Fig. 7 (b) provides the
esults with the dataset of size 10 

6 . It can be noted from the results that the NLOS links can
lso improve the performance to a certain extent, which is basically consistent with the results
n Fig. 6 . With the dataset of size 10 

6 , the localization error decreases by about 2 cm on
verage compared to that with the dataset of size 10 

5 . Besides, it is implied that the proposed
RNN model has an outstanding anti-noise ability at the low SNR region regardless of the
ataset size. Compared with the CRNN model, the RNN model is more sensitive to SNR and
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Fig. 7. The average localization error of the DNN, RNN and CRNN models with respect to SNR for 4D VLP 
scenario. 

Fig. 8. The spatial patterns of four typical LED deployment modes on the ceiling in the room. 
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t performs the worst at low SNR. The overall performance of the DNN models is poor over
ll range of SNR. 

.3. Performance evaluation of environmental factors 

In addition to some of the visible light propagation channel and dataset factors influencing
ositioning performance studied above, next we investigate the influence of some environ-
ental factors, such as the spatial patterns of the LEDs and the room size, on the positioning

ccuracy. The 16 LEDs on the ceiling can formulate different spatial patterns in various
eployment, in which four typical LED deployment modes are investigated, as depicted in
ig. 8 . Mode 1 adopts four LEDs in the corner and Mode 2 only employs the central four
EDs. Mode 3 combines the 8 LEDs of Mode 1 and 2, while Mode 4 is the exact opposite
f Mode 3. Using the proposed CRNN model, we conduct a comparison experiment of the
our LED deployment modes, with positioning dataset of size generated with different PD
rientations. The CDF of the localization error is reported in Fig. 9 . It can be observed from
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Fig. 9. The CDF of localization error for the indoor 4D VLP with different spatial patterns of LED deployment. 

Fig. 10. The CDF of localization error for the indoor 4D VLP in different rooms with different room sizes. 
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he results that, the number of LEDs deployed is the dominant factor affecting the positioning
ccuracy. When the number of LEDs is the same, a more concentrated spatial pattern of the
EDs deployment can achieve a better performance. The best performance of positioning
rror achieved is about 4.58 cm at 90% probability when NLOS links are exploited for the
D VLP scenario. 

In addition, we evaluate the positioning performance of the proposed CRNN model for the
D VLP task using dataset of size 10 

5 and 10 

6 generated in two rooms of different room sizes,
.e., 7 m × 7 m × 3 m and 9 m × 9 m × 3 m, respectively. The CDF of the positioning error
s depicted in Fig. 10 . It can be observed that, the scheme with both LOS and NLOS links
utperforms that with the LOS only link. Since the deployment of LEDs is more scattered
hen the room is larger with the same number of LEDs, the positioning error thus increases.
Finally, we examine the localization error of the proposed CRNN model in different room

izes with respect to SNR using dataset of size 10 

5 . From Fig. 11 , it is shown that the inclusion
f NLOS links can make up for some performance loss, and the anti-noise ability of the CRNN
odel is effective at low SNR region. Specifically, in the room of size 7 m × 7 m × 3 m, the
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Fig. 11. The average localization error of the CRNN model over different room sizes with respect to SNR. 
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verage localization error of 4D VLP is about 6.82 cm at the SNR of 15 dB with both LOS
nd NLOS links considered. In the room of size 9 m × 9 m × 3 m, the average localization
rror is about 8.91 cm at the SNR of 15 dB with both LOS and NLOS links. 

. Conclusion 

In this work, an indoor CR4D-VLP framework has been established, where the so-called
D is to take the user terminal orientation into account as an extension to the original 3D spa-
ial location to deal with more realistic and complex indoor localization scenarios. The LOS
nd NLOS propagation links have been investigated, by which an interesting phenomenon
as been discovered. That is, the inclusion of NLOS links has a detrimental impact on the
ositioning error when the PD maintains parallel to the transmit plane. However, when the
D rotates to a random orientation, considering the NLOS links can compensate for the lo-
alization performance loss of the LOS only link thanks to the implicit geometric information
xtracted from NLOS links by the proposed CRNN model. The proposed CRNN model has
ombined the advantages of three types of classical deep learning models, which has satis-
actory anti-noise ability especially at the low SNR region. Moreover, we have examined the
nfluence of some important environmental factors, such as the spatial patterns of LED deploy-
ent and room sizes, on the localization accuracy. The simulation results have demonstrated

hat the proposed CR4D-VLP scheme significantly improves the indoor positioning accuracy
ompared to existing benchmarks by effectively utilizing the available indoor LED resources.
t is promising to apply the proposed visible light localization technology to more complex
nd different types of scenarios with various patterns of LED deployments and complicated
hannel characteristics. 
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